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Abstract: Internet communication protocols define the behavior rules of net-
work components when they communicate with each other. With the continu-
ous development of network technologies, many private or unknown network
protocols are emerging in endlessly various network environments. Herein,
relevant protocol specifications become difficult or unavailable to translate in
many situations such as network security management and intrusion detec-
tion. Although protocol reverse engineering is being investigated in recent
years to perform reverse analysis on the specifications of unknown proto-
cols, most existing methods have proven to be time-consuming with limited
efficiency, especially when applied on unknown protocol state machines. This
paper proposes a state merging algorithm based on EDSM (Evidence-Driven
State Merging) to infer the transition rules of unknown protocols in form
of state machines with high efficiency. Compared with another classical state
machine inferring method based on Exbar algorithm, the experiment results
demonstrate that our proposed method could run faster, especially when deal-
ing with massive training data sets. In addition, this method can also make
the state machines have higher similarities with the reference state machines
constructed from public specifications.

Keywords: Network security; protocol state machine; EDSM algorithm;
protocol reverse engineering; protocol analyzing

1 Introduction

Communication processes among network entities are regulated by network protocols, which
define the specifications of message syntaxes and semantics as well as the order messages are
to be transmitted. With the continuous development of computer networks [1–3], the mass-
produced private or unknown communication protocols have increased the difficulty of related
network security management. Thus, the ability of obtaining unknown protocol specifications
becomes extremely vital in various situations especially in security-related contexts such as firewalls
and intrusion detection systems [4–6]. In these cases, protocol specifications are used to identify
malicious traffic and in DPI (Deep Packet Inspection) to assist in making network access more
secure and efficient [7–10].
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Protocol Reverse Engineering (PRE) refers to the process of analyzing an unknown protocol,
where its specifications are obtained by analyzing the message sequences captured from the net-
work traces, or by the instruction streams, during the protocol’s communicating process. Network
protocol reverse engineering mainly contains two parts:1) message format & semantic mining
and 2) state machine inferring. Much research has been done on the first part as represented
by the methods in [11–17]. Cui et al. [15] proposed Discoverer to analyze the protocol format
in communication traffic. In order to determine the optimal length of message keywords and
recover message formats, Cai et al. [16] introduced a hidden semi-Markov model to fit unknown
protocol message format. However, there is less research work on the second part [18–24]. Shev-
ertalov presented a protocol state machine inferring solution called PEXT based on common
sequences [23]. In order to make the state merging process more reasonable, Comparetti et al. [24]
used Exbar algorithm to complete this process and got final minimal DFAs (Deterministic
Finite-state Automatons).

In the past years, traditional methods have proven to be usually time-consuming and to
contain many errors. Open-source project Samba spent 12 years on manually mining Microsoft’s
SMB (Server Message Block) protocol specification and implementing cross-platform file and
print sharing mechanisms. Afterwards, many automatic protocol reverses analyzing methods were
proposed to improve the PRE’s efficiency and accuracy, just like the aforementioned research
work [18–24]. When reconstructing the state machine of an unknown protocol communication
process, however, there has still been many problems with computation efficiency including state
explosion and time cost [25,26].

This paper proposes a state merging algorithm based on EDSM [27] to automatically recon-
struct the state machine of unknown binary protocols. Firstly, in order to transform protocol
message exchange sessions from the form of message sequences into message type sequences,
training samples pre-processing is carried out. Secondly, we use a heuristic state labeling algorithm
to assign different labels to the protocol transition states. Finally, a state merging algorithm based
on EDSM is proposed to complete the state machine reverse process to achieve the final state
merging result as a general minimal DFA.

This paper is organized as follows. We give formalized description of the protocol state
machine and other definitions in Section 2, and explain the detailed theoretical design of this
method in Section 3. In Section 4, several binary protocols are tested by our algorithm. The results
demonstrate that the inferred protocol state machines have superior similarities with the reference
state machines constructed by public specifications and have better processing capabilities aimed
at large amounts of training data.

2 Problem Definition

Protocols regulate the transmission processes among network entities by defining message
syntax and semantics as well as their exchange orders. A network protocol consists of three
elements: (1) Syntax, (2) Semantic, and (3) Timing. Syntax refers to the message format and
encoding. Semantic refers to the meaning of each field in a message. Timing rules the con-
straints and requirements of communication sequences and state transitions between protocol
entities. Specifically, network entities generate responding messages and send them to each other
in process of communication according to the semantic information that exists in message format
specification and protocol state machines.
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Bhargavan et al. [28] formalized the problem of message interaction between network entities
as a problem of language identification. Inspired by their work, we give a formalized description
of the problem of protocol specification mining, as shown below.

Definition 1: A Protocol State Machine can be represented as a “six-tuple” FSM (Finite State
Machine), as shown in Eq. (1):

FSM= (Q, I,O,σ,λ,q0) (1)

where Q = {q0,q1, . . . ,qk} is a finite set of states; I = {i1, i2, . . . , im} is an input set of message
formats; O = {o1,o2, . . . ,on} is an output set of message formats; δ : Q × I → Q is the state
transition function; λ : Q× I→O is the output function; q0 is the initial state.

In particular, there are two differences between the FSM in Definition 1 and the classical
automatic mechanism. Firstly, for the FSM in Definition 1, all states are acceptable without
rejection states. Secondly, any prefix of a valid message sequence is acceptable, and any prefix of
an invalid message sequence is acceptable except the last message.

Definition 2: The communication between protocol entity D1 and protocol entity D2 is com-
posed of a series of message sequences T1, . . . ,Tn. Each message sequence Ti = {p1p2 . . .p|Ti|} is

composed of a certain number of messages, where pi refers to the ith message, |Ti| refers to the
number of messages in Ti.

According to Definition 2, we divide the PRE-process into two steps based on the scope of
protocol specification: (1) message format and semantic mining, and (2) protocol state machine
reverse. Besides, the first step is the basic of the second step. In this paper, we mainly focus on
protocol state machine reverse.

3 The Proposed Protocol State Machine Reverse Method

In last section, we give the formalized description of the protocol state machines and explain
the relationship between the message format, semantic mining and protocol state machine reverse.

In this section, we introduce the theoretical method design of our proposal. In Section 3.1,
we describe how to pre-process the initial message of binary protocols in detail. In Section 3.2,
the state labeling algorithm is described to assign different labels on states. Finally, the EDSM-
based state merging algorithm is introduced to rebuild final protocol state machines of the target
unknown protocol.

3.1 Pre-Processing of Messages
As the initial messages cannot be used as elements of the input set in Definition 1, we

preprocess training samples to find state relevant fields to transform protocol sessions from the
form of message sequences into the form of message type sequences. The main idea is using
multiple sequence alignments to identify the variable length fields in messages, and then extracting
state relevant fields by analyzing statistical characteristics of each field after removing variable
length fields.

3.1.1 Identification of Variable Length Fields
Binary protocol messages are formed by a series of bytes, which usually consist of mes-

sage headers and message bodies. The message header includes the message type, length and
other fields. The length of a message header is usually fixed. However, in some complex binary
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protocols, there may be variable length fields, such as parameter fields. Therefore, we use multiple
sequences alignment [29] to identify these variable length fields.

Multiple sequence alignment is essentially an NP-complete problem, which is always realized
by heuristic algorithms. Here, we use a progressive multiple sequence alignment algorithm to solve
the multiple message field segmentation problem. To implement a multiple sequence alignment,
we create a phylogenetic tree to guide this process.

Once the phylogenetic tree is completed, a progressive multiple sequences algorithm can
be achieved under the guidance of this phylogenetic tree. In fact, the basic operation of the
progressive multiple sequence algorithm is global sequence alignment. In this paper, we apply the
Needleman–Wunsch algorithm [30] to complete the global sequence alignment. The score matrix
of messages A and B in the Needleman–Wunsch algorithm can be built based on the following
equation.

S (i, j)=max

⎧⎪⎨
⎪⎩

S (i− 1, j− 1)+ c(Ai,Bj)
S (i− 1, j)+Wk_column

S (i, j− 1)+Wk_row

, (2)

where 1≤ i≤M, 1≤ j≤M.

In order to ensure that the fixed fields do not introduce gaps, and variable length fields
could be aligned by adding gaps, we present a new substitution matrix for Needleman–Wunsch
algorithm: initialize a match score of 2, mismatch score of −1, gap penalty of −3. The gap
penalty is a special treatment in the algorithm running process: continuous gaps are counted only
once, and gap penalty plus −1 for the next time.

The advantage of our method is that once gaps are introduced between fixed fields, the
remaining fields will not be aligned to result in serious gap penalties. In addition, variable length
fields may need to be introduced more than one gap to be aligned. In order to avoid excessive
gap penalties, we only count continuous gaps once.

3.1.2 Extraction of State Relevant Fields
There are various fields in binary message formats with different constraints added by protocol

specification, which leads to different statistical characteristics of fields. Thus, we compute and
analyze their statistical features, and then find out the features we are interested in. Based on the
“Variance of the Distribution of the Variances” [31] of fields in each message format, relevant
features are filtered for subsequent analysis. In this paper, we make the following assumptions to
find the fields related to the state.

Assumption 1. Binary protocols have the following properties:

(1) The specific logic underlies in different traffic flows of a certain protocol to ensure the
stable running of transmissions;

(2) State relevant fields in messages assign the common logic of protocols;

(3) The value of state relevant fields is usually limited and not excessive;

(4) The value distributions of state relevant fields are similar in each session;

(5) The length of a state relevant field is 1 byte which can represent 256 message types.
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We define the byte as the basic field unit. Based on these assumptions, we can find that there
exists a certain change pattern of each byte field in the flow of a protocol. Relevant byte fields in
different packets are presented in Fig. 1. The distribution of one field in different flows is similar.

Field1 Field2 Field333 Field44 ……

Field1 Field2 Field333 Field44 ……

…
…

…
…

…
…

…
…

…
…

Field1 Field2 Field333 Field44 ……

Packet 1:

Packet 2:

Packet n:

…
…

Frequency
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Figure 1: Relevant byte fields in different packets

For comparison, we use δ2i,j to denote the decentralization of field i in flow j. Then, calculate

the variance distribution of each field in the entire set of flows 1 . . .n. The distribution curve
shows the variability of the field in these flows. Then, we consider in all flows 1 . . .n for each field
of the variance distribution previously computed δ2{δ2i,1, δ2i,2, . . . , δ2i,n}. What we are interested in is

the low degree of variability in this statistic.

3.2 EDSM-Based Protocol State Machine Reverse
We determine state relevant fields by preprocessing. At the end of the preprocessing, each

session is denoted as a sequence Si = (t1, . . . , tn), and t1, t2, . . . , tn represents the message type set.
In this process of state machine inference, we are aiming to achieve an acceptor machine which
can recognize the target protocol in its valid sessions by analyzing the sequence of message types.

3.2.1 State Labeling Algorithm
Here, we use an Augmented Prefix Tree Acceptor (APTA [32]) T to build the initial state

machine. In the training set, all states are assigned by “accept”. Now, we cannot leverage the
existing state merging algorithm to merge pairs of states directly, which would result in an
overgeneralized DFA with only one single state. Therefore, we introduce and optimize a state
labeling algorithm proposed in [24] to assign different labels to the states of T . In the following,
we first introduce the state labeling algorithm, and then optimize it to complete state labeling.

There is a convention in network protocols that a sequence of messages must be sent before
the server can execute certain actions. So, a regular expression shown in Eq. (3) is used to
represent the prerequisite of a certain message.

Pm = .∗r(a1||aj) (3)

where r, a1, . . . ,aj are message types.
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A prerequisite means the server in a state that can accept message of type m must receive
another type r firstly, and follows with (a1| . . . |aj)∗, optionally.

The limitation of an algorithm for calculating r is that more than one value of r may
be obtained after the calculation, but not each value is reasonable. For example, in SMB, the
“OPEN” operation must be performed before the “WRITE” operation, and the “TREE CONN”
operation must be performed before the “OPEN” operation. Therefore, we can conclude that the
“OPEN” operation is likely to rely on the “TREE CONN” caused by the dependent transition.

Therefore, for each value ri, we test whether ri is the last appeared after other values in each
protocol session. If such a value is found, we consider it as the final value r that we required.
And if we cannot find one, the value of r is null which means no message type is required before
the server can accept the message type M.

Once all prerequisites are computed, the state q of T will be labelled within the set of message
types, which can serve as an input. A serious problem of the state labeling algorithm is that many
message types have the same prerequisites, which results in many states having the same label, but
not all of them actually should be merged. For example, in SMB, the state created by “OPEN”’
operation should not be merged with the state created by the “CREATEDIR” operation. The
reason is that the “WRITE” and “READ” operations have relied on the “OPEN” operation, but
no operation relies on the “CREATEDIR” operation. So, we label the state “s” by a tuple:

Label= (A,R,O) (4)

where A is an acceptable message type of s, R is a set of message types that require s, and O is
the last two elements of the path from the root to s.

The expanded state labeling algorithm is shown as follows.

Algorithm 1: Expanded_State_Labeling
Input: An APTA T
Result: the set of state label L
Path = ϕ, A = ϕ, R = ϕ, O = ϕ, o = null
for each state s in T do

Path = message type sequences from root to s in T
O = last two elements in Path
o = last element in Path

for each message type t do
if Path satisfy the prerequisite of t

add t to A
for each message type t do

if t requires o
add t to R

add 〈s, 〈A, R, O〉〉 to L
return L

3.2.2 EDSM-Based State Merging Algorithm
An essential operation of protocol state machine reverse is the similar states merging. Accord-

ing to the state tree (APTA [32]) labelled by heuristics, now we can go one step further to infer an
optimal DFA by merging similar states. In the field of grammar inference, obtaining the smallest
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DFA consistent with the labelled training set has been proved to be an NP-complete problem by
Gold, and there are many exact or approximate algorithms to solve this problem.

In fact, the complexity of protocol state machine inference is always higher than general
grammar inference, because the amount of protocol messages is larger and the protocol logic is
more complex. Therefore, in this paper, we adopt an approximate algorithm, EDSM, to deal with
the state merging of unknown protocol APTAs. The performances of EDSM [33] and Exbar are
compared and analyzed in Section 4.3.

The EDSM algorithm is achieved in the red-blue frame, which is a directed graph with the
following properties:

(1) All nodes in the graph are labelled with red, blue or unmarked;

(2) The initial root node is marked with red, and its children are marked with blue;

(3) Each red node’s non-red children are marked with blue;

(4) Each unmarked blue node is the root of a tree;

EDSM is based on a greedy strategy. It will calculate all scores of red and blue node pairs
using state labels. If there exists a blue node that cannot be merged with any other red nodes,
we promote it to be red. The red node and blue node with the highest score will be merged. In
the process of protocol state machine reversal, we use the Breadth-First Search (BFS) strategy to
modify the EDSM algorithm in order to complete the state merging of states in same depth with
same behavior. The modified EDSM algorithm is shown in Algorithm 2.

Algorithm 2: EDSM-BFS
Input: red nodes of T
blue_node =�, target_depth = 0, merges = ϕ, promotable_blue = ϕ

Traverse T with breadth first search
if current node n is blue node

target_depth = n.depth
break

Traverse T with breadth first search
if current node n is blue node and n.depth <= target_depth + 1

add n to blue_node
merges = sort_by_score (filter (successful, (map (try merging and then undo, cross produce (red
nodes, blue nodes))))
promotable_blue = filter (appears in no merge, blue nodes)
if promotable_blue! =�

EDSM-BFS (cons (min-depth (promotable_blue), red nodes)))
else if merges != �

try merging (first (merges))
EDSM-BFS (red nodes)

There are two places reflecting the idea of breadth-first search. The first is the selection
of blue nodes to generate the candidate state merging set; and the second is the selection of
promotable blue nodes. The advantage of using breadth-first search is that it can search similar
states in different paths preferentially to avoid generating too many branches in the final state
machine.
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In order to obtain an efficient and reliable result, the focus of our algorithm is to design
a reasonable scoring mechanism. In this paper, we use the state labeling method discussed in
Section 3.1 to solve this problem. The scoring algorithm is shown in Algorithm 3.

Algorithm 3: Try_Merging
Input red node r, blue node b
Merge score = 0
if label (r.A) = label (b.A) and label (r.R) = label (b.R)

merge_score + 1
if label (r.O) = label(b.O) or r.O.second != b.O.second

merge score + 1
else

return − 1
for each message type m in M do

if exist (r.child (m)) and exist (b.child (m))
Repeat the above operations

return merge_score

4 Experiment Results and Analysis

We test our implementation of the proposed method on a number of stateful binary protocols
(including transport layer protocol TCP (Transmission Control Protocol) and two application layer
protocols SMB and DHCP (Dynamic Host Configuration Protocol)). Since the completeness and
validity of the training set have a crucial impact on the quality of the state machine, and the
inferred FSM cannot identify the packet not included in the training set, we try to collect as many
complete protocol sessions as possible.

4.1 State Machine Inference
In this section, we apply our method to one transport layer protocol (TCP) and two applica-

tion layer protocols (SMB, DHCP). It creates state machines ranged from 4 to 12 states for each
protocol.

TCP. It is an important transport layer protocol which is object oriented, reliable and based
on stream of bytes. In our experiments, we connect our terminal with a router, and run Wireshark
(a well-known network packet analysis software) to sniff TCP network traffic. Then, the collected
traces are fed to the implemented system, and the obtained state machine is shown in Fig. 2.
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33
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55
ACK
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RST ACK
RST

ACK

PSH ACK

Figure 2: Result of TCP state machine
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The three-way handshake of TCP related to State 2 is obviously visible as well as the four
waves of TCP leading to State 5. The network data transmit between server and client in State 2.
Besides, we can see the “RST” and “RST-ACK” packets in State 4 which are always associated
with abnormal connections in the real world.

SMB. As an instance of a relatively elaborate, stateful, binary protocol, we chose SMB to
test this method. In the experiment, version 4.1.14 of the Samba software suite has been adopted
to tracked the SMB daemon when this client is used to look through directories, carry out
typical operations like reading, writing, and deleting directories and files. In this way, a set of 445
recorded sessions is collected. Fig. 4 shows the protocol state machine inferred from this SMB
data set.

In Fig. 3, we can see the obvious login sequence leading to State 3. When the “DFS” option
is enabled, the client first attaches the “IPC$” share to achieve a “DFS” referral of the requested
share. Otherwise, the client immediately enters the requested share of State 6, where most file
system operations (including opening, reading, writing, or closing) are available.
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NEGOTIATE

33
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AUTHENTICATE

44

TREE
CONNECT
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55
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FINDCLOSE
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CLOSE CLOSE
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TREE DISCONNECT

Figure 3: Result of SMB state machine

DHCP. Dynamic host configuration protocol is an important network protocol in the local
area network which mainly automatically assigns IP addresses for Internet service providers. In
our experiment, we have configured a DHCP server in our local area network and traced the
DHCP traffic. 168 DHCP sessions are collected. Fig. 4 shows the DHCP result state machine.

There are two login sequences (0 −> 1 −> 2 and 0 −> 2) leading to State 2 in DHCP state
machine. Path 0 −> 1 −> 2 happens when the client logins the server for the first time, and path
0 −> 2 occurs when the client reboots.
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Figure 4: Result of DHCP state machine

4.2 Quality of Protocol State Machine
To test the performance of this system, we use the soundness and completeness to evaluate

the quality of the state machines inferred from our implementation.

4.2.1 State Machine Completeness
Generally, we consider a state machine is complete enough if it accepts all valid sessions, and

we use the recall rate to measure the completeness of that state machine. There are two methods
to obtain test samples: by net trace which reflects the overall completeness of the state machine, or
by constructing a reference state machine using protocol specifications which reflects the structural
completeness of the state machine. Tabs. 1 and 2 show the results of each method where “IM-”
refers to the relative inferred state machines and “RM-” the reference state machines.

Table 1: Overall completeness testing of inferred state machines

No. State machines Protocol types Sessions produced
by net-trace

Sessions accepted
by IM

Recall

1 IM-TCP TCP 4377 4377 1
2 IM-SMB SMB 1120 1093 0.975
3 IM-DHCP DHCP 540 540 1

Table 2: Structural completeness testing of inferred state machines

No. Inferred state
machines

Reference state
machines

Sessions produced
by RM

Sessions accepted
by IM

Recall

1 IM-TCP RM-TCP 10000 9540 0.954
2 IM-SMB RM-SMB 10000 9660 0.966
3 IM-DHCP IM-DHCP 10000 9669 0.967

From Tabs. 1 and 2, we can see that the recalls of both overall completeness and structural
completeness are high enough closing to 100% which demonstrate that our method is useful
to accept valid protocol sessions. Besides, overall completeness is a little higher than structural
completeness. It is understandable that the test samples produced by the reference state machines
are more complete than those by net-traces, and the test samples we used to construct the state
machine are collected by net-traces.
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4.2.2 State Machine Soundness
We consider a state machine is sound enough if it rejects all invalid protocol sessions, and

we use accuracy to measure the soundness of the state machine. The result is shown in Tab. 3,
where we can conclude that the state machine we inferred are not over-generalized, which means
they can reject invalid sessions.

Table 3: Structural completeness testing for state machine

No. State machine Protocol Sessions
created by IM

Sessions tested
successfully by RM

Precision

1 RMtcp TCP 10000 9877 0.988
2 RMsmb SMB 10000 10000 1
3 RMdhcp DHCP 10000 10000 1

4.3 Comparative Evaluation
With merely positive examples, there exist other approaches to implement the automation

inferring mission. One popular approach is the Exbar algorithm, which is an exact algorithm to
infer the minimal consistent DFA. To compare the performance of the proposed method with
the Exbar algorithm, we calculate the precision and recall at different numbers of SMB protocol
training samples for both two algorithms. The results are shown in Figs. 5 and 6.

15 30 40 50 100 200 400

EXBAR 0.876 0.899 0.926 0.945 0 0 0

EDSM 0.863 0.885 0.912 0.93 0.958 0.969 0.975
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Figure 5: Recall of SMB state machine in different scales of training samples

Two useful conclusions could be drawn from the results.

1) About the impact of the number of training samples. The number of training samples has a
relatively large influence on the recall of these two algorithms, and the recall is rising along with
the increase of training samples. Exbar performs slightly better than EDSM in recall. By using an
improved state labeling algorithm in our system, the accuracy of the two algorithms reaches 100%
at the number of different training samples, which avoids merging invalid state pairs. So, the state
machine we inferred is not over generalized, and it is unlikely to generate protocol sessions that
cannot be accepted by the reference state machine.

2) About the data processing capacity. When the number of training samples exceeds 50, Exbar
will not run. EDSM is an approximate algorithm that can ensure inferring state machine in
polynomial time. However, Exbar is an exact algorithm using backtracking search strategy, and
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tries to find an optimal result with the least states in an almost exhaustive manner. Each time
Exbar is called recursively, it only tries to merge a pair of states or promote a blue node to red,
and the depth of the search will continue to increase. Once a search fails, Exbar algorithm will
return to the last position and choose another search direction, which may easily fall into infinite
backtracking and cannot exit. Fig. 7 depicts the search path of Exbar and EDSM when inferring
state machines.
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Figure 6: Precision of SMB in different scales of training samples
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Figure 7: Search direction of Exbar and EDSM

In order to compare the time consumption of the two algorithms more directly, we record
their time consumption and search times under different numbers of SMB training samples (see
Tab. 4). It can be seen from the results that the running time of the two algorithms grows with
the increase of the number of training samples. But for each test set, EDSM takes less time than
Exbar. When the sample number in the test set is equal to or greater than 100, Exbar would fail
to give a result while EDSM just takes a little longer time to display the results. The reason for
this phenomenon can be explained by the difference in computational complexity between Exbar
and EDSM. As an approximation algorithm, the time complexity of the EDSM algorithm is much
lower than that of Exbar, which makes it more effective when the data size increases. Therefore,
the EDSM algorithm has a better performance in the face of large data and higher real-time
requirements.
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Table 4: Time consuming between Exbar and EDSM

Training sample count 15 30 40 50 100 200 400

Time consuming Exbar 0.15 s 0.735 s 5.925 s 34.196 s
EDSM 0.056 s 0.161 s 0.387 s 0.645 s 2.81 s 3.5 s 4.097 s

Search times Exbar 228 732 3078 6796
EDSM 196 427 688 854 1556 2440 3056

5 Conclusion

This paper proposes a valid approach to refer the state machine of unknown binary protocols
from network traces, especially when the training samples are large. Firstly, we improve the
substitution matrix of multiple sequence alignments to identify variable length fields and remove
them. Then, we extract state relevant fields by analyzing their statistical characteristics. To infer a
minimal DFA consistent with training samples, we optimize a state labeling algorithm and apply
an optimized EDSM algorithm to complete the final state merge.

In order to validate the method implemented in this paper, we test our system on three typical
binary protocols: TCP, SMB and DHCP. The experimental results show that the state machine
we inferred is reliable in terms of both completeness and soundness. Compared with the Exbar
algorithm, the experiment results show that when Exbar totally fails, our system has better perfor-
mances in processing a large number of training samples. In some application environments, such
as instruction detection, malicious traffic recognition and other network protection mechanisms,
the ability to handle with big data provided by EDSM algorithm will be more practical.

In the future, the method for selecting an appropriate algorithm to accomplish the state
machine reconstructing needs to be studied in depth. As this article proves, EDSM performs better
on large data, but has a slightly lower recall rate than Exbar. We will continue working on this
topic and find an automatic mechanism to utilize the proper algorithm to obtain better protocol
reverse results. Besides, combined with the present method, the Markov Model could also be
considered to deal with the packet missing problem in the future.
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