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Abstract:While the size and complexity of software are rapidly increasing, not
only is the number of vulnerabilities increasing, but their forms are diversi-
fying. Vulnerability has become an important factor in network attack and
defense. Therefore, automatic vulnerability discovery has become critical to
ensure software security. Fuzzing is one of the most important methods of
vulnerability discovery. It is based on the initial input, i.e., a seed, to generate
mutated test cases as new inputs of a tested program in the next execution
loop. By monitoring the path coverage, fuzzing can choose high-value test
cases for inclusion in the new seed set and capture crashes used for triggering
vulnerabilities. Although there have been remarkable achievements in terms
of the number of discovered vulnerabilities, the reduction of time cost is
still inadequate. This paper proposes a fast directed greybox fuzzing model,
FastAFLGo. A fast convergence formula of temperature is designed, and the
energy scheduling scheme can quickly determine the best seed to make the
program execute toward the target basic blocks. Experimental results show
thatFastAFLGo can discover more vulnerabilities than the traditional fuzzing
method in the same execution time.
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1 Introduction

With the proliferation of network applications related to people’s work and lives [1], the
threat of network attack is becoming severe; the confrontations between network attack and
defense are frequent [2–5]. Attackers use vulnerabilities to implement network penetration attacks.
According to data from Cvedetails [6], more than 10000 vulnerabilities were exposed each year
from 2017 to 2019 (see Fig. 1). Not only is the number of vulnerabilities increasing rapidly, but
the degree of harm presents an upward trend. With the increase in software logic complexity
and the proliferation of code size, automatic vulnerability fuzzing has become a popular research
topic.

Using the characteristics of the tested program and input data, with the help of various
dynamic and static program analysis technologies, automatic vulnerability fuzzing aims to find the
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balance between the coverage and efficiency of the analysis of a tested program and to alleviate
the problems of low path coverage and poor scalability, improve the efficiency of vulnerability
fuzzing, and discover more or deeper vulnerabilities in a shorter time. Software vulnerability
fuzzing technologies include binary comparison, model detection, static analysis, taint analy-
sis, fuzzing, and symbol execution. With homology analysis on software code blocks, artificial
intelligence technology has been recently introduced to vulnerability fuzzing research.

Figure 1: Number of vulnerabilities exposed by year

Fuzzing is an important automatic vulnerability discovery method, whose core idea is to
discover potential vulnerabilities of a program by constructing irregular data as the input and to
determine whether a program will crash when processing it. By tracking the processing in which
inputs trigger the tested program to crash, the researcher analyzes the cause and develops an
exploitation code. Once a crash occurs, the code blocks concerned with the crash can become
vulnerabilities.

The advantage of fuzzing is that it can quickly generate a large number of test cases as input
for the tested program to execute, and can automatically capture the crashes. However, the test
cases are randomly generated based on some mutated strategies. When test cases must cover a
specific path of the program or pass some verification requested by it, a large number of invalid
test cases will reduce the efficiency of vulnerability fuzzing. Hence to improve the efficiency of
the fuzzing is an important challenge.

This paper makes the following contributions:

(1) A directed fuzzing model, FastAFLGo, is proposed based on AFLGo [7], the efficiency
of which is enhanced by assigning high energy to seeds closer to the target basic blocks.

(2) A new cooling schedule is proposed in which the temperature can drop rapidly to enter
the exploitation phase under the condition of ensuring sufficient time for the exploration phase.

(3) Comparisons with several typical fuzzing models on the LAVA-M dataset show that
FastAFLGo improves the efficiency of vulnerability fuzzing without increasing time consumption.
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2 Related Work

Fuzzing methods include whitebox, greybox, and blackbox. Whitebox fuzzing can get the
tested program source code and then analyze it. Based on fully understanding the internal logic
structure of the tested program, whitebox fuzzing can generate more accurate test cases; corre-
spondingly, due to lack of source code, blackbox fuzzing does not analyze the tested program
at all and arbitrarily generates a large number of test cases for the tested program to execute.
Tested programs usually include some magic bytes to verify the input; hence, the efficiency of
blackbox fuzzing is very low, and this method is almost no longer used in actual vulnerability
fuzzing. Greybox fuzzing is a method in between. Since greybox fuzzing cannot get the source
code of the tested program, it can only analyze the binary code to obtain information for use as
knowledge to generate test cases. The execution states of the tested program are analyzed, and
the input test cases are modified accordingly.

Fuzzing methods can also be divided, according to the strategies of new test case generation,
as mutation-based fuzzing, generation-based fuzzing, hybrid fuzzing, and symbolic execution.

2.1 Mutation-Based Fuzzing
Mutation-based fuzzing, which is based on the static and dynamic analysis of the tested

program and execution information, continually generates test cases mutated from seeds. Repre-
sentative seed-selection algorithms include AFL [8], Honggfuzz [9], LibFuzzer [10], CollAFL [11],
and VUzzer [12]. To reduce the generation of invalid test cases is an important goal. AFL aims
to improve the path coverage rate. By monitoring the execution of the path, new paths are found
or low-frequency paths are executed, and corresponding test cases are included in the seed set.
Because the size of the bitmap file used to record the execution times of the path is only 64K
bytes, there is a hash collision problem. To solve this problem, CollAFL uses an improved hash
approach and increases the size of the bitmap file, which reduces the possibility of collision and
improves the statistical effect of path coverage. To explore more paths and reduce the excessive
execution of high-frequency paths, AFLFast [13] selects seeds by gravitating toward low-frequency
paths in a Markov chain. VUzzer regards the basic blocks within deep paths as the primary
targets. Based on the static analysis of the control flow of the tested program, the key constant
string is identified and extracted to reduce the number of invalid test cases. At the same time, the
weights of these basic blocks are calculated. During fuzzing, the test cases corresponding to the
execution path with the highest weight are selected as the seed.

Unlike the above fuzzing models, which focus on control flow characteristics, GREYONE [14]
focuses on data flow characteristics, infers the tainted variables by changing the input bytes, and
monitors the changes in variable values during the fuzzing process. The evolution direction of the
fuzzing is adjusted according to the distance between the tainted variable and the expected value
of the untouched branch. Steelix [15] extracts magic bytes of the tested program through light-
weight static analysis and binary instrumentation, and generates test cases through verification of
the magic byte.

AFLGo, Hawkeye [16], and AFLPro [17] adopt the guided fuzzing strategy that approaches
the target basic blocks. AFLGo optimizes the seed by using the energy schedule based on a
simulated annealing algorithm to assign more energy to test cases closer to the target basic blocks.
Hawkeye precisely collects some important information, such as a called graph, the distance
between different functions and the target basic blocks. It generates dynamic metrics for the seed’s
energy schedule and adaptive mutation. AFLPro proposes a strategy of direction-sensitive fuzzing.
It improves the validity of selected seeds based on basic block aggregation (BBA), achieves
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fine-grained seeds by using a multi-dimensional oriented selection strategy, and optimizes genetic
variation to ensure the diversity of the seed. TortoiseFuzz [18] is a fuzzing method for detecting
memory corruption vulnerabilities, which employs a coverage-guided fuzzer with coverage account-
ing for prioritization of test cases. The coverage accounting concerns three metrics consisting
of functions, loops, and basic blocks. Current greybox fuzzing does not consider the thread
interleavings that affect the execution states in a multi-threaded program. MUZZ [19] uses three
thread-aware instrumentations, i.e., coverage-oriented, thread-context, and schedule-intervention.
These create feedback in runtime, which can be used in dynamic seed selection.

2.2 Generation-Based Fuzzing
Based on format information and grammar knowledge of the tested program, fuzzing can

automatically generate highly structured test cases. Peach [20] writes a configuration file to con-
strain the format of test cases. Langfuzz [21] utilizes code fragments in the grammar learning
test set and recombines these to generate a new test case. Because generation-based fuzzing relies
heavily on the generated model or grammar training, traditional generation-based fuzzing is less
efficient than mutation-based fuzzing. Machine learning has recently been introduced to fuzzing.
Machine learning technology is used to analyze and learn massive numbers of test cases to
guide the generation of higher-quality test cases. For instance, Learn & Fuzz [22] transforms
the problem of high structured test case generation to that of text generation in the natural
language processing (NLP) domain. The use of a training dataset and statistical machine learning
technology can automatically generate test cases that conform to grammar. NEUZZ [23] uses a
surrogate neural network to incrementally learn smooth approximations of the tested program’s
branch behaviors and guides the generation of test cases through gradient-guided input-generation
schemes.

2.3 Hybrid Fuzzing and Symbolic Execution
When fuzzing cannot cover more branches during execution, or when it is difficult to gen-

erate test cases that can cover a certain target basic block, fuzzing, and symbolic execution are
combined to generate test cases to execute new paths. Symbolic execution, such as S2E [24] and
Angr [25], builds branch constraints through symbolization analysis and can generate test cases
for each path with the help of a constraint solver. Because symbolic execution consists of rigorous
logical reasoning under constraints, the biggest problems are path explosion and difficulty in
constraint solving. Driller [26] combines AFL and Angr to explore the execution path of the
tested program alternately by fuzzing and symbolic execution. This can determine how to generate
a test case that can make the tested program to execute a new testing path of deeper basic
blocks when the path coverage of the tested program is growing slowly, and it directly avoids
path explosion due to symbolic execution. Similarly, Munch [27] combines symbolic execution
and fuzzing to improve deeper path coverage. The difference between Munch and Driller is that
Munch uses a guided strategy.

3 Energy Schedules

3.1 Motivation
Böhme [7,13] showed that coverage-based greybox fuzzing can be modeled as a Markov chain.

A power schedule decides how many test cases are generated by fuzzing the seed in each state.
How to assign the power on each seed becomes a key question. Power schedule strategies yield dif-
ferent priorities of paths to be executed. One of our research goals is to discover the vulnerability
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of the tested program as much as possible, and another is to discover more vulnerabilities within
a limited time. For example, if we request some memory overflow vulnerabilities, we must execute
a power schedule strategy on the preferred basic blocks, including a large number of memory
operations as soon as possible. If we want to discover vulnerabilities in specific areas, such as in
patch code, we can guide the power schedule by assigning more energy to seeds that are closer
to the target locations. AFL uses a constant power schedule by which a fairly high amount of
energy is assigned to the seeds. AFLFast adopts an exponential power schedule to gravitate the
fuzzer toward low-frequency paths in each Markov state. The seeds are assigned very little energy
the first time, but when constantly chosen, they will be assigned more energy. AFLGo adopts the
simulated annealing-based Markov Chain Monte Carlo (MCMC) power schedule. The closer to
the target locations, the more energy assigned to the seed.

AFLFast evaluates six kinds of power schedules: the exploitation-based constant sched-
ule (EXPLOIT), exploration-based constant schedule (EXPLOIT), cut-off exponential schedule
(COE), exponential schedule (FAST), linear schedule (LINEAR), and quadratic schedule (QUAD).
AFLGo’s framework [28] implements four kinds of energy scheduling: EXPLORE, LOG, LIN-
EAR, and QUAD. AFLGo slowly transitions from the exploration phase to the exploitation
phase, according to the annealing function implemented as a power schedule. A seed’s assigned
energy is inversely proportional to the temperature. Although the energy is locally assigned to
each seed, the temperature is global to all seeds in the simulated annealing-based power schedule.
The cooling schedule, which controls the convergence rate of temperature, decides the timing
of entering the exploitation phase from the exploration phase. Therefore, how to accelerate the
convergence rate of temperature while maintaining sufficient exploration time is an important
focus in this paper.

The formulas for the temperature T in the cooling schedules of EXPLORE, LOG, LINEAR,
and QUAD are shown, in order, as follows [7,28]:

T = 1
20x

(1)

T = 1
1+ 2 log(1+ (219/2− 1)x)

(2)

T = 1
1+ 19x

(3)

T = 1
1+ 19x2

, (4)

where x is the ratio of execution time to exploration time.

The cooling curve of the temperature T is shown in Fig. 2, where the abscissa is the above
parameter x, and the ordinate is T .

It can be seen that the convergence rate of T is significantly different, and it decreases more
obviously in the range (0, 0.5) than other ranges. At the same time, the exploration phase must be
allowed sufficient time. Although the curve of the power schedule LOG has the highest value of
convergence, it does not leave sufficient time for exploration. Therefore, how a better convergence
formula for T can be obtained and the time at which the cooling schedule is to be triggered have
become interesting research topics.
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Figure 2: Cooling schedule of AFLGo

3.2 Cooling Schedule
We adopt the same value of temperature T in AFLGo and use it to trigger the fuzzing

procedure from the exploration phase into the exploitation phase, i.e., the cooling schedule enters
the exploitation phase when T is less than or equal to 0.05. The exploration time is preset by
users. When the ratio of execution time to exploration time is 1, T is 0.05. Once the execution
time matches the exploration time, the simulated annealing process is comparable to a classical
greedy search algorithm.

To make the temperature T rapidly fall below 0.05, we proposed a new cooling schedule
formula that has better convergence in the open interval (0, 1),

T =

⎧⎪⎪⎨
⎪⎪⎩

1
e−0.001(x−1)cos2 (x− 1)

− 1 x ∈ (0, 1)

0 otherwise

, (5)

where x is the ratio of execution time to exploration time.

Because exploration time is constant and preset, the execution time is proportional to x.
Furthermore, the temperature T is proportional to execution time, and thus we can express the
relationship between temperature T and execution time by x. This means that the smaller is x
when the temperature T drops to 0.05, the shorter is the execution time. Finally, we can shorten
the time of fuzzing.

As shown in Fig. 3, compared with the cooling schedules of EXPLORE, LOG, LINEAR,
and QUAD, the proposed new cooling schedule first cools the temperature T to 0.05 so that we
can make the cooling schedule enter the exploitation phase earlier. Therefore, the new cooling
schedule can help reduce the execution time of the annealing-based power schedule in each round.
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Figure 3: Comparison of cooling schedules

3.3 Annealing-Based Power Schedules
We follow and maintain the annealing-based power schedules in AFLGo, which assigns more

energy to seeds that are closer to the target locations and reduces that of seeds that are farther
away. Therefore, the distance of a seed to a target basic block is important. The formula of
annealing-based power schedules is shown as follow [7,28]:

power (s, BBb)= (1−Dsb) (1−T)+ 0.5T , (6)

where:

(1) s is a seed;

(2) BBb is target basic block b;

(3) T is the temperature in the cooling schedule;

(4) Dsb is the distance of seed s to BBb.

4 FastAFLGo Model

We develop an improved directed greybox fuzzing model, FastAFLGo, as shown in Fig. 4.

Before starting the fuzzing of the tested program, we must do the same work as AFLGo to
obtain the distance between basic blocks and assign energy to each candidate seed. The process
is as follows.

(1) Based on the component of the graph extractor, the call graph (CG) and control flow
graph (CFG) are extracted.

(2) Based on the CG and CFG, the inter-procedural distances are computed by the compo-
nent of the distance calculator.

(3) The distance information is instrumented in each basic block in the target binary by the
component of the instrumentor. The information provided by the instrumented binary is not only
about coverage but about the seed distance.
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Figure 4: FastAFLGo model

The guidance information is now ready. Algorithm 1 describes the process of directed greybox
fuzzing. In the FastAFLGo model, AssignEnergy is replaced with our proposed new energy
schedule to assign candidate seeds to different energy.

Algorithm 1: Directed Greybox Fuzzing
Input: Seed Inputs S
1: CrashSet = ϕ

2: if S= ϕ then
3: add empty file to S
4: end if
5: repeat
6: s= ChooseNext(S)
7: e= AssignEnergy(s) //Our modification
8: for i from 1 to e do
9: s′ = Mutate_Input(s)
10: if s′ crash then
11: add s′ to CrashSet
12: else if IsImportant(s′) then
13: add s′to S
14: else if
15: end for
Output: Crashing Outputs CrashSet
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A set of seed inputs S is provided to the Fuzzer, which chooses seed s from S and determines
the number of new inputs by AssignEnergy. The Fuzzer generates e new test cases by mutating
seed s. If test case s′ is important, e.g., it covers a new branch of the tested program, then it is
added to S. If the generated test case s′ leads the tested program to crash, then it is added to the
CrashSet.

5 Experiment and Analysis

We used the LAVA-A dataset, which includes the programs base64, who, uniq, and md5sum,
as the unified test set. A large number of vulnerabilities are present in each of these programs.
We regard the number of discovered vulnerabilities in a test cycle as an evaluation criterion. We
used seven days as a test cycle.

Experiments were performed on a computer with an Intel Xeon E5-2650 V4 CPU, 16 GB
memory, a 1-TB hard disk, and a Ubuntu 16.04 operating system.

The experimental results are shown in Tabs. 1 and 2, which show the total number of crashes
and number of unique crashes, respectively, of VUzzer, AFLGo and FastAFLGo.

Table 1: Total number of crashes discovered

Name Time cost VUzzer AFLGo FastAFLGo

uniq 7 days and 22 h 10 8 21
md5sum 7 days and 6 h 57 74 208
who 7 days and 14 h 136 1148 3137
base64 7 days and 22 h 14000 8630 27700

Table 2: Number of unique crashes discovered

Name Time cost VUzzer AFLGo FastAFLGo

uniq 7 days and 22 h 5 6 9
md5sum 7 days and 6 h 1 5 12
who 7 days and 14 h 5 3 5
base64 7 days and 22 h 17 23 25

The results in Tabs. 1 and 2 show that FastAFLGo is significantly more effective than AFLGo
and VUzzer with the same time cost.

6 Conclusion and Future Work

Due to the complexity of software and the growing amount of code, automatic vulnerability
discovery has become a research hotspot. Coverage-based fuzzing is an important method of
vulnerability discovery. AFLGo is a good method for directed greybox fuzzing. We analyzed its
annealing-based power schedule and redesigned cooling schedule corresponding to temperature.
Experimental results show that FastAFLGo can discover more vulnerabilities with the time con-
sumption remaining the same. In our future work, we plan to introduce artificial intelligence
approaches to identify basic blocks similar to the blocks that confirmed vulnerabilities.
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