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Abstract: Bilinear singular systems can be used in the investigation of differ-
ent types of engineering systems. In the past decade, considerable attention
has been paid to analyzing and synthesizing singular bilinear systems. Their
importance lies in their real world application such as economic, ecologi-
cal, and socioeconomic processes. They are also applied in several biological
processes, such as population dynamics of biological species, water balance,
temperature regulation in the human body, carbon dioxide control in lungs,
blood pressure, immune system, cardiac regulation, etc. Bilinear singular sys-
tems naturally represent different physical processes such as the fundamental
law of mass action, the DC motor, the induction motor drives, the mechan-
ical brake systems, aerial combat between two aircraft, the missile intercept
problem, modeling and control of small furnaces and hydraulic rotary multi-
motor systems. The current research work discusses the Legendre Neural
Network’s implementation to evaluate time-varying singular bilinear systems
for finding the exact solution. The results were obtained from two methods
namely the RK-Butcher algorithm and the Runge Kutta Arithmetic Mean
(RKAM) method. Compared with the results attained from Legendre Neural
NetworkMethod for time-varying singularbilinear systems, the output proved
to be accurate. As such, this research article established that the proposed
LegendreNeural Network could be easily implemented inMATLAB.One can
obtain the solution for any length of time from this method in time-varying
singular bilinear systems.
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1 Introduction

Differential Equations (DEs) are algebraic relations that exist between functions and their
derivatives. These DEs are the backbone of any sort of physical system. Partial differential
equations (PDE) or ordinary differential equations (ODE) are the basis upon which most of the
chemistry, physics, math, engineering etc., are modeled. In most cases, it is not simple to get an
analytical solution for DEs. Therefore, researchers started considering new and dynamic numerical
methods to approximate their solutions.

Numerical methods have few limitations, for instance, high computational cost. However,
they are widely used for resolving DEs, and they evolved since the first differential equation
was derived. Finite differences, finite elements, finite volumes and spectral methods are some
of the conventional methods available for spatial discretization of Partial Differential Equations
(PDEs) [1]. In this case of discretizing Ordinary Differential Equations (ODEs), some of the
following conventional methods are applied i.e., the Euler Method, the Runge–Kutta Method, the
RK-Gill Method [2] and the RK-Butcher Algorithm [3].

Artificial Intelligence (AI) experienced rapid development in recent years due to the
researchers shifted their attention towards neural network methods [4]. Artificial Neural Networks
(ANN) are applied in a wide of domains such as control systems [5], image processing tech-
niques [6] and pattern recognition [7] since they produce promising output. With a proven track
record, neural network methods, especially neural network function approximation capabilities, are
applied to solve DEs through neural network models.

Legendre Neural Network was leveraged in the study conducted by Mall et al. [8], in which
a novel method was proposed as a solution for ODE. To solve two DEs such as Linear Coeffi-
cients Delay Differential-Algebraic Equations and Singularly Perturbed DE [9], Legendre Neural
Network was proposed by Liu et al. [10]. Yang et al. [11] used Legendre Neural Network-
based algorithm for elliptical partial DEs. In the research conducted by Chen et al. [12], the
researchers used Block Trigonometric Exponential Neural Network to find a probable solution
for Continuous-Time Model. A new algorithm was proposed by Toni Schneidereit et al. based on
Artificial Neural Network to resolve ODs [13].

In the current research paper, the author proposes a novel approach to resolve time-
varying singular bilinear systems with the help of the highly accurate Legendre Neural Network
method [14].

2 Legendre Neural Networks

There are two components present in single layers Legendre Neural Network such as input
node and output node [15]. Its functional expansion depends on Legendre polynomials. Legendre
polynomials constitute a set of orthogonal polynomials which are obtained as a solution for
Legendre differential equations. Legendre polynomials are simply denoted Ln (u) in which n is
the order of polynomial whereas u lies between −1 and 1. Legendre polynomials are a group of
orthogonal polynomials and attained to resolve Legendre differential equations. Fig. 1 shows the
structure of the Legendre Neural Network.
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Figure 1: Architecture of legendre neural network

Having its functional expansion based on Legendre polynomial Pn (x), Legendre Neural Net-
work for a single layer has one input and one output. The mathematical model for Legendre
Neural Network for N nodes of a polynomial Pn (x) is as follows

yA (x)=
N∑
j=1

αjpj−1
(
wjx+ bj

)
(1)

Here, the network’s input value is denoted by x, the output is denoted by yA, the weight
of the input node of jth hidden node is denoted via wj, bj corresponds to the threshold for jth

hidden node, and finally, the weight vector of the jth hidden node is denoted by αj. To simplify
the Eq. (1), let us take wj = 1 and bj = 0, then the model in the Eq. (1) becomes

yA (x)=
N∑
j=1

αjpj−1 (x) (2)

As per the universal approximation theorem, Singularly Perturbed Differential Equations
(SPDEs) represent its analytical solution, whereas yA (x) represents its approximate solution

‖y (x)− yA (x)‖ =
∥∥∥∥∥∥y (x)−

N∑
j−1

αjpj−1 (x)

∥∥∥∥∥∥≤∈ (3)

L∈yA (x)=C on∂I (4)

Here, the intervals are discretized, which denotes the boundary points. The weight αj can be
solved as given herewith.
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...

c
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(5)

This can be described simply as follows

Hα = F (6)

H matrix is the first left term in Eq. (4) that corresponds to the neural network’s output
matrix after the linear L ∈ operator and Bf is the first proper Eq. (4). To mitigate the error
between proper solution y (x) and approximate solution yA (x), the optimization should be done
by using extreme Machine Learning (ML) algorithm [16] as given as follows.

min‖H (α)− f ‖ (7)

3 Time-Varying Singular Bilinear Systems

Here, the first-order time-varying singular system is considered.

Kẋ (t)=Ax (t)+B (t) u (t) (8)

In this equation x (0) = x0, K corresponds to n× n singular matrix, whereas n× n matrix is
denoted by A and n× r matrix is denoted by B. The n-state vectors are denoted by x (t), while
the r-input vector corresponds to u (t).
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Based on the above discussion, the time-varying singular bilinear system is rewritten in the
following form.

E (t) ẋ (t)=A (t)x (t)+
q∑
i=1

Ni (t)x (t)ui (t)+B (t)u (t) (9)

The rewritten form of Eq. (9) is given below.

E (t) ẋ (t)=
(
A (t)+

q∑
i=1

Ni (t)ui (t)

)
x (t)+B (t) u (t) (10)

Here, E (t) ∈ Rn×n denotes the singular matrix whereas the state corresponds to x (t) ∈ Rn,
control.

u (t) ∈ Rq, A (t) ∈ Rn×n, B (t) ∈ Rn×q. Ni (t) ∈ Rn×n and ui (t) , i = 1, 2, 3, . . . , q, are the
components of u (t). From this equation, the response x (t)0≤ t≤ ti, should be calculated.

It is challenging to solve a time-varying singular bilinear system compared to its counterpart
i.e., time-invariant singular bilinear system [17]. So, various researchers attempted different trans-
formation methods to get rid of this challenge. The current research study leveraged Legendre
Neural Network to find a highly accurate solution for a time-varying singular bilinear system [18].

4 Simulation Example

In this research work, the author considered a time-varying singular bilinear system as
proposed earlier [19,20].

E (t)=

⎡
⎢⎣
0 −t 0

1 0 t

0 1 0

⎤
⎥⎦ , A (t)=

⎡
⎢⎣
−2 t 1

0 −4 2

−2t 0 1

⎤
⎥⎦ , N1 (t)=

⎡
⎢⎣
1 −t 1

0 3 −2

2t 0 −2

⎤
⎥⎦ ,

B (t)= [2 1 3
]T , u (t)= 1, with initial condition x (0)= [12 2 5

]T

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(11)

If Eq. (5) is solved, then the exact solution for x(t) is as shown below

x (t)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(2− t)
(
exp

(
− t
2

)
+ exp (t)

)
+ 8

2 exp
(
− t
2

)
− exp (t)+ 1

exp
(
− t
2

)
+ exp (t)+ 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)

Legendre Neural Network was used to further assess the discrete solution for Eq. (10), and
in this stage, 0.25 is considered the step size (t). The results attained from different methods such
as the RK-Butcher algorithm and the Runge Kutta Arithmetic Mean Method (RKAM) were
compared with that of the solution attained from Legendre Neural Network. Tabs. 1 and 2 show
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the results and the analytic solution determined using Eq. (12). These tables further shows the
error between analytic solution and discrete solution.

Table 1: Solution for the Eqs. (10) and (12) for x1 (t)

S. No. Time x1 (t)

Analytic
solutions

RK-AM
solutions

RK-AM
error

RK-Butcher
solutions

RK-Butcher
error

LeNN
method

LeNN
error

1 0 12.00000 12.00665 0.00665 12.00002 0.00002 12.00000 0.000000
2 0.25 11.79141 11.79729 0.00588 11.79144 0.00004 11.79141 0.000000
3 0.5 11.64128 11.64816 0.00688 11.64127 0.00001 11.64128 0.000000
4 0.75 11.50536 11.50861 0.00325 11.50539 0.00003 11.50536 0.000000
5 1 11.32481 11.32895 0.00414 11.32491 0.00010 11.32481 0.000000
6 1.25 11.01920 11.01983 0.00063 11.01933 0.00013 11.01920 0.000000
7 1.5 10.47703 10.48023 0.0032 10.47718 0.00015 10.47703 0.000000
8 1.75 9.542866 9.559073 0.016207 9.542883 0.000017 9.542866 0.000000
9 2 8.000000 8.020953 0.020953 8.000020 0.000020 8.000000 0.000000

Table 2: Solution of Eqs. (10) and (12) for x2 (t)

S. No. Time x2 (t)

Analytic
solutions

RK-AM
solutions

RK-AM
error

RK-Butcher
solutions

RK-Butcher
error

LeNN
method

LeNN
error

1 0 2.000000 2.000278 0.000278 2.000002 0.000002 2.000000 0.000000
2 0.25 1.480968 1.480478 0.00049 1.480972 0.000004 1.480968 0.000000
3 0.5 0.908880 0.908602 0.000278 0.908886 0.000006 0.908880 0.000000
4 0.75 0.257579 0.257820 0.000241 0.257587 0.000008 0.257579 0.000000
5 1 −0.50522 −0.51246 0.00724 −0.50532 0.000010 −0.50522 0.000000
6 1.25 −1.41982 −1.42875 0.00893 −1.41994 0.000012 −1.41982 0.000000
7 1.5 −2.53696 −2.53987 0.00291 −2.53710 0.000014 −2.53696 0.000000
8 1.75 −3.92088 −3.92850 0.00762 −3.92204 0.000016 −3.92088 0.000000
9 2 −5.65330 −5.65859 0.00529 −5.65348 0.000018 −5.65330 0.000000

5 Conclusions

Legendre Neural Network obtained highly accurate discrete solutions compared to other
methods such as the RK-Butcher algorithm and the Runge Kutta Arithmetic Mean Method
(RKAM). It can be observed from Tabs. 1–2 that Legendre Neural Network Method attained
only minimal absolute error in contrast to RKAM and RK-Butcher Algorithms because these
algorithms produced a considerable error. To conclude, the current study results established that
Legendre Neural Network is a promising candidate to evaluate time-varying singular bilinear
systems.
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