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Abstract: The scheduling process that aims to assign tasks to members is a dif-
ficult job in project management. It plays a prerequisite role in determining the
project’s quality and sometimes winning the bidding process. This study aims
to propose an approach based on multi-objective combinatorial optimization
to do this automatically. The generated schedule directs the project to be com-
pleted with the shortest critical path, at the minimum cost, while maintaining
its quality. There are several real-world business constraints related to human
resources, the similarity of the tasks added to the optimizationmodel, and the
literature’s traditional rules. To support the decision-maker to evaluate differ-
ent decision strategies, we use compromise programming to transform multi-
objective optimization (MOP) into a single-objective problem. We designed
a genetic algorithm scheme to solve the transformed problem. The proposed
method allows the incorporation of the model as a navigator for search
agents in the optimal solution search process by transferring the objective
function to the agents’ fitness function. The optimizer can effectively find
compromise solutions even if the user may or may not assign a priority
to particular objectives. These are achieved through a combination of non-
preference and preference approaches. The experimental results show that the
proposed method worked well on the tested dataset.

Keywords: Makespan; RCPSP; scheduling; MOP; combinatorial optimization;
compromise programming; genetic algorithm;

1 Introduction

1.1 Research Context
In software project management, scheduling plays a critical role in the success of a project.

Scheduling starts with the work breakdown structure (WBS), which allows the whole project to be
broken down into smaller tasks, which are assigned to project team members based on their skills
and knowledge according to the working plan. In reality, projects run under constraints, including
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those of human resources, budget, and time. The lack of a helpful management toolset makes
it difficult to achieve the goals of the shortest critical path, lowest cost, and highest quality. We
develop an approach based on a multiobjective optimization model and a metaheuristic algorithm
that generates an optimal project schedule to meet the above goals. Fig. 1 depicts the scheduler,
which takes a list of tasks, project team members’ profiles, and decision-makers’ preferences as
the model’s inputs. The output is a detailed schedule. The time to complete a project depends on
the available time, the similarity of tasks, and their interdependence. These factors also affect the
cost and quality of the project.

Scheduling
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Figure 1: Process of assigning tasks to each member of a project

1.2 Related Researches
Scheduling problems that deal with workforce constraints have the form of a resource-

constrained project scheduling problem (RCPSP) [1–5]. Habibi et al. classified many RCPSP
problem variations and mentioned modeling and algorithms to find optimal solutions for this
type of problem in a 2018 survey [6]. Vanhoucke and Coelho presented an overview of state-
of-the-art RCPSP algorithms [7]. The situation described in the first section of this paper is
a multiobjective problem [8]. A primary objective is to solve the makespan problem, i.e., to
complete the project in the shortest duration [9]. Makespan scheduling is described as follows:
Assume M machines and N jobs for scheduling, where the nth job takes pn,m units of time if

scheduled on the mth machine. Let Jm be the set of jobs on the mth machine; then the machine’s
load is lm =∑

j∈Jm pj,m. The maximum load is lmax = maxm=1, ...,M lm. Let xn,m be the decision

variable to determine the nth job assigned to the mth machine. The minimum makespan becomes

min(f ), subject to:
∑M

m=1 xn,m = 1 ∀n = 1, 2, . . . , N,
∑N

n=1 pn,m ∗ xn,m ≤ f ∀m = 1, . . . ,M, and
xn,m ∈ {0, 1} ∀n= 1, . . . , N, m= 1, . . . ,M.
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The interdependence of tasks often is expressed as a directed graph. Two fake tasks, the head
(task 0) and tail (task N + 1), of zero duration, are added to formulate a single started/ended
graph, as shown in Fig. 2. The makespan is now computed by any traversal method, such as
breadth-first search (BFS). As mentioned in Section 1.1, the makespan may be affected in several
ways. The tasks’ interdependence determines the best critical path by the longest path in the
graph. This constraint combines with the personnel’s sequential workload, and their schedules may
increase the critical path’s length.

Task 1(HTML)

From: 1 To : 3

Task 2(C#)

From: 4 To : 5

Task 3(HTML)

From: 1 To : 4

Task 4(SQL)

From: 5 To : 6

Task 5(C#)

From: 7 To : 8

Task 0

From: 0 To : 0

Task (N+1)

From: 8 To : 8

Figure 2: Head and tail tasks added to PERT chart to transform the problem to a single-start,
single-end problem

Among recent studies on RCPSP and its variants Kumar et al. [10] proposed an algorithm to
solve the classical RCPSP and minimize the makespan. Arian [11] designed an evolution algorithm
to solve RCPSP, with the objective to minimize project cost, using binary decision variables to
represent the time-unit when the activities started. Laurent et al. [12] and Stiti et al. [13] intro-
duced a variant of multiside RCPSP, considering mobile and fixed resources in the transportation
system. A variant of RCPSP subjected the project to renewable resources, each available for
limited periods during the project life cycle, and applied a penalty cost for keeping resources
for extra periods [14]. Quoc et al. [15] introduced Real-RCPSP, a variant of MS-RCPSP, and
R-CSM, an algorithm to solve it based on cuckoo search. Hosseinian et al. [16] tried to maximize
modularity to find high-quality employee communities and arrange them for tasks based on
them. Nadjafi [17] proposed a mixed-integer programming formulation of RCPSP to minimize the
total project cost, considering earliness-tardiness and preemption penalties. Ahmadpour et al. [18]
presented a model of RCPSP by viewing a working calendar for project members and determining
the skill factor of any member using the efficiency concept. Kellenbrink et al. [19] introduced two
subproblems of RCPSP, the first to select activities, and the second to minimize makespan and
total cost. Joshi et al. introduced a model to minimize the makespan or entire project duration.
The objective was subject to activities’ resource requirements at some finite integer value other
than 1. The resources were staff members mastering one or more skills [20]. Tesch et al. [21]
developed a mixed-integer programming formulation for RCPSP, improving the optimal problem-
solving method over the previous approach by investigating relationships between event-based and
time-indexed models.

Many other issues can arise in real-world situations, such as the division of labor in an
organization, members’ concentration in different project phases, and similarities of tasks. Project
managers often assume that if a worker is assigned many similar tasks, then the job’s cost will
increase or decrease [22]. As in other engineering disciplines, to reuse previous work is critical to
the progress and quality of software projects. In short, the more similar things a worker does the
lower the cost. These aspects affect the objectives of project management.
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RCPSP is combinatory optimization [23], and algorithms may not exist to find the optimal
solution in polynomial time. In this case, metaheuristics have proved efficient in many case
studies [24]. Tao et al. [25] introduced a procedure based on simulated annealing. Zhang et al. [26]
designed a genetic algorithm with renewable resources and a single mode to perform each activity.
Van et al. [27] introduced a genetic algorithm (GA) to solve both multimode and preemptive
multimode RCPSP. However, most of these studies are in the form of problem-algorithm-result,
and are not applicable to the proposed problem due to different business requirements. Based
on results of previous studies, we construct a multiple-objective optimized mathematical model.
Human resources, including skills, available time, salary, and task similarity, are constrained, in
addition to constraints such as budget and deadline. We design a genetic algorithm to solve the
model.

1.3 Contributions
In this research, we designed a new multi-objective optimization model for RCPSP problems

that applies to software development in addition to our case study. It may be helpful in other
task scheduling and project management work. Our model generates a detailed project schedule.
The aim is to complete a project with the shortest duration while maintaining quality at a
reasonable cost. It expresses the significant considerations of the decision-makers in the planning
process. The model introduces some new rules related to human resources essential to software
project management (and other engineering areas). We combine the preferred and non-preference
approaches to transform the multi objective problem to a single-objective problem. Both methods
have advantages and disadvantages and are suitable for different decision-makers. They are com-
bined to leverage their benefits and cover each other’s drawbacks. Section 2 of this paper describes
the model.

The second contribution is to propose a new GA to solve the model. Unlike the usual
mathematical programming or heuristic approach, the proposed method allows incorporation of
the MOP approach in the algorithm design. To guide individuals in the search process, we use a
distance-based objective function as their fitness. Section 3 describes the algorithm’s implementa-
tion. The experimental procedure on the real dataset and its results are discussed in Section 4. We
relate our conclusions in Section 5. Researchers in scheduling, planning, project administration,
operations, and management can benefit from this research.

2 Multi-Objective Optimization Model

2.1 Problem Formulation
We define some frequently used variables:

• N is a number of tasks.
• dbeginn and dendn are respectively the expected start and end dates of the nth task.
• S is the number of required skills for the project.
• M is the number of candidates.
• A = {

Ai, j |Ai, j ∈ {0, 1} i= 0, . . . , N+ 1, j= 0, . . . , (N + 1)
}

is the adjacency matrix of the

directed-weighted graph that represents the dependences of the tasks. The 0th and (n+ 1)th

nodes are fake nodes added as the head and tail, where dend0 = dbegin0 , dendn+1 = dbeginn+1 .

• K = {
Km, s |Km, s ∈ {0, 1, . . . , 5}, m= 1, . . . ,M, s= 1, . . . , S

}
, where Km, s ≥ 1 if the mth can-

didate has the sth skill; a greater value of Km, s indicates that the mth member has more



CMC, 2021, vol.69, no.3 3433

experience with the sth skill, and Km, s = 0 means the mth member has no experience with

the sth skill.
• R= {

Rn, s |Rn, s ∈R
+, n= 1, . . . , N, s= 1, . . . , S

}
, where Rn, s is the required level of the sth

skill. Rn, s and Km, s are bounded by the same range of values.

• f beginn and f endn are the actual start and end times, respectively, of the nth task when assigned
to a member.

• Tm is the cost to hire the mth member to work for one time unit.
• Z = {

zi, j | zi, j ∈ [0, 1], i= 1, . . . , N, j= 1, . . . , N
}
is the similarity matrix of the tasks, where

zi, j is the similarity between the ith and jth tasks.
• D is the project deadline.
• U = {

um, d | um, d ∈ [0, 1], u= 1, . . . ,M, d = 1, . . . , D
}
describes the concentration of person-

nel in a given time period; e.g., um, d = 0.5 means the mth member only attends 50% at time
unit d.

• B is the project budget.
• Decision variables: X = {

xn,m | xn,m ∈ {0, 1}, n= 1, . . . , N,m= 1, . . . ,M
}
, where xn,m = 1 if

the nth task is assigned to the mth member, and xn,m = 0 otherwise.

The project has three objectives:

• Minimize the critical path/makespan:

min
(
g1 (X)= f endn+1

)
(1)

Factors such as the concentration of members and similarity between tasks affect the time to
complete the task.

• Minimize the cost of hiring team members:

min

⎛
⎜⎜⎝g2 (X)=

M∑
m=1

⎛
⎜⎜⎝

maxn=1, ...,N

(
xn,m∗f endn

)
∑

d=minn=1, ...,N

(
xn,m∗f beginn

)(um, d ∗Tm)

⎞
⎟⎟⎠
⎞
⎟⎟⎠ (2)

• Maximize the experience of selected candidates. Experience dramatically affects the quality
of the project. The more experienced the candidate the less likely are errors:

max

(
N∑
n=1

M∑
m=1

S∑
s=1

xn,m ∗Km, s

)
=min(g3 (X)=−1 ∗

N∑
n=1

M∑
m=1

S∑
s=1

xn,m ∗Km, s), (3)

subject to:

• All tasks are assigned to members:

N∑
n=1

M∑
m=1

xn,m =N (4)
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• A task is assigned to only one member:

M∑
m=1

xn,m = 1 ∀n= 1, . . . , N (5)

• A member does not simultaneously perform two tasks:

max
(
0, min

(
xa,m ∗ f enda , xb,m ∗ f endb

)
−max

(
xa,m ∗ f begina , xb,m ∗ f beginb

))
= 0

∀m= 1, . . . , M, a= 1, . . . , (N− 1), b= (a+ 1), . . . , N (6)

• Dependent tasks cannot be executed at the same time:

Ai, j ∗ f beginj −Ai, j ∗ (f endi + 1)≥ 0 ∀ i= 1, . . . , N− 1, j= i+ 1, . . . , N (7)

• A task is assigned to the only member who qualifies:

Rn, s≤ xn,m ∗Km, s ∀n= 1, . . . , N, m= 1, . . . ,M, s= 1, . . . , S (8)

• The project ends on time:

f endn+1 ≤D (9)

• Costs do not exceed the budget:

N∑
n=1

M∑
m=1

S∑
s=1

xn,m ∗Km, s≤B (10)

2.2 Approach for MOP
Ignizio said there is no one best approach to all types of multiobjective mathematical

programming problems [28]. Solutions to multiobjective optimization problems (MOPs) are cat-
egorized as either preference or non-preference [29]. The first approach is to use preference
information archived by interviewing the decision-maker to determine the solution that best
satisfies these preferences. The second approach assumes that no decision-maker was available,
and that we can identify a compromise solution without preference information. Decision-makers
often cannot determine priorities, which leads them to try many parameters and select one of
several solutions. It is challenging in practice to define meaningful ranges of parameters. The
computational cost of a search algorithm is a barrier to finding appropriate parameter values to
determine a final solution. Compromise programming allows a one-shot solution.

Compromise programming can solve the above problem by identifying an ideal solution [30]
as a point of reference and finding a solution as close as possible to the ideal point. Ngo et al. [31]
applied it to their MOP, introducing the concepts of “deep” and “wide” to access the skills of
candidate teams. Xiong et al. [32] proposed two levels of compromise programming to allocate
resources between pavement and bridge deck maintenance. Poff et al. [33] used compromise
programming to represent 20 objective functions to determine the preferred decision variable value
and assign a closeness level to an ideal solution. Ngo et al. [34] introduced CP as the difference
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between the perfect and actual points to solve a multiobjective timetabling problem, and tried
to answer strategic questions as decision-makers in simple terms. In such a situation, we answer
three questions, and we believe a decision-maker would do the same. What is the earliest time the
project can be completed? The shorter the better. What is the lowest cost? The lower the better.
At what level should the project quality be? The higher the better.

The answers above can represent the decision-maker’s aspirations when unable to define any
preferred objectives.

E = {Ei | i= 1, . . . , 3} denotes the expected point, where E =
[
dendn+1, 0,

∑N
n=1

∑M
m=1

∑S
s=1Km, s

]
O= {Oi | i= 1, . . . , 3} represents the actual solution, where

Oi =

⎡
⎢⎢⎣f endn+1,

M∑
m=1

⎛
⎜⎜⎝

maxn=1, ...,N

(
xn,m∗f endn

)
∑

d=minn=1, ...,N

(
xn,m∗f beginn

)
(
um, d ∗Tm

)
⎞
⎟⎟⎠ ,

N∑
n=1

M∑
m=1

S∑
s=1

xn,m ∗Km, s

⎤
⎥⎥⎦

Instead of maintaining the three goals of the original MOP, we have just the goal to find the
point O closest to E. Compromise programming allows us to use any distance function. We select
the Euclidean distance to build a new objective function,

minimize (distance (E, O))=
√√√√ 3∑

i=1

(Ei−Oi)
2

Many situations can occur during project planning. We need to assign a priority to each goal.
The considered problem has three targets, which can be graphically visualized to better realize
the effects of strategies. This is hard to achieve with compromise programming, although it is
straightforward to explain that the decision-maker wants to balance goals. Another approach is
to scalarize a MOP, i.e., to formulate a single-objective optimization problem whose solutions are
Pareto optimal solutions to the MOP. The original multiobjective functions are scalarized and

written as min
(∑3

i=1wi ∗ gi (X)

)
, where wi is the weight of the ith objective function. We want

to reuse the good features of compromise programming and linear scalarizing, so we combine
the approaches. The distance function’s size is influenced by spatial dimensions [35], and can be
manipulated using dimensional weights. The objective function becomes

minimize (distance (E, O))=
√√√√ 3∑

i=1

wi ∗ norm((Ei−Oi)
2) (11)

where the norm function normalizes the features of the distance function to the same range.

3 Proposed Algorithm

3.1 Introduction to Genetic Algorithm
Evolutionary algorithms (EA) are mainstream stochastic methods for MOP [36]. In the family

of EA, genetic algorithms (GA) are popular choices for engineering applications [37]. It starts
searching for the optimal solutions in solution space by forming a population/set of possible
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solutions. Then new solutions are created by breeding the best fitness individual from the popu-
lation to generate the new generation. Over the iterations, the population retains the best genetic
hybridization combined with mutations to create a better next generation. GA gives a guideline
for solving the problem. However, each issue needs a different scheme design. In this study, we
introduce a version of the GA to solve the MOP model.

3.2 GA Scheme
Denote:

• U is population size.
• G denotes the convergence condition.

• P(g) = {P(g)
i , P(g)

2 , . . . , P(g)
U } denotes population.

• P(g)
i =

{
P(g)
i, 1 , P

(g)
i, 2, . . . , P(g)

i,N

}
is an individual of the population.

where: P(g)
i, e =m ∈Me

• Me represents the set of members who able to do a task eth.
• Our proposed genetic algorithm’s scheme described as following:
• Initialize g= 1
• timesti is the time that a member ith start the first task;
• timefni is the time that a member ith complete the last task;

The Genetic Algorithms expressed in 6 steps as follows:

Step 1: Randomly generate the P(g)
i ∀ i= 1, 2, . . . , U .

Step 2: Compute fitness value corresponding to P(g)
i ∀ i= 1, 2, . . . , U as following:

Step 2.1: Update f startn , f endn , timestm and timefnm using BFS on matrix A and population P(g)
i .

The needed duration to complete a task nth affected by the task similarity, effort distribution
of the assigned member. The f endn can be computed as:

f endn = f startn + actual (n, m)

where: actual(n, m) is the estimated effort to complete a task nth by member mth. The actual
defined as follow.

Function: actual

Input: n,m

1: d =
((
dendn − dbeginn

)
+ 1

)
∗ reduct

(
maxj=1, ...,N

(
zn, j

))
Where reduct is a fuzzy function, it’s

returned valueindicated by different project context.
2: time := 1
3: count := 0
4: While time> 0
5: begin
6: time := time− 1

d ∗ um, f startn +count
7: count := count+ 1
8: end
9: return count
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Step 2.2: Define cost, Mtime, Mcost, Mquality as following.

• cost=
(∑M

m=1Tm ∗ (timefnm− timestm)
)

• Mtime=∑N
e=1(d

end
e − dstarte )

• Mcost=maxe=1, ...,M Te ∗Mtime

• Mquality=∑N
e=1

∑S
x=1

(
Re,x ∗max

(
Kz,x

)) ∀ z= 1, . . . ,M.

Step 2.3: The fitness values P(g)
i .fitness could be biased due to the difference in ranges of its

dimensions. We normalize features to the range [0, 1]. The distance function (11) is rewrite in
form of fitness of the individual as:

P(g)
i .fitness=

√
w1 ∗

(
f endN+1−dendn+1
Mtime

)2

+w2 ∗
( cost
Mcost

)2+w3 ∗
(
Mquality−∑N

n=1
∑M

m=1
∑S

s=1 xn,m∗Km,s
Mquality

)2

Step 2.4: Sort the P(g) order by P(g)
i .fitness ascending.

Step 3: Elitism Selection: keep an individual b= argmin
i=1, ...,U

P(g)
i .fitness that returns the best fitness

for next-generation. Denote the best fitness value of the gth generation as bg. The first individual

of the next generation created as: P(g+1).add(P(g)
b ).

Step 4: Crossover and mutation: Denote w as the mutation rate. Denote σ as tournament size
selection.

For each i= 2, . . . , U .

Step 4.1: Create 2 new populations with a size of σ respectively:

P(g),dad =
{
P(g),dad
1 , P(g),dad

2 , . . . , P(g),dad
σ

}
and

P(g),mom=
{
P(g),mom
1 ,P (g),mom

2 , . . . , P(g),mom
σ

}
where:

P(g),dad
i = rand

(
PG
)

∀ i= 1, . . . , σ

P(g),mom
i = rand

(
PG
)

∀ i= 1, . . . , σ

rand(PG) is the function that return an item from the input list PG. The returned item is not
duplicated with the previous ones.

Step 4.2: Create best genes from P(g),dad and P(g),mom to generate the next generation.

ddad = argmax
P(g),dad
i ∈P(g),dad

(
P(g),dad
i .fitness

)
dmom= argmax

P(g),mom
i ∈P(g),mom

(
P(g),mom
i .fitness

)
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Set r= rand([0, 1])

P(g+1)
i, j =

{
rand

(
ddad, j, dmom, j

)
if r>w

rand (j) otherwise
∀ j= 1, . . . , N

where:

rand([0, 1]) returns a float number in range [0,1].

rand
(
ddad, j, dmom, j

)
returns ddad, j or ddad, j randomly.

rand (j) randomly returns a value corresponding to a cell jth of a choronosome.

Step 5: Constraint validation checking: if there is an individual P(g+1)
i that violates any

constraints defined in Eqs. (4)–(10), then it is removed from the set of results.

Step 6: Return to Step 2 with g= g+ 1 until bg = bg−1 = . . .= bg−G.

4 Experiments

We validated the proposed method with the real datasets obtained after the WBS process
of a software project. The results show that the algorithm works well with the tested dataset. It
consisted of 417 dependent tasks, 19 candidates of project members, and 27 required skills. The
algorithm was implemented in Java-8 and executed on a computer with an Intel Core I5-8250U
CPU @1.60 GHz, with 4 GB RAM. It is essential to find appropriate values for parameters when
implementing a GA, as this affects the results. There are many methods to find the best set of
parameters. We tried many parameter sets at different ranges to tune the algorithm, and selected
w = 0.1, σ = 30, and U = 110, based on the minimum returned fitness values. We temporarily set
G to reach 500 generations. To determine how job similarity affects completion time, we consulted
experienced engineers and defined:

reduct (z)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0.3 if z≥ 0.75

0.2 if 0.5≤ z< 0.75

0.1 if 0.25≤ z< 0.75

0 otherwise

GA does not guarantee an optimum global result, as the results vary by the initialization.
We sought the best result, so we ran the algorithm with the best set of parameters. Results of
15 executions with various initialization values are shown in Tab. 1. The fitness value is affected
by three criteria, each with a different range of values. To avoid bias between different target
values when calculating E and O distance, we normalized all data on dimensions that are not
simple in the range [0, 1]. We could retrieve the same fitness value, but the objective functions
returned different values. The execution time ranged from 1 to 1.5 min. Fig. 3 displays the fitness

values P(g)
i .fitness and corresponding objective functions defined in Eqs. (1)–(3) as they changed

over generations. We can observe that fitness values always decrease over generations because the
selection always keeps the individual with the best fitness. The objective function’s values can be
incremented or decremented at a given generation when the fitness value between them does not
change.
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Table 1: Obtained values corresponding to 15 executions.

#Execution Fitness Critical path Cost Quality score Time execution (ms)

1 0.469310668 565 304380 6506 72349.2
2 0.470994549 566 288005 6467 72950.64
3 0.467898598 557 291385 6462 68568.08
4 0.474917804 564 287875 6431 74604.88
5 0.471262737 563 296110 6469 80553.76
6 0.468132092 555 293610 6457 77132.16
7 0.474278761 562 307070 6464 79134.16
8 0.472727013 564 302435 6474 79376.64
9 0.473674097 567 303835 6481 76480.88
10 0.469917353 561 296525 6472 73631.6
11 0.473267236 571 293195 6479 98902.72
12 0.473042948 556 290755 6420 74950.96
13 0.470933679 561 297235 6466 83810.72
14 0.469091138 555 297310 6457 87889.76
15 0.472524921 561 306585 6472 84133.28
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Figure 3: (a) Fitness values (b) Critical path objective values, (c) Total salary objective values, (d)
Total experience score objective values; changing over generations
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A schedule for each candidate for each time unit is shown in Fig. 4. A line represents a
candidate, and columns represent the units of times. Assigned jobs have colors different from
the background. We can notice that some members were used for a long time, while most were
used occasionally. We checked with data on the availability of members. Members 3, 16, and 20
are those with the most registered time on the project, which explains why they took on much
important work.

Figure 4: Generated schedule of the candidates. Vertical axis displays the workers and horizontal
axis displays the time units

Tasks related to configuration and management of customer relationships and business pro-
cessing support are lengthy. Fig. 5 shows the number of tasks received by each project member.
Some members assigned zero or one tasks can be removed from the project candidates list,
depending on conditions.
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Figure 5: Number of assigned tasks to corresponding project team members

To test whether the proposed algorithm can find global solutions on smaller datasets, we
created a smaller dataset with nine tasks, two candidates, and six skills from the standard dataset,
then we compared the brute-force results with the proposed GA. The comparison results are
shown in Tab. 2. The GA and the exhausting algorithm result return the same fitness values.
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Table 2: Comparison result between the proposed algorithm and the brute force algorithm

Algorithm Fitness value Time execution (ms)

Genetic algorithm 0.826330532212885 659
Brute force 0.826330532212885 335787
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Figure 6: Execute algorithm with different parameters. (a) Shows the critical path/makespan values
(O1) corresponding to different sets of parameters. (b) Displays the total salary (O2) corre-
sponding to different sets of parameters. (c) Illustrates the sum of experience scores (O3) of
hired candidates on their assigned tasks. Green Chart w1 = 1,w2 = 1,w3 = 1; Orange Chart
w1 = 20,w2 = 1,w3 = 1; Blue Chart w1 = 1,w2 = 20,w3 = 1; Yellow Chart w1 = 1,w2 = 1,w3 = 20

Figure 7: Collected solutions corresponding to 100 executions with different weighted parameters:
(a) Solutions in the decision space; (b) Practical Pareto frontier obtained from 100 solutions in
the decision space

Suppose decision-makers want to define preferences based on different objectives. They may
change the values of weight parameters wi to meet different expectations. Fig. 6 illustrates the
returned results using different sets of parameters for various preferences. The objective is to
minimize critical path (O1), so the green bar shows the lowest value when the weight w1 is at its
maximum. The minimum value of total cost (O2) is achieved with a greater value of w2 (blue
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bar). The third target function maximizes full experience scores (O3), so a greater value of w3
increases the score (orange bar).

To illustrate a solution space, we executed the algorithm 100 times with different weights of
each objective function. It is hard to guarantee this frontier is Pareto optimal. However, many
executions with different parameters provide a visualization of solutions offered by the tool in
the decision space. We can consider it as the practical version of the boundary. Fig. 7 shows the
Pareto frontier constructed from the practical result.

5 Conclusions

We proposed an approach to RCPSP. The model attempts to minimize critical paths and costs,
and to maintain the quality of the product. The model is subject to classical RCPSP problem
constraints, and some additional conditions in real software development projects. The model’s
goals are generally consistent with the project’s planning. The model integrates the similarity of
tasks and employees’ available working plans, and therefore can be used generically for software
projects, and not only applied to the specific cases cited.

Compared to other studies [5], the proposed approach brings two main benefits: (1) The
model is formulated to allow decision-makers to understand and validate the structure. We com-
bined both approaches to the proposed MOP, each fitting a different decision-making strategy. The
weighted parameter-based method enables the decision-maker to customize the weights of target
functions to flexibly achieve a final solution. Compromise programming is crucial in navigating the
search, even when decision-makers cannot assign preferences to objective functions. (2) To solve
the combinatorial optimization problem, we designed a new GA scheme that derives the individual
fitness objective functions. Experimental results show that the introduced algorithm searches well
for the solution by navigating the defined distance-based method.

The problem under consideration does not require finding solutions in spaces with large
dimensions. However, optimal solutions may lie in high-dimensional space in other cases. It is
challenging to visualize the Pareto frontier. In these situations, compromise programming is more
suitable. We hope to refine the model to consider new goals and constraints in many situations.
Recent methods of evolutionary algorithms show great promise in improving the quality of search
results.
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