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Abstract: Industry 4.0 refers to the fourth evolution of technology devel-
opment, which strives to connect people to various industries in terms of
achieving their expected outcomes efficiently. However, resource management
in an Industry 4.0 network is very complex and challenging. To manage and
provide suitable resources to each service, we propose a FogQSYM (Fog—
Queuing system) model; it is an analytical model for Fog Applications that
helps divide the application into several layers, then enables the sharing of
the resources in an effective way according to the availability of memory,
bandwidth, and network services. It follows theMarkovianqueuingmodel that
helps identify the service rates of the devices, the availability of the system,
and the number of jobs in the Industry 4.0 systems, which helps applications
process data with a reasonable response time. An experiment is conducted
using a CloudAnalyst simulatorwithmultiple segments of datacenters in a fog
application, which shows that the model helps efficiently provide the arrival
resources to the appropriate services with a low response time. After imple-
menting the proposed model with different sizes of fog services in Industry
4.0 applications, FogQSYM provides a lower response time than the existing
optimized response time model. It should also be noted that the average
response time increases when the arrival rate increases.

Keywords: Fog computing; industry 4.0; fog layer; Markovian queuing
model

1 Introduction

The term “Internet of Things (IoT)” was coined in 1999 [1]. A few years ago, IoT was
adopted in Industry 4.0 with a new term called Industrial Internet of Things (IIoT) [2]. IIoT
enables the ubiquitous control of industrial processes that are implemented in the IoT network.
IIoT is mainly used in manufacturing tasks that fall under the new Industry 4.0 [3]. Sensor
networks, actuators, robotics, computers, equipment, business processes, and staff comprise the
main components of Industry 4.0. The overall industrial processes are accomplished locally due
to delay and security requirements. In the industrial environment, structured data needs to be
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communicated over the Internet to web services and the cloud with the assistance of supportive
middleware [3,4]. In this sense, fog is a potential middleware that could be very useful for a variety
of industrial applications. With appropriate latency, fog may provide local processing support for
actuators and robots in the manufacturing industry [5]. The resources provided over the cloud can
quickly adapt to customer requirements, while the implementation and usage costs can be reduced.
Fog computing has technological limitations that restrict its use in specific application domains.
Industry 4.0 is one such domain wherein advanced digitization is implemented within production
sites that are directly associated with the Industrial Internet of Things (IIoT) by connecting
different types of machinery and enabling more efficient production as well as new applications
and business models [6]. Fig. 1 illustrates the concept of Industry 4.0 within fog applications.

Figure 1: Industry 4.0

Fog computing is a recently evolved technology that acts as a middle layer between the cloud
and IoT; it does so by expanding the cloud to edge devices such as sensors, gateways, etc. CISCO
developed fog computing, or fogging, in 2014 [7]. It consists of multiple nodes that are placed one
hop from the user. Due to this placement, the data should be processed locally instead of being
transferred to the cloud, which is placed far away from the user. Fog computing is distributed
locally with a pool of resources that consists of heterogeneous devices connected ubiquitously
at the edge network [8]. Fog computing involves multiple devices like bridges, switches, routers,
servers, base stations, gateways, smart gateways, etc. to handle IoT devices like sensors and
actuators. As IoT consists of thousands of sensors and actuators, it produces millions of points
of data which are to be processed with low latency and high Quality of Service (QoS) [9]. Fog
computing provides important functionalities like mobility and scalability to devices as well as
real-time interactions between devices. As a result, deploying fog computing services would lead
to low latency, low power, and reduced expenses for IoT-based applications.

The number of IoT devices is projected to increase rapidly, and the data generated by
these devices is expected to surpass 50 billion by 2025 [10]. While existing technologies like
cloud computing enable huge data processing for large volumes of data, they fail to provide a
faster response with low latency. To solve this issue, fog computing is introduced. Although fog
computing succeeds in achieving lower response time and latency, it has many challenges such as
node discovery, resource allocation, estimation, and scheduling. Fog computing has been deployed
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in a number of applications like healthcare, military, agriculture, smart cites, home automation,
smart transportation, etc. [11].

1.1 Fog Computing Data Management
Fog computing has emerged as a popular solution for managing the huge amounts of data

generated by IoT applications. For example, Qin [12] stated that 2,500 petabytes of data were
generated per day in 2012. Dastjerdi et al. [13] and Pramanik et al. [14] noted that in the
healthcare industry, which deals with 30 million users per second, 25,000 records were generated,
and the amount of data will eventually increase to the scale of zettabytes. The US Smart grid and
US Library of Congress generate 1 exabyte and 2.4 petabytes of data per year, respectively [12,15].
Fog computing offers proper solutions for such scenarios, as it can process the data locally
generated by IoT devices with reductions in end-end delay, processing time, and response time [16].
Given the incredibly large amount of data generated from massive networks of associated devices,
data management is of prime significance in the Industry 4.0 and IoT domains [17]. In addition, a
high percentage of devices involved have limited resources, which depend entirely on their battery
life, processing power, and storage capacity. It is important to build novel and efficient methods
to resolve these barriers and leverage data storage effectively. To assist information networks, Fog
Computing appears to be a perfect solution.

Fog data management has many advantages like improved efficiency, privacy, data quality,
data dependability, and decreased cost and end-end latency with the aim of effective resource
provisioning. We incorporate these features in our proposed Fog-QSYM model to increase the
average response time of the arrival resources.

1.2 Contributions
We summarize the main contributions of this paper as follows.

• To present the fundamental concepts of Fog computing for Industry 4.0 and the scope of
their relationship.

• To describe the role and develop the architecture of FogQSYM as a fog serving as
middleware for Industry 4.0.

• To propose an analytical model for Fog applications that divides each application into
several layers.

• To compare our model with the existing ORTM model in terms of sharing resources in an
effective way according to the availability of memory, bandwidth, and resources.

1.3 Organization of the Paper
The rest of this paper is organized as follows: Section 2 presents a survey of the existing

works. Section 3 discusses the proposed work and addresses open issues in resource allocation
based on the QTCS model. Section 4 contains the experimental results and related discussions.
Section 5 describes the significance of our proposed model. The paper finally concludes in
Section 6 with future directions.

2 Related Works

This section discusses the existing methods used in fog computing for resource management.
Industry 4.0 has revolutionized information and communication technology. Cyber Physical Sys-
tem (CPS) is one of the core components in Industry 4.0. O’Donovan et al. [18] analyze a CPS
framework deployed on fog which implements a Predictive Model Markup Language machine
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learning model for day-day factory operations. This framework follows the design principles of
Industry 4.0 with respect to security and fault tolerance. With the advent of the industrial internet
of things (IIoT), factory operations have become smarter and more efficient. Lin et al. [19] analyze
an intelligent system that combines the power of the cloud, fog computing, and a wireless sensor
network to assist in the effective working of factory logistics. Further, the authors also implement
a metaheuristic algorithm that uses a discrete monkey algorithm to find the best possible solutions
and a genetic algorithm to increase the computational efficacy. The widespread deployment of
IoT devices has generated huge amounts of data, and there is a dire need to manage this data.
Fog computing has the capability to process such data with a much smaller delay than that of a
cloud environ. Jamil et al. [20] discuss various methods that can be used to schedule the requests
of IoT devices in the fog. The authors also highlight the methods used to address the dynamic
demands of these IoT devices as well as the effective resource utilization of every fog device.
Using fog devices to process IoT data might reduce the latency, and it is also expected to aid
in the smart decision process. Sadri et al. [21] survey different fog data management techniques
used for decision-making processes. The authors also consolidate the challenges in fog computing
as well as the road ahead for future research in fog data management. The major parameter for
the performance of real time IoT applications is response time. The cloud computing environment
does not achieve the required response time due to latency issues. Enguehard et al. [22] propose
a request aware admission control technique for increasing the requests of the fog nodes by
dynamically evaluating the frequently accessed resources. The authors use the Least Recently
Used filter to estimate the resources. In recent years, there have been substantial advancements in
technologies pertaining to the building of smart cities. These technologies are implemented under
the cloud computing paradigm, but the latency issues have yet to be addressed. Fog computing
has emerged to overcome the latency issues for real time applications. Javadzadeh et al. [23]
survey the various methods used in fog computing with a focus on latency factors in smart city
deployment. Different QoS parameters have been considered for the deployment of fog computing
in sensitive applications. Kashani et al. [24] analyze different QoS-aware techniques that are used
in fog computing nodes, particularly for resource management. At present, one of the most urgent
needs is for techniques that can be used to analyze patient health records for accurate diagnoses.
This data needs to be accessed frequently and must be stored securely. Nandyala et al. [25] have
implemented an architecture for a health care monitoring system using IoT technology employing
fog computing services. In a similar analysis in [26], the authors propose a layered framework
in fog for processing patient data. Fog computing has been extensively used for processing IoT
device data, and fog nodes are deployed in the cloud specifically for this purpose. Marín-Tordera
et al. [27] analyze the various methods involved in the use of fog services for computing IoT data.
The Summary of existing works is shown in the Tab. 1.

3 FogQSYM: An Analytical Model for Fog Applications

From the literature, we can infer the following: First, a sustainable architecture for fog
resource management still needs to be developed and evaluated. Second, research into the inter-
operable architecture of fog resources management involves challenges such as Quality of Service
(QOS), resource management, energy management, resource reusability, and so on.

Resource management in fog computing plays a vital role in providing a fog service with the
appropriate resources to increase the requirements of QoS. For example, assume a set of requests
R with a set of requirement of QoS, say Q. Then, the solution can be one-to-many or many-to-
many. In one such scenario, a request can be placed to one or more resources by dividing the
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request into multiple segments, and a request can be placed to a single resource. For successful
resource management in fog computing, the following taxonomy should be addressed: First, the
application deployment has a direct impact on resource utilization. Second, based on the service
request, resource scheduling has an impact on resource management. Third, there is a possibility
of a service request that can access the resources constrained devices which has constraints such
as low computing power, low battery power, or fewer storage devices. As a result, the request is
outsourced to the other devices and returns the result; this technique is called offloading. The
fourth category is load balancing, as some services which involve time critical requests require
balancing of the load with a proper mechanism. Finally, the resource allocation and resource
provisioning have direct impacts on resource management. Fig. 2 below illustrates the taxonomy
of resource management from the fog computing perspective.

Table 1: Summary of existing works

Ref. No. Methods Evaluation metrics Challenges

[18] PMML-encoded machine
learning models in fog
computing

De-centralization,
security, privacy, and
reliability

Accuracy of the ML model not
considered

[25] Cloud to fog architecture Location, reliability Delay from sensor nodes not
considered

[26] Layered framework for
processing patient data

Reliability, availability Data management, response time,
and processing delay

[27] Fog framework for
processing IoT data

Reliability, network
delay

Restrictions in the amount of
data disclosed among providers

[28] Fog architecture is layered
as tiers

Response time Network costs like network
uptime/downtime not considered

For critical applications like healthcare, smart cities use a large number of powerful devices,
sensors, and smart devices that collects huge amounts of data either continuously or period-
ically [29]; more smart devices are needed to process these huge amounts of data. Internet-
of-Things (IoT) plays a vital role in turning devices into smart devices capable of running
these critical applications. Both the cloud and IoT offer greater computing resources with higher
computing power for processes between smart devices and things. However, these computing
paradigms require continuous connectivity with the internet. Fog computing can be used to
process the data locally between things and devices without any internet connectivity.

Since substantial numbers of devices are connected to each other, there is a chance that some
devices are in the idle state, which results in unused or underused resources [30]. To overcome this
issue, FogQSYM was introduced to effectively use the available resources. In this proposed model,
the application is broken down into ‘n’ layers, where the first layer ‘s0’ will capture the data and
send the captured data to the remaining layers for processing. After identifying the suitable devices
which have free memory, high processing power, resource availability, etc., the data are transferred
to the remaining layers as appropriate. Fig. 3 depicts the proposed model wherein the application
is divided into n layers, like {S0, S1,. . ., Sn−1}.

Where each layer (S)n−1
i=0 is a set of services, and services in S0 will perform data capture.

Each service in the remaining layers (S)
n−1
i=1 will process data coming from some service in Si−1

(composition).
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Figure 2: Taxonomy of fog computing resource management

The resources are distributed evenly by periodically computing the load of individual devices.
Eq. (1) signifies the computation of the load for each device.

CLd =Bd ∗PLd ∗Md ∗Td (1)

Bd → is the battery capacity of the device, in mAH

PLd → is the processor load of the device, in percentage

Md → is the memory capacity of the device, in MB

Td → is the transfer rate of the device, where all the values are taken as fractions of its value.

Here, Fig. 4 illustrates the flow of resource prediction from the perspective of fog computing.

Effective resource management is required for fog computing devices to improve the Quality
of Service. The system is modeled as a queuing network that consists of a network of queues
wherein a single queue consists of one or more servers. Here, servers refer to storage servers,
networks, input output devices, processors, routers, switches, etc. The queuing network receives
a stream of requests from IoT devices and passes them to the fog server through LAN or
WAN. After a request reaches the fog server, it passes through a queue, and the request may
be completed in the fog server, or additional resources may be needed to complete the request.
A queuing system consists of a single server or multiple servers with a finite or infinite buffer size.
In the queuing system, a server serves only one customer at a given time, which results in one of
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two states, i.e., the idle or busy state. When the servers are busy and a new customer arrives, then
the new customer is buffered in the queue.

Figure 3: FogQSYM: An analytical model for fog applications

The system is modeled as a Markovian queueing system M/M/m queue with an arrival rate
of α and a service time of β, where m > 1 server.

The arrival rate of a system is given in Eq. (1) with k number of users as mentioned in
Eq. (2),

αk = α, K = 0, 1, 2, . . . (2)

The service time of a system is given in Eq. (3) with k number of users,

βk =
{
kβ, 0≤ k<m,

mβ, m≤ k.
(3)
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Figure 4: Resource prediction flow

The steady-state probability of the system is given in Eq. (4),

pk = p0
k−1∏
i=0

α

(i+ 1)β
(4)

where pk is the steady state probability with the ratio between the arrival and service time of
k number of users.

The probability of a job arriving to join the queue is given in Eq. (4); it is the ratio of initial
probability and the utilization factor as represented in Eq. (5)

P= p0
1−ρ

(5)

The utilization factor ρ of the system is given in Eq. (6); it is the ratio of the arrival and
service rate with m servers,

ρ = α

mβ
< 1 (6)

The assumed probability of having exactly only one user in a system pk is given in Eq. (7)

∞∑
k=0

pk = 1 (7)
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Then, the probability of having an empty system wherein no user exists in a system is given
in Eq. (8); it is the summation of the ratio of the utilization factor with k users and m servers
and utilization factor,

p0 =
[
m−1∑
k=0

(mρ)k

k!
+ (mρ)m

m!
1

1−ρ

]−1

(8)

The mean queue length of a system is given in Eq. (9); it is the ratio of the probability of k
users in a system with utilization factor,

Qml =
Pk.ρ
1−ρ

(9)

The mean waiting time of a system is given in Eq. (10); it is the ratio of the mean queue
length and the arrival rate,

Wt = QmL

α
(10)

The total number of jobs in a system is given in Eq. (11); it is the summation of probabilities
1, 2, and the mean queue length,

Mj = p1+ p2+Qml (11)

The system response time is given in Eq. (12); it is the ratio of the number of jobs in the
system and the arrival rate,

Mt =
Mj

α
(12)

The service demand for a LAN to a request is given in Eq. (13), where ADr is the amount
of data processed for a request, LANbw is the bandwidth available in MB/sec, and LANrlat is the
roundtrip latency of LAN in seconds,

LANsd =
ADr

LANbw
+LANrlat (13)

The service demand for a WAN to a request is given in Eq. (14), where ADr is the amount
of data processed for a request, WANbw is the bandwidth available in MB/sec, and WANrlat is
the roundtrip latency of WAN in seconds,

WANsd =
ADr

WANbw
+WANrlat (14)

The service demand of a request to a fog server is given in Eq. (15),

FSsd = k1+ k2 ∗ADr (15)

where k1 and k2 are the constants k1 in seconds and k2 in MB/sec.
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The total response time of a system is the summation of the total response time of a LAN
in seconds, the total response time of a WAN in seconds, and the total response time of a fog
server in seconds, which is given in Eq. (16),

TRr =LANtrt+FStrt+WANtrt (16)

Here, Algorithm 1 describes how FogQSYM assigns the request to the appropriate device and
returns the response time. The algorithm starts by assuming each individual layer, then computes
the required computing load of a device as well as the service demands of the LAN, WAN,
and fog server. Next, the algorithm computes the mean queue length and the number of jobs
in the system. Then, the request is compared with the computing load to see if it is matched
with the mean queue length and the number of jobs in the system, and if the request is matched
successfully, then it is added to the matched resource. Finally, the time taken (response time) to
assign the request is returned.

Algorithm 1: FogQSYM
Input: The resource requirement of a service Sr
Output: The appropriate device
Set L = {L0, L1,. . ., Ln−1}
Compute CLd
Compute LANsd ,WANsd , FSsd
For p = 1 to Sr do

For q = 1 to N do
Compute Qml, Mj
// if the service required of the resource is equal to any of the computing type node

If CLd =Qml and Mj then
Add rp to Dtype/ // Add the resource to the available device
Service the request at fog server
Compute TRr

End if
End for
End for
Return TRr

4 Experimental Results and Analysis

The experiment is set up using Cloud Analyst simulator to evaluate the proposed method.
Cloud Analyst is used to simulate large-scale applications that are geographically distributed.
The fog service contains three types of computing nodes, namely the intermediate computing
node, edge computing node, and physical machines in the cloud, as shown in Fig. 5. To evaluate
the proposed method, a dataset with different sizes of fog services is used. For example, a
dataset with 500 fog services contains 179 edge computing nodes, 167 intermediate computing
node, and 154 physical machines in the cloud. In Cloud Analyst, two datacenters are simulated
as intermediate and edge computing nodes, and the simulation run time is 60 minutes. The
simulation configuration for the model is illustrated in Fig. 7. The datacenter is simulated as
computing nodes, and it is configured based on the fog node which contains one region (since
Cloud Analyst is geographically distributed, it may be configured using one or more regions),
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the simulation proceeds on the Linux operating system with the X86 architecture. It contains ten
physical hardware units, and it supports xen as the virtual machine manager. In terms of the
physical hardware configuration, the memory support is 2048 Mb, the storage is 100000 Mb, the
bandwidth is 1000 mb/s, and the machine contains four processors with a speed of 3.20 ghz.
Regarding the virtual machine (VM) configuration, for the Vm policy it follows the Time-shared
policy, and it has an image size of 10000 Mb, memory of 1024 Mb, and bandwidth of 1000 Mb/s.
The other configuration required is the server broker policy, which follows the existing Optimize
Response Time algorithm [26], with a user grouping factor (Simultaneous user for single user
base) of 1000 and a request grouping factor (Simultaneous request for a single application) of
100. The executable instruction length per request is 250 bytes and the load balance policy is
throttled. Fig. 5 illustrates the different numbers of computing nodes for the different numbers of
fog services.

Figure 5: Computing nodes of different fog services

In the figure, Pm in cloud represents the number of physical machines (such as laptops,
mobiles, etc.) in the cloud environment and Intermediate node represents the devices located inside
the cloud like routers, switches, hubs, and many others.

After configuring the simulation parameter, the simulation requires the input parameters listed
in Tab. 2. In order, these are the constants k1 and k2, LAN and WAN bandwidth in Mb/sec, and
LAN and WAN round trip latency.

After giving the input values in Eqs. 13–15, the values are computed and provided in Tab. 3.

Table 2: Input parameter values

Term Value

k1 0.015 s
k2 0.032 s
LANbw 1250 MB/sec
WANbw 5 MB/sec
LANrlat 0.008 sec/req
WANrlat 0.004 sec/req
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Table 3: Computed values

Term Value (sec/req)

LANsd 0.40
WANsd 0.1046
FSsd 0.2551

The system follows the M/M/m queuing model which follows the Poisson arrival process, and
based on algorithm1 and the M/M/m queuing system, Tab. 4 lists the response times with the
different arrival rates observed for the proposed Fog-QSYM and the existing Optimized Response
Time Model (ORTM). As presented in Tab. 4, when the arrival rate increases, the response time
also increases.

Table 4: Average response time

αr (Arrival rate) Response time of proposed Foq-QSYM Response time of existing ORTM

1.0 0.508 0.602
1.2 0.510 0.605
1.4 0.512 0.601
1.6 0.517 0.612
1.8 0.522 0.617
2.0 0.529 0.642
2.2 0.611 0.711
2.4 0.623 0.713
2.6 0.669 0.717
2.8 0.699 0.769
3.0 0.755 0.812

Fig. 6 gives the overall response time, which is the total of (arrival time + waiting time) of
the request, and Fig. 7 shows the total datacenter processing time, which is the overall time taken
to complete the request by simulation.
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Response Time )

FogQSYM

Figure 6: Overall response time
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Figure 7: Datacenter processing time

Figs. 8 and 9 show the service time taken to complete the request for datacenter1 and
datacenter2, respectively.
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Figure 8: Datacenter1 service time
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Figure 9: Datacenter2 service time

Fig. 10 represents the average response times of the different arrival rates calculated for the
proposed model as well as the existing optimized response time model. From the figure, it can
be seen that the proposed Foq-QSYM model has a quick response time compared to the existing
ORTM model.
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Figure 10: Average response time

5 Significance of our Proposed Work

The proposed Fog-QSYM is compared with the ORTM to evaluate the performance of the
proposed model.

• The proposed Fog-QSYM model helps assign resources efficiently to free datacenters using
the Markovian queuing model.

• By fixing different sizes of datacenters in the fog layer, the service response time for each
resource is gradually reduced.

• According to different QoS metrics-based calculations, the average response time increases
when there is a high arrival rate of resources in the fog layer.

6 Conclusion

The increased numbers of IoT and smart devices in Industry 4.0 applications generate enor-
mous amounts of data with minimal delay tolerance. This paper proposed FogQSYM, which
is an analytical Industry 4.0 model for fog applications that divides the application into several
layers and ensures that resources are shared in an efficient manner according to the availability of
memory, bandwidth, and resources. It follows the Markovian queuing model that helps identify
the service rate of Industry 4.0 devices, availability of the system, and number of jobs in the
system, which helps the application process the data without any delay tolerance. This shows
the feasibility of dividing the application into several layers to share resources according to their
suitability, which results in a low response time. After being implemented with differently-sized
fog services in Industry 4.0 applications, the Fog-QSYM model has a lower response time than
the existing ORTM model. It can also be noted that the average response time increases when the
arrival rate increases. Upon implementing the model in the simulator, it is found that to decrease
the response time, it is better to disconnect the slowest device with the lowest utilization.

Acknowledgement: This work was supported by the National Research Foundation of Korea under
Grant 2019R1A2C1085388.



CMC, 2021, vol.69, no.3 3177

Funding Statement: This work was supported by the National Research Foundation of Korea
under Grant 2019R1A2C1085388.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

References
[1] Postscapes, “Internet of Things (IoT) History,” [Online]. Available: https://www.postscapes.com/iot-

history/ [Accessed on: 18th January 2021].
[2] H. Boyes, B. Hallaq, J. Cunningham and T. Watson, “The industrial internet of things (IIoT): An

analysis framework,” Computers in Industry, vol. 101, no. 8, pp. 1–12, 2018.
[3] S. R. K. Somayaji, M. Alazab, M. MK, A. Bucchiarone, C. L. Chowdhary et al., “A Framework for

prediction and storage of battery life in IoT devices using dnn and blockchain,” arXiv preprint arXiv:
2011.01473, 2020.

[4] S. P. RM, P. K. R. Maddikunta, M. Parimala, S. Koppu, T. Reddy et al., “An effective feature
engineering for DNN using hybrid PCA-GWO for intrusion detection in IoMT architecture,” Computer
Communications, vol. 160, pp. 139–149, 2020.

[5] M. Aazam, S. Zeadally and K. A. Harras, “Deploying fog computing in industrial internet of things
and industry 4.0,” IEEE Transactions on Industrial Informatics, vol. 14, no. 10, pp. 4674–4682, 2018.

[6] C. Matt, “Fog computing: Complementing cloud computing to facilitate industry 4.0,” Business &
Information Systems Engineering, vol. 60, no. 4, pp. 351–355, 2018.

[7] D. Wu, S. Liu, L. Zhang, J. Terpenny, R. X. Gao et al., “A fog computing-based framework for process
monitoring and prognosis in cyber-manufacturing,” Journal of Manufacturing Systems, vol. 43, no. 4,
pp. 25–34, 2017.

[8] S. Yi, Z. Hao, Z. Qin and Q. Li, “Fog computing: Platform and applications,” in 2015 Third IEEE
Workshop on Hot Topics in Web Systems and Technologies, Washington, DC, USA, IEEE, pp. 73–78,
2015. https://doi.org/10.1109/HotWeb.2015.22.

[9] S. K. Mani and I. Meenakshisundaram, “Improving quality-of-service in fog computing through
efficient resource allocation,” Computational Intelligence, vol. 36, no. 4, pp. 1527–1547, 2020.

[10] A. Rayes and S. Salam, Internet of Things fromHype to Reality. The Road to Digitization. River Publisher
Series in Communications, Basel, Switzerland: Springer, pp. 49, 2017.

[11] Y. Meng, M. A. Naeem, A. O. Almagrabi, R. Ali and H. S. Kim, “Advancing the state of the fog
computing to enable 5G network technologies,” Sensors, vol. 20, no. 6, pp. 1754, 2020.

[12] Y. Qin, “When things matter: A survey on data-centric internet of things,” Journal of Network and
Computer Applications, vol. 64, no. 2, pp. 137–153, 2016.

[13] A. Dastjerdi and R. Buyya, “Fog computing: Helping the internet of things realize its potential,”
Computer, vol. 49, no. 8, pp. 112–116, 2016.

[14] M. I. Pramanik, R. Lau, H. Demirkan and M. A. KalamAzad, “Smart health: Big data enabled health
paradigm within smart cities,” Expert Systems with Applications, vol. 87, no. 2, pp. 370–383, 2017.

[15] T. S. Nikoui, A. M. Rahmani and H. Tabarsaied, “Data Management in fog computing,” in Fog and
Edge Computing: Principles and Paradigms, pp. 171–190, 2019. https://www.onlinelibrary.wiley.com/doi/
book/10.1002/9781119525080.

[16] S. P. RM, S. Bhattacharya, P. K. P. Maddikunta, S. R. K. Somayaji, K. Lakshmanna et al., “Load
balancing of energy cloud using wind driven and firefly algorithms in internet of everything,” Journal
of Parallel and Distributed Computing, vol. 142, pp. 16–26, 2020.

[17] V. Moysiadis, P. Sarigiannidis and I. Moscholios, “Towards distributed data management in fog
computing,” Wireless Communications and Mobile Computing, vol. 2018, no. 1, pp. 1–14, 2018.

[18] P. O’donovan, C. Gallagher, K. Bruton and D. T. O’Sullivan, “A fog computing industrial cyber-
physical system for embedded low-latency machine learning Industry 4.0 applications,” Manufacturing
Letters, vol. 15, no. 1, pp. 139–142, 2019.

https://www.postscapes.com/iot-history/
https://www.postscapes.com/iot-history/
https://doi.org/10.1109/HotWeb.2015.22
https://www.onlinelibrary.wiley.com/doi/book/10.1002/9781119525080
https://www.onlinelibrary.wiley.com/doi/book/10.1002/9781119525080


3178 CMC, 2021, vol.69, no.3

[19] C. C. Lin and J. W. Yang, “Cost-efficient deployment of fog computing systems at logistics centers in
industry 4.0,” IEEE Transactions on Industrial Informatics, vol. 14, no. 10, pp. 4603–4611, 2018.

[20] B. Jamil, M. Shojafar, I. Ahmed, A. Ullah, K. Munir et al., “A job scheduling algorithm for delay and
performance optimization in fog computing,” Concurrency and Computation: Practice and Experience,
vol. 32, no. 7, pp. e5581, 2020.

[21] A. A. Sadri, A. M. Rahmani, M. Saberikamarposhti and M. HosseinZadeh, “Fog data management:
A vision, challenges, and future directions,” Journal of Network and Computer Applications, vol. 174,
no. 10, pp. 102882, 2020.

[22] M. Enguehard, Y. Desmouceaux and G. Carofiglio, “Efficient latency control in fog deployments via
hardware-accelerated popularity estimation,” ACM Transactions on Internet Technology, vol. 20, no. 3,
pp. 1–23, 2020.

[23] G. Javadzadeh and A. M. Rahmani, “Fog computing applications in smart cities: A systematic survey,”
Wireless Networks, vol. 26, no. 2, pp. 1433–1457, 2020.

[24] M. Haghi Kashani, A. M. Rahmani and N. Jafari Navimipour, “Quality of service-aware approaches
in fog computing,” International Journal of Communication Systems, vol. 33, no. 8, pp. e4340, 2020.

[25] C. S.Nandyala and H. K. Kim, “From cloud to fog and IoT-based real-time U-healthcare monitoring
for smart homes and hospitals,” International Journal of Smart Home, vol. 10, no. 2, pp. 187–196, 2016.

[26] A. Kumari, S. Tanwar, S. Tyagi and N. Kumar, “Fog computing for Healthcare 4.0 environment:
Opportunities and challenges,” Computers & Electrical Engineering, vol. 72, no. 5, pp. 1–13, 2018.

[27] E. Marín-Tordera, X. Masip-Bruin, J. García-Almiñana, A. Jukan, G. J. Ren et al., “Do we all really
know what a fog node is? Current trends towards an open definition,” Computer Communications,
vol. 109, no. 4, pp. 117–130, 2017.

[28] M. Taneja and A. Davy, “Resource aware placement of data analytics platform in fog computing,”
Procedia Computer Science, vol. 97, pp. 153–156, 2016.

[29] M. Iyapparaja and P. Sivakumar, “Metrics based evaluation for disease affection in distinct cities,”
Research Journal of Pharmacy and Technology, vol. 10, no. 8, pp. 2487–2491, 2017.

[30] M. Iyapparaja and B. Sharma, “Augmenting SCA project management and automation framework,”
Materials Science and Engineering Conference Series, vol. 263, no. 4, pp. 042018, 2017.


