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Abstract: (Aim) COVID-19 is an ongoing infectious disease. It has causedmore
than 107.45 m confirmed cases and 2.35 m deaths till 11/Feb/2021. Traditional
computer vision methods have achieved promising results on the automatic
smart diagnosis. (Method) This study aims to propose a novel deep learn-
ing method that can obtain better performance. We use the pseudo-Zernike
moment (PZM), derived from Zernike moment, as the extracted features. Two
settings are introducing: (i) image plane over unit circle; and (ii) image plane
inside the unit circle. Afterward, we use a deep-stacked sparse autoencoder
(DSSAE) as the classifier. Besides, multiple-way data augmentation is chosen
to overcome overfitting. The multiple-way data augmentation is based on
Gaussian noise, salt-and-pepper noise, speckle noise, horizontal and vertical
shear, rotation, Gamma correction, random translation and scaling. (Results)
10 runs of 10-fold cross validation shows that our PZM-DSSAE method
achieves a sensitivity of 92.06% ± 1.54%, a specificity of 92.56% ± 1.06%,
a precision of 92.53% ± 1.03%, and an accuracy of 92.31% ± 1.08%. Its F1
score, MCC, and FMI arrive at 92.29%±1.10%, 84.64%± 2.15%, and 92.29%
± 1.10%, respectively. The AUC of our model is 0.9576. (Conclusion) We
demonstrate “image plane over unit circle” can get better results than “image
plane inside a unit circle.”Besides, this proposed PZM-DSSAEmodel is better
than eight state-of-the-art approaches.

Keywords: Pseudo Zernike moment; stacked sparse autoencoder; deep
learning; COVID-19; multiple-way data augmentation; medical image
analysis

1 Introduction

COVID-19 has caused more than 107.45 m confirmed cases and 2.35 m deaths till 11/Feb/2021
in about 192 countries/regions and 26 cruise/naval ships [1]. Fig. 1 shows the top 10 countries
of cumulative confirmed cases and deaths, respectively. The main symptoms of COVID-19 are
low fever, a new and ongoing cough, a loss or change to taste and smell [2]. In the UK,
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three vaccines are formally approved as Pfizer/BioNTech, Oxford/AstraZeneca, and Moderna. Two
COVID-19 diagnosis methods are available. The former is viral testing to test the existence of
viral RNA fragments [3]. The swab test shortcomings are two folds: (i) the swab samples may
be contaminated, and (ii) it needs to wait from several hours to several days to get the test
results. The latter is chest imaging. There are two main chest imaging available: chest computed
tomography (CCT) [4] and chest X-ray (CXR) [5].

(a) (b)

Figure 1: Data till 11/Feb/2021 (a) Cumulative confirmed cases (b) Cumulative deaths

CCT is one of the best chest imaging [6] techniques since it provides the finest resolution
and can recognize extremely small nodules in the chest region. CCT employs computer-processed
combinations of multiple X-ray observations taken from different angles [7] to produce high-
quality 3D tomographic images (virtual slices). In contrast, CXR only provides one 2D image,
which performs poorly on soft tissue contrast. This study focuses on the CCT images [8].

Currently, numerous studies are working on using machine learning (ML) and deep learn-
ing (DL) technologies [9,10]. For example, Guo et al. [11] employed ResNet-18 for classifying
thyroid images. Lu [12] utilized an extreme learning machine (ELM) trained by bat algorithm
(BA). Those two approaches were not developing for COVID-19, but they can be transferred
to the COVID-19 dataset easily and used as comparison basis approaches in our experiments.
For COVID-19 researches, Yao [13] proposed a wavelet entropy biogeography-based optimization
(WEBBO) method for COVID-19 diagnosis. Wu [14] presented three-segment biogeography-based
optimization (3SBBO) for recognizing COVID-19 patients. Wang et al. [15] presented a DeCovNet.
Their accuracy achieved 90.1%. El-kenawy et al. [16] presented a novel feature selection voting
classifier (FSVC) method for COVID-19 classification. Yu et al. [17] presented a GoogleNet-COD
method to detect COVID-19. Chen [18] designed a gray-level co-occurrence matrix and support
vector machine (GLCMSVM) method to classify COVID-19 images [19].

To further improve the performance of automatic COVID-19 diagnosis, this paper proposes a
novel method that combines the traditional ML approach with the recent DL approach. We use
the pseudo-Zernike moment (PZM) as the extracted features, and we use a deep-stacked sparse
autoencoder (i.e., one of the deep neural networks) as the classifier. The combination achieves
excellent results that overperform eight state-of-the-art approaches. The novelties of our paper lie
in the following aspects
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• We are the first to apply a pseudo-Zernike moment to COVID-19 image analysis.
• Deep stacked sparse autoencoder (DSSAE) works better than traditional classifiers.
• Our proposed “PZM-DSSAE” model is better than eight state-of-the-art approaches.

2 Dataset

We use the dataset in reference [20], which contains 148 COVID-19 patients and 148 healthy
control (HC) subjects. Slice level selection [20] was employed to generate C1 = 320 COVID-19
images and C2 = 320 HC images. The raw images are with sizes of 1024 × 1024 × 3. A four-
step preprocessing was used on this dataset. First, the images are converted to grayscale to save
storage amount. Second, histogram stretch is used to enhance the contrast. Third, border pixels
are removed, which contains the text and ruler in the right side, and the check-up bed in the
bottom. Finally, downsampling to width W and height H is carried out to further reduce the
storage of the dataset. Fig. 2 display one example of COVID-19 patient and one sample of HC
subject. Algorithm 1 itemizes the pseudocode of preprocessing.

Algorithm 1: Pseudocode of preprocessing
Input Import C1 raw COVID-19 and C2 raw HC images.
Step 1 Grayscale. All the images were converted to grayscale.
Step 2 Histogram Stretch: The minimum and maximum grayscale values are mapped to

(gmin, gmax).
Step 3 Crop:

(
mc

1, m
c
2, m

c
3, m

c
4

)
Pixels are removed from the top, bottom, left, and right sides.

Step 4 Downsampling: All images are downscaled to the size of (W , H).
Output C1 preprocessed COVID-19 image and C2 preprocessed HC images.

(a) (b)

Figure 2: Example of preprocessed images (a) COVID-19 (b) HC

3 Methodology

3.1 Pseudo Zernike Moment
Tab. 1 displays the abbreviation list Image moment was firstly introduced by Hu [21], who

used geometric moments to generate a set of invariants. Hu’s moments have been widely used
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in knee osteoarthritis classification [22], brain tumor classification [23], etc. However, geometric
moments are sensitive to noise. Thus, Teague [24] introduced Zernike moments (ZMs) based on
orthogonal Zernike polynomials. The orthogonal moments have been proven to be more robust
in noisy conditions, and they can achieve a near-zero value of redundancy measure [25].

Table 1: Abbreviation list

Abbreviation Meaning Abbreviation Meaning

AE Autoencoder HC Healthy control
AUC Area under the curve IP Image plane
CCT Chest computed tomography MCC Matthews correlation coefficient
CM Confusion matrix ML Machine learning
CXR Chest X-ray PZM Pseudo Zernike moment
DL Deep learning ROC Receiver operating characteristic
DSSAE Deep stacked sparse autoencoder UC Unit circle
FMI Fowlkes–Mallows index ZM Zernike moment

Later, pseudo Zernike moment (PZM) is derived from Zernike moment. PZMs have been
proven to give better performances than other moment functions such as Hu moments, Zernike
moments, etc. For example, for an order p, there are (p+ 1)2 linearly independent pseudo-Zernike

polynomials of orders ≤ p, while there are only
1
2

(p+ 1) (p+ 2) Zernike polynomials. Hence, PZM

is more expressive and offers more feature vectors than ZM.

The kernel of PZMs is a set of orthogonal pseudo-Zernike polynomials defined over the polar
coordinate inside a unit circle (UC). The 2D PZM of order p with repetition q of an image g (r, θ)

is defined as [26]

Zpq= p+ 1
π

∫ π

−π

∫ 1

0
W∗

pq (r, θ)g (r, θ) rdrdθ , (1)

where the pseudo-Zernike polynomials Wpq (r, θ) of order p are defined as

Wpq (r, θ)=Rpq (r) ejqθ , j=√−1 (2)

Rpq (r)=
p−|q|∑
k=0

(−1)k
(2p+ 1− k) !

k! (p+ |q| + 1− k) ! (p− |q| − k) !
rp−k (3)

where 0≤ |q| ≤ p. In practice, pseudo Zernike functions (https://www.mathworks.com/matlabcentral/
fileexchange/33644-pseudo-zernike-functions) are used for simplicity and fast calculation. Fig. 3
displays pseudo Zernike functions of orders p≤ 5.

Note that PZM are defined in terms of polar coordinates (r, θ) with |r| ≤ 1. Therefore,
the computation of PZM requires a linear transformation of the image plane (IP) coordinates
(w, h) , 1 ≤ w ≤ W , 1 ≤ h ≤ H to the UC domain (x, y) ∈ R

2. There are two commonly used
transformations as shown in Fig. 4: (i) IP over UC; and (ii) IP inside UC. In this study, we use

https://www.mathworks.com/matlabcentral/fileexchange/33644-pseudo-zernike-functions
https://www.mathworks.com/matlabcentral/fileexchange/33644-pseudo-zernike-functions
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the former (IP over UC), because the lesions will not occur within the four corners of the CCT
image.

Figure 3: Pseudo Zernike functions of orders p≤ 5

(a) (b) (c)

1 Ww
1

h

H

x

y

1

x

y

1

Figure 4: Two transformation (IP: image plane; UC: unit circle) (a) Raw image plane W×H (b) IP
over UC (c) IP inside UC

3.2 Autoencoder
Traditionally, p-order PZMs are sent into shallow classifiers, such as multi-layer percep-

tron [27], adaptive differential evolution wavelet neural network (Ada-DEWNN) [28], linear
regression classifier (LRC) [29], kernel support vector machine (KSVM) [30]. In this study, we
introduced a customized deep-stacked sparse autoencoder (DSSAE). DSSAE is a type of deep
neural network technologies, and we expect DSSAE to achieve better performances than shallow
models.

The fundamental element of DSSAE in the autoencoder (AE), which is a typical shallow
neural network that learns to map its input X to output Y . There is an internal code output
IN That represents the input X . The whole AE can be divided into two parts: An encoder part
(AX , BX ) that maps the input X to the code IN , and a decoder part (AY , BY ) that maps the code
to a reconstructed data Y .
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The structure of AE is displayed in Fig. 5, where the encoder part is with weight AX and
bias BX , and the decoder part is with weights AY and bias BY . We have

IN = zLS (AXX +BX ) , (4)

Y = zLS (AYIN +BY ) , (5)

where the output Y is an estimate of input X , and zLS is the log sigmoid function

zLS (x)= 1
1+ exp (−x) . (6)

Encoder Decoder

Internal
Code

Input
Data

Reconstructed
Data

X Y

IN

AX,BX AY,BY

Figure 5: Structure of an AE

3.3 Sparse Autoencoder
The sparse autoencoder (SAE) is a variant of AE. SAE encourages sparsity into AE. SAE

only allows a small fraction of the hidden neurons to be active at the same time. To minimize the
error between the input vector X and the output Y , the raw loss function Jb of AE is deduced as:

Jb (AX , AY , BX , BY )= 1
NS

‖Y −X‖2 , (7)

where NS means the number of training samples. From Eqs. (4) and (5), we find the output Y
can be expressed in the way of

Y = zAE (X |AX , AY , BX , BY ) , (8)

where zAE is the abstract of AE function [31]. Hence, Eq. (7) can be revised as

Jb (AX , AY , BX , BY )= 1
NS

‖zAE (X |AX , AY , BX , BY )−X‖2 . (9)
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To avoid over-complete mapping or learn a trivial mapping, we define one L2 regularization
term �A of the weights (AX , AY ) and one regularization term �s of the sparsity constraint.
Therefore, the loss function Jl of SAE is derived as:

Jl (AX , AY , BX , BY )= 1
NS

‖zAE (X |AX , AY , BX , BY )−X‖2+ as×�s+ aA×�A, (10)

where as stands for the sparsity regulation factor, and aA the weight regulation factor. The sparsity
regularization term �s is defined as:

�s=
|IN |∑
m=1

zKL
(
ρ, ρ̂m

)= |IN |∑
m=1

ρ log
ρ

ρ̂m
+ (1−ρ) log

1−ρ

1− ρ̂m
, (11)

where zKL stands for the Kullback–Leibler divergence [32] function, |IN | is the number of elements
of internal code output IN , ρ̂m is the m-th neuron’s average activation value over all NS training
samples, and ρ is its desired value, viz., sparsity proportion factor. The weight regularization term
�A is defined as

�A= 1
2
× ∥∥AX AY

∥∥2
2 . (12)

The training procedure is set to scaled conjugate gradient descent (SCGD) method.

3.4 Deep Stacked Sparse Autoencoder
We use SAE as the building block and establish the final deep-stacked sparse autoencoder

(DSSAE) classifier by following three operations: (i) We include input layer, preprocessing layer,
PZM layer; (ii) We stack four SAEs; (iii) We append softmax layer at the bottom of our AI
model. The details of this proposed PZM-DSSAE model are listed in Tab. 2 and illustrated in
Fig. 6. After processing, all the CCT images are normalized to fixed grayscaled images with
the size of W × H. Then, PZM is applied to obtain feature vector with size of (p+ 1)2 × 1.
In the classification stage, four SAE blocks with number of neurons of (M1,M2,M3,M4) are
employed. Finally, a softmax layer with neurons of Mc is appended, where Mc means the number
of categories to be identified.

Table 2: Layer details of proposed PZM-DSSAE model

Layer Trainable weights Size

Input None 1024× 1024× 3
Preprocessing None W ×H
PZM None (p+ 1)2× 1
1st SAE (p+ 1)2×M1 M1
2nd SAE M1 ×M2 M2
3rd SAE M2 ×M3 M3
4th SAE M3 ×M4 M4
Softmax M4 ×Mc Mc× 1
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Figure 6: Structure of proposed PZM-DSSAE model

3.5 18-Way Data Augmentation
The small size of training images causes overfitting, one solution to data augmentation (DA)

that creates fake training images. Multiple-way DA (MDA) is an enhanced method of DA.
Wang [33] proposed a 14-way data augmentation, in which they employed seven different DA
techniques on k-th training image g (k) and its mirrored image g(m) (k).

In this study, we add two new DA techniques, speckle noise (SN) [34] and salt-and-pepper
noise (SAPN). SN altered image is defined as

gSN (k)= g (k)+NSN ∗ g (k) , (13)

where NSN is uniformly distributed random noise. The mean and variance of NSN is set to mSN
and vSN , respectively.

For the k-th training image g(k), the SAPN altered image [35] is defined as gSAPN (k) with
its values are set as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

P
(
gSAPN = g

) = 1− γ
sapn
d ,

P
(
gSAPN = gmin

) = γ
sapn
d

2
,

P
(
gSAPN = gmax

)= γ
sapn
d

2
,

(14)

where γ
sapn
d stands for noise density, and P the probability function. gmin and gmax correspond to

black and white colors, respectively. The definitions of gmin and gmax can be found in Algorithm 1.

First, QD different DA methods as shown in Fig. 7 are applied to g (k). Let Hm, m =
1, . . . , QD denote each DA operation, we have the augmented dataset on raw image g (k) as:

Hm [g (k)] , m= 1, . . . , QD. (15)
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Figure 7: Diagram of proposed 16-way DA

Suppose QN stands for the size of generated new images for each DA method, we have

|Hm [g (k)]| =QN . (16)

Second, horizontal mirrored image is generated as:

g(m) (k)= zb [g (k)] (17)

where zb stands for horizontal mirror function.

Third, all the QD different DA methods are performed on the mirror image pc (k), and
generate QD different dataset.⎧⎨
⎩
Hm

[
g(m) (k)

]
, m= 1, . . . ,QD

∣∣Hm
[
g(m) (k)

]∣∣=QN , m= 1, . . . ,QD
(18)

Fourth, the raw image g (k), the mirrored image g(m) (k), all the above QD-way results of
raw image Hm [g (k)], and QD-way DA results of horizontal mirrored image Hm

[
g(m) (k)

]
, are
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combined together. The final generated dataset from g (k) is defined as F (k):

g (k) �→ F(k)= za

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g (k) g(m) (k)

H1 [g (k)]︸ ︷︷ ︸
QN

H1

[
g(m) (k)

]
︸ ︷︷ ︸

QN

· · · · · ·

HQD [g (k)]︸ ︷︷ ︸
QN

HQD

[
g(m) (k)

]
︸ ︷︷ ︸

QN

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(19)

where za stands for the concatenation function. Suppose augmentation factor is QA, which stands
for the number of images in F(k), we have

QA = |F (k)|
|g (k)| =

(
1+QD×QN

)× 2

1
= 2×QD×QN + 2 (20)

Algorithm 2 summarizes the pseudocode of proposed 18-way DA method.

Algorithm 2: Pseudocode of proposed 18-way data augmentation on k-th training image
Step 1 Import raw preprocessed k-th training image g (k).
Step 2 QD geometric or photometric or noise-injection DA transforms Hm are utilized on g (k).

We obtain Hm [g (k)] , m= 1, . . . , QD. See Eq. (15).
Each enhanced dataset contains QN new images. See Eq. (16).

Step 3 A horizontal mirror image is generated as g(m) (k)= zb [g (k)]. See Eq. (17).
Step 4 QD-way data augmentation methods are carried out on g(m) (k),

we obtain Hm
[
g(m) (k)

]
, m= 1, . . . , QD. See Eq. (18).

Step 5 The raw image, the mirrored image, all the above QD-way DA results of raw image, and
QD-way DA results of a horizontal mirrored image are combined via za. See Eq. (19).

Step 6 A new dataset F (k) is generated with number of images as QA = 2×QD×QN + 2.
See Eq. (20).

3.6 Cross-Validation
F-fold cross-validation was used in this study. The whole dataset is divided into F folds.

At f -th trial, 1 ≤ f ≤ F , the f -th fold is selected as the test, and the rest F − 1 folds [36]:
[1, . . . , f − 1, f + 1, . . . , F ] are selected as training set (Fig. 8). In this study, suppose F = 10, then
each fold will contain 32 COVID-19 images and 32 HC images.

3.7 Evaluation

To avoid randomness, we run the whole above procedure NR times with different initial
random seeds and different cross-validation partitions. The ideal confusion matrix (CM) Rideal is
defined as

Rideal =
{
rideal (m, n)

}
=NR×

[
C1 0

0 C2

]
, (21)
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Figure 8: F-fold cross validation

Note here the off-diagonal entries of Rideal are all zero, viz., rideal (m, n) = 0, ∀m 
= n. C1
and C2 are the number of samples of each category, which can be found in Algorithm 1. Seven
measures are defined based on realistic CM [37] defined as:

Rreal =
{
rreal (m, n)

}
=

[
TP FN

FP TN

]
, (22)

The first four measures are sensitivity, specificity, precision and accuracy, common in most
pattern recognition papers. The last three measures are F1 score, Matthews correlation coefficient
(MCC) [38], and Fowlkes–Mallows index (FMI) [39]. They are defined as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1= 2TP
2TP+FP+FN

MCC = TP×TN−FP×FN√
(TP+FP)× (TP+FN)× (TN +FP)× (TN+FN)

,

FMI =
√

TP
TP+FP

× TP
TP+FN

(23)

Besides, the receiver operating characteristic (ROC) curve [40] is used to provide a graphical
plot of our model. ROC curve is created by plotting the true positive rate against the false-positive
rate at various threshold settings. The area under the curve (AUC) is also calculated.

4 Experimental Results

4.1 Parameter Setting
Tab. 3 displays the parameter setting of this study. The number of samples of each class is

320. The minimum and maximum grayscale values are set to (0, 255). For the crop operation, 200
pixels are removed from all four sides. The preprocessed image is with size of 256×256. The max
order of PZM is set to 19, so we have (19+ 1)2 = 400 PZM features. The weight regularization
factor aA = 0.001, the sparsity regulation factor as = 1.1, and the sparsity proportion factor is
ρ = 0.05. The neurons of four SAEs are 300, 200, 100, and 50, respectively. The number of classes
to be classified is set to 2. The number of folds in cross-validation is set to 10. The mean and
variance of uniformly distributed random noise in SN are set to 0 and 0.05, respectively. The noise
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density of SAPN is set to 0.05. The number of different DA methods is set to 9, and the number
of the newly generated image is set to 30. The augmentation factor is obtained as QA = 542 (See
Algorithm 2). The number of runs is set to 10.

Table 3: Parameter setting

Parameter Value Parameter Value Parameter Value

(C1, C2) (320, 320) ρ 0.05 mSN 0
(gmin, gmax) (0, 255) M1 300 vSN 0.05(
mc

1, m
c
2, m

c
3, m

c
4

)
(200, 200, 200, 200) M2 200 γ

sapn
d 0.05

(W , H) (256, 256) M3 100 QD 9
p 19 M4 50 QN 30
aA 0.001 Mc 2 QA 542
as 1.1 F 10 NR 10

4.2 Illustration of 18-Way Data Augmentation

Fig. 9 shows the QD-way DA to the raw image. Due to the page limit, the mirrored image and
its corresponding DA results are not displayed. As can be observed in Fig. 9, the multiple-way
DA can increase our training images’ diversity.

4.3 Statistical Analysis and Transformation Comparison
Tab. 4 gives the 10 runs of 10-fold cross-validation, where we can see our method achieves a

sensitivity of 92.06% ± 1.54%, a specificity of 92.56% ± 1.06%, a precision of 92.53% ± 1.03%,
and an accuracy of 92.31% ± 1.08%. Its F1 score, MCC, and FMI arrive at 92.29% ± 1.10%,
84.64% ± 2.15%, and 92.29% ± 1.10%, respectively. The AUC is 0.9576.

In addition, we compared the two transformation settings: IP over UC against IP inside UC
(See Fig. 4). The IP inside the UC setting achieves a sensitivity of 91.84% ± 2.18%, a specificity
of 92.44% ± 1.31%, and an accuracy of 92.14% ± 1.12%, which are worse than IP over UC
setting. This comparison result demonstrates the reason why we choose IP over UC in this study.
Particularly, the receiver operating characteristics (ROC) curves of both settings are displayed in
Fig. 10.

4.4 Comparison to State-of-the-Art Methods
This proposed PZM-DSSAE method is compared with 8 state-of-the-art methods. The com-

parison results are carried out on the same dataset via 10 runs of 10-fold cross-validation, and
the results are displayed in Tab. 5. Fig. 11 displays the error bar of the proposed method against
8 state-of-the-art methods. We can see that the proposed PZM-DSSAE gives the best performance
among all the methods. The reason is three folds: (i) We try to use PZM as the feature descriptors,
(ii) DSSAE is used as the classifier, (iii) 18-way DA is employed to solve the overfitting problem.
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Figure 9: QD-way DA results of raw image (a) Gaussian noise (b) SAPN (c) SN (d) Horizontal
shear (e) Vertical shear (f) Rotation (g) Gamma correction (h) Random translation (i) Scaling

Table 4: 10 Runs of statistical analysis of proposed PZM-DSSAE method

Run Sen Spc Prc Acc F1 MCC FMI

1 90.94 91.88 91.80 91.41 91.37 82.82 91.37
2 91.56 91.56 91.56 91.56 91.56 83.13 91.56
3 91.88 92.50 92.45 92.19 92.16 84.38 92.16
4 92.19 91.56 91.61 91.88 91.90 83.75 91.90
5 91.25 92.19 92.11 91.72 91.68 83.44 91.68
6 90.63 92.19 92.06 91.41 91.34 82.82 91.34
7 93.75 93.13 93.17 93.44 93.46 86.88 93.46
8 95.31 94.38 94.43 94.84 94.87 89.69 94.87
9 92.81 91.88 91.95 92.34 92.38 84.69 92.38
10 90.31 94.38 94.14 92.34 92.19 84.76 92.20
MSD 92.06 ± 1.54 92.56 ± 1.06 92.53 ± 1.03 92.31 ± 1.08 92.29 ± 1.10 84.64 ± 2.15 92.29 ± 1.10

(a) (b)

Figure 10: ROC curves of two settings (a) IP over UC (b) IP inside UC
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Table 5: Comparison to state-of-the-art methods

Method Sen Spc Prc Acc F1 MCC FMI

ResNet-18 [11] 78.88 ± 2.57 89.28 ± 0.90 88.05 ± 0.79 84.08 ± 1.14 83.19 ± 1.44 68.55 ± 2.10 83.32 ± 1.36
ELM-BA [12] 56.91 ± 1.21 71.94 ± 2.17 67.01 ± 1.52 64.42 ± 0.88 61.53 ± 0.77 29.19 ± 1.88 61.74 ± 0.77
WEBBO [13] 72.94 ± 0.96 73.97 ± 1.02 73.70 ± 0.79 73.45 ± 0.69 73.31 ± 0.71 46.91 ± 1.38 73.32 ± 0.71
3SBBO [14] 85.94 ± 1.68 84.75 ± 2.42 84.96 ± 2.16 85.34 ± 1.81 85.44 ± 1.74 70.71 ± 3.61 85.44 ± 1.73
DeCovNet [15] 90.03 ± 1.22 90.34 ± 1.25 90.33 ± 1.07 90.19 ± 0.68 90.17 ± 0.69 80.39 ± 1.35 90.18 ± 0.68
FSVC [16] 90.25 ± 1.27 90.03 ± 0.80 90.06 ± 0.72 90.14 ± 0.70 90.15 ± 0.73 80.29 ± 1.41 90.15 ± 0.74
GoogleNet-COD [17] 89.44 ± 1.59 82.91 ± 1.64 83.98 ± 1.16 86.17 ± 0.67 86.61 ± 0.68 72.53 ± 1.32 86.66 ± 0.68
GLCMSVM [18] 72.38 ± 2.68 77.38 ± 1.96 76.22 ± 1.21 74.88 ± 0.86 74.21 ± 1.25 49.85 ± 1.70 74.25 ± 1.21
PZM-DSSAE (Ours) 92.06 ± 1.54 92.56 ± 1.06 92.53 ± 1.03 92.31 ± 1.08 92.29 ± 1.10 84.64 ± 2.15 92.29 ± 1.10

Figure 11: Error bar plot of method comparison

5 Conclusion

This study proposed a novel PZM-DSSAE system for COVID-19 diagnosis. As far as the
authors’ best known, we are the first to apply PZM to COVID-19 image analysis. Also, two
other improvements are carried out: (i) DSSAE is used as the classifier, and (ii) multiple-way data
augmentation is employed to generalize the classifier. Our model yields a sensitivity of 92.06% ±
1.54%, a specificity of 92.56% ± 1.06%, an accuracy of 92.31% ± 1.08%, and an AUC of 0.9576.

In the future, we shall collect more COVID-19 images from more patients and multiple
modalities. Also, other advanced AI models will be tested, such as graph neural networks and
attention networks.
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