
echT PressScienceComputers, Materials & Continua
DOI:10.32604/cmc.2021.016074

Article

DeepIoT.IDS: Hybrid Deep Learning for Enhancing IoT Network
Intrusion Detection

Ziadoon K. Maseer1, Robiah Yusof1, Salama A. Mostafa2,*, Nazrulazhar Bahaman1, Omar Musa3 and
Bander Ali Saleh Al-rimy4

1Faculty of Information and Communication Technology, Universiti Teknikal Malaysia, Melaka, 76100, Malaysia
2Center of Intelligent and Autonomous Systems, Faculty of Computer Science and Information Technology,

Universiti Tun Hussein Onn Malaysia, Johor, 86400, Malaysia
3Faculty of Business and Technology, UNITAR International University, Selangor, 47301, Malaysia

4School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, Johor, 81310, Malaysia
*Corresponding Author: Salama A. Mostafa. Email: salama@uthm.edu.my

Received: 21 December 2020; Accepted: 07 May 2021

Abstract: With an increasing number of services connected to the internet,
including cloud computing and Internet of Things (IoT) systems, the preven-
tion of cyberattacks has become more challenging due to the high dimension-
ality of the network traffic data and access points. Recently, researchers have
suggested deep learning (DL) algorithms to define intrusion features through
training empirical data and learning anomaly patterns of attacks. However,
due to the high dynamics and imbalanced nature of the data, the existing
DL classifiers are not completely effective at distinguishing between abnormal
and normal behavior line connections for modern networks. Therefore, it is
important to design a self-adaptive model for an intrusion detection system
(IDS) to improve the detection of attacks. Consequently, in this paper, a novel
hybrid weighted deep belief network (HW-DBN) algorithm is proposed for
building an efficient and reliable IDS (DeepIoT.IDS) model to detect exist-
ing and novel cyberattacks. The HW-DBN algorithm integrates an improved
Gaussian–Bernoulli restricted Boltzmann machine (Deep GB-RBM) feature
learning operator with a weighted deep neural networks (WDNN) classifier.
The CICIDS2017 dataset is selected to evaluate the DeepIoT.IDS model as it
contains multiple types of attacks, complex data patterns, noise values, and
imbalanced classes. We have compared the performance of the DeepIoT.IDS
model with three recent models. The results show the DeepIoT.IDS model
outperforms the three other models by achieving a higher detection accuracy
of 99.38% and 99.99% for web attack and bot attack scenarios, respectively.
Furthermore, it can detect the occurrence of low-frequency attacks that are
undetectable by other models.

Keywords: Cyberattacks; internet of things; intrusion detection system;
deep learning neural network; supervised and unsupervised deep learning

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

http://dx.doi.org/10.32604/cmc.2021.016074

3946 CMC, 2021, vol.69, no.3

1 Introduction

Many services are found online using the internet, and this trend is increasing over time. The
internet helps millions of automotive Internet of Things (IoT) endpoints in providing provide
services. The new technology replacing traditional networks is the IoT networks, such as those
of industrial machines, smart energy grids, building automation, and many personal assistance
devices [1,2], as shown in Fig. 1. An IoT represents a complex and dynamic network that connects
endpoints of devices to provide various services. The diversity and volume of data transmitted
over the networks raise many security issues. The risk and occurrences of attacks are increasing
tremendously as a result of these revolutionary technologies [3]. Therefore, there is a need to build
or develop an effective method to protect data confidentiality and network resource availability
from zero-day attacks. Furthermore, it is essential to sustain the progress of these technologies [4].
Many organizations have limited network defense resources. They use traditional security methods
and tools such as anti-spam, antivirus, firewalls, etc., to protect their networks. However, these
methods and tools are still vulnerable to sophisticated and novel attacks [5].

Figure 1: IoT infrastructure of a smart city

The 2020 Unit 42 IoT Threat Report is a survey of over 1.2 million IoT devices in the
healthcare information technology industries in the United States. The report shows that these
organizations are unsafe as their sensitive data is exposed to threats. The results of the survey
show that 83% of devices used for medical imaging are running on outdated and unsecured oper-
ating systems [3]. The most common types of cyberattacks in such organizations are ransomware,
botnet, password, and other attacks, as shown in Fig. 2.

Network intrusion detection systems (IDS) are essential tools for monitoring a network,
tracking malicious activities, and identifying intrusions. They provide powerful defense systems
against various threats and cyberattacks. IDS models are classified according to their detection
mechanisms into anomaly-based and signature-based approaches [6]. The anomaly-based IDS
models rely upon distinguishing abnormal behaviors from normal behaviors (deviations) to detect
intrusions; these have been found to be effective against polymorphic or unknown attacks [7].
Signature-based IDS models rely on a set of pre-defined patterns of malicious activities and
attacks. The large volume and diversity of network traffic as IoT devices, social media appli-
cations, and platforms continue to increase [8,9], meaning it is impractical to rely merely on
identifying pre-defined attack patterns to detect intrusion of networks. The anomaly-based IDS

CMC, 2021, vol.69, no.3 3947

models are mainly utilized for identifying unknown attacks, such as when pre-defined patterns
are absent for IoT networks [10]. It has recently become clear that the most powerful feature of
deep learning (DL) algorithms is the extraction of significant features from input data to enhance
the learning of classification models in different computer science domains [11]. Consequently,
DL algorithms are proposed for the IDS models to predict attacks; these algorithms outperform
conventional machine learning (ML) algorithms to detect and identify attacks. For instance, Tama
et al. [12] used web attacks to measure anomaly IDS model effectiveness based on ML classifiers
in protecting IoT and web applications. Web attacks such as Structured Query Language (SQL)
injection and cross-site scripting (XSS) cause data loss, and these attacks are not found in KDD
Cup 9 and UNSW-NB15 datasets. In addition to the state-of-the-art methods, supervised learning
(SL) entails an enormous amount of labeled attacks to maintain accurate performance, which is
unaffordable in many real-world attack cases.

Figure 2: 2020 unit 42 IoT threat report

One of the outstanding algorithms that researchers propose for building IDS models is the
restricted Boltzmann machine (RBM) algorithm [13]. This algorithm’s key success is the ability
to identify new patterns of attack that have never before been witnessed [14,15]. A deep belief
network (DBN) algorithm consists of two phases: the pre-training phase that utilizes RBMs to
generate high-level features from the network traffic and the classification phase that consists of
two hidden backpropagation layers to identify attacks. However, the performance of IDS using the
conventional DBN algorithm still faces several challenges in detecting attacks. The first challenge
is the complexity of data traffic in the network traffic, which has a high dimensionality of features,
noise, and corrupted data, making it difficult for the DBN algorithm to find correlations between
them in a realistic dataset. The second challenge is an imbalanced-class issue in which less frequent
attacks are invisible within the training phase. It subsequently causes overfitting towards the
higher frequent classes. As a result, a flawed anomaly-based IDS model would not detect skewed
attacks and would have a high false alarm rate [16,17]. Finally, a reliable evaluation procedure
is a challenge in which the major studies have used only the accuracy rate to evaluate anomaly-
based IDS models’ performance. Relying solely on the accuracy rate is inefficient at showing an

3948 CMC, 2021, vol.69, no.3

anomaly-based IDS model’s effectiveness in detecting attacks. For example, a reliable evaluation
may consider the percentage of true positive and true negative alarms for each class [18–20].

Consequently, this work proposes an efficient and reliable IoT-network intrusion detection
(DeepIoT.IDS) model based on a novel hybrid weighted deep belief network (HW-DBN) algo-
rithm. The HW-DBN algorithm consists of a deep Gaussian–Bernoulli type of RBM (deep
GB-RBM) and weighted deep neural network (WDNN) algorithms. The HW-DBN algorithm
comprises an initial unsupervised stage and is responsible for generating traffic features; then, the
final supervised stage is responsible for classifying the traffic into normal or abnormal classes.
We stack a series of deep GB-RBMs to construct feature learning to perform learning on the
original network traffic data in the pre-training stage. Next, we use the feature weighted WDNN
to optimize deep features and remove noise and redundant features, thereby improving the clas-
sification performance. The main contributions of this paper to the cybersecurity domain are as
follows:

(i) Enhancing an unsupervised DL (UDL) deep GB-RBM based on the GB-RBM algorithm
to improve the extraction of network data features.

(ii) Proposing a novel HW-DBN algorithm based on a DBN algorithm by integrating the deep
GB-RBM with the WDNN to form an improved and continuous prediction hybrid DL
(HDL) algorithm. The WDNN algorithm learns high-dimensional unlabeled data along
with standard labeled data.

(iii) Modeling an efficient and reliable IoT-network intrusion detection system (DeepIoT.IDS)
based on a proposed HW-DBN algorithm for anomaly-based IDS.

(iv) Demonstrating that the DeepIoT.IDS model is efficient and reliable in detecting sophisti-
cated attacks by testing it using the CICIDS2017 dataset. The CICIDS2017 manifests a
benchmark dataset for complex IoT environments.

This paper is organized into six sections in which the related work of different types of
ML and DL neural networks is presented in Section 2. The research background of RBM
and DBN algorithms is illustrated in Section 3. The methods of this work are described in
Section 4, including the improved RBM algorithm, the WDNN algorithm, the proposed HW-
DBN algorithm, and the DeepIoT.IDS model. The implementation of the proposed DeepIoT.IDS
model, the evaluation criteria, and the testing environment are used to check and evaluate the
performance of the proposed model, and these are scrutinized in Section 5. Lastly, the conclusion
and future work directions of this research are highlighted in Section 6.

2 Related Work

The anomaly-based IDS epitomizes one of the best methods to detect significant attacks in a
network. The IDS uses the ML algorithms as one of its essential components for performing clas-
sification tasks. Examples of these IDS models include artificial neural networks (ANN), decision
trees (DT), expectation-maximization (EM), k-nearest neighbors (KNN), linear regression (LR),
naïve Bayes (NB), random forests (RF), logistic regression (LR), and support vector machine
(SVM) [21]. Researchers evaluate the ML-IDS models’ performance using different parameters
to define these models’ capability, including true positive and true negative rates. For instance,
Janarthanan and Zargari [22] used feature selection and an RF algorithm in IDS to detect and
classify intrusions and attacks on the UNSW-NB15 dataset. The RF algorithm achieved a false
alarm rate (FAR) of 4.4% and an accuracy of 81.61%. Nawir et al. [23] used an averaged one-
dependence estimator (AODE) algorithm to propose a multi-class classification model. They tested

CMC, 2021, vol.69, no.3 3949

this model on the UNSW-NB15 dataset and reported a FAR of 6.57% and an accuracy of
83.47%. However, for the current IDS, it is clear that relying only on traditional machine ML
algorithms to detect anomalies of advanced attacks that have unexpected patterns is no longer
enough. Therefore, there is a need for strong methods to protect IoT networks from different types
of intrusion.

Many studies have attempted to analyze and compare anomaly-based ML-and DL-IDS mod-
els [24,25]. Most of the studies conclude that the DL is better for detecting attacks and reducing
false alarms. For instance, Khan et al. [26] introduced self-taught learning (STL) in a DL-IDS to
exploit unlabeled data. They applied the model to the NSL-KDD dataset, and the experimental
results show that DL-IDS outperforms previous studies. Similarly, Yin et al. [27] proposed a DL
recurrent neural network (RNN) algorithm for IDS. They applied the DL-RNN algorithm to the
NSL-KDD dataset. The results showed that the algorithm outperformed several ML algorithms.
A DL approach can be categorized into supervised DL (SDL), unsupervised DL (UDL), and
hybrid DL (HDL) learning algorithms [28]. The most powerful learning approach is SDL, but
in IDS, it exposes misclassifying anomalies due to a lack of prior knowledge or less represented
features of novel attacks, a low convergence speed, and the ease of falling into a local opti-
mum [29]. The studies of Ghanem [30] and Hajisalem et al. [31] used metaheuristic techniques to
improve SDL as the DNN algorithm; however, the anomaly-based IDS model requires more time
and resources for training. In contrast, the UDL approach includes different algorithms, such as
restricted Boltzmann machines (RBMs), deep belief networks (DBNs), and auto-encoders. These
algorithms have the self-training ability from unlabeled raw data to accomplish different tasks and
provide less presented data to be classified [32]. The HDL approach represents the recent trend
in building advanced IDS models as it has variations of UDL and SDL training algorithms. The
UDL is used for feature learning or detection to detect the significant features, and SDL is used
to build an anomaly-based IDS model based on extracted features. An autoencoder algorithm
(AE) is a particular type of feedforward neural network and UL approach; its input data is equal
to the output. The AE compresses the input into a lower-dimensional code and then constructs
the output [33]. The RBM algorithm is considered one of the best algorithms for online detection
and classification of new data samples [34]. The RBM differs from other autoencoders by the two
biases in the visible and hidden layers. The first bias helps the RBM learn the reconstructions on
the backward pass. The second bias helps the RBM to yield activations on the forward pass.

Fiore et al. [35] presented a discriminative RBM (DRBM) algorithm to compress the features
that are not in the network packet payloads and produce new features. The IDS provides new
features for a soft-max binary classification algorithm to train and predict normal and DoS
attacks. Similarly, Erfani et al. [36] proposed combining one-class linear SVM with DBNs to
construct an intrusion detection model. They applied the model on several benchmark datasets,
and the results showed improvement in the IDS performance. Alrawashdeh et al. [37] proposed
a DL combination of RBMs and LR algorithms in constructing a DBN for an IDS. This
combination produced a DBN architecture of four hidden layers for feature reduction and one
hidden layer for classification. They included a fine-tuning phase to update the DBN weights
while training the network and prior to the classification task made by the LR. They implemented
this type of DBN on the KDD99 dataset and attained a FAR of 0.5% and an accuracy of
97.9%. As with those studies, a conventional DBN algorithm is proposed for constructing the
detection model. The learning process used in the DBN algorithm is a traditional gradient-based
process using update rules, which are obtained by taking the partial derivative of the log-likelihood
function to adjust the weights of a model and build an anomaly-based IDS model. This learning

3950 CMC, 2021, vol.69, no.3

represents the traditional way to train the DBN algorithm, which is not efficient in real traffic
networks with a variety of values. Moreover, testing and validation are unreliable and do not yet
reflect an anomaly-based IDS’s actual performance because the dataset includes outdated attack
scenarios, as with KDD99 [38].

In a nutshell, most DL/ML algorithms are proposed as anomaly-based IDS models, which
discover anomalies by examining data patterns to distinguish data lines and determine normal
and abnormal activities. However, some of the existing studies have lacked reliable and efficient
validation as they use low-quality datasets. The datasets might suffer from several weaknesses and
deficiencies, including outdated attack scenarios and versions that may not be a perfect represen-
tative of the existing network attacks, ignoring the complexity of IoT-like networks. Moreover, the
conventional HDL algorithms do not provide sufficient training ability to detect modern attacks
in realistic datasets. In contrast with those works, we propose a new model for intrusion detection
called DeepIoT.IDS. The IDS model is based on a deep GB-RBM algorithm as feature learning
of our raw data and then combined with a weighted DNN (WDNN) algorithm for classification
to construct a novel HW-DBN algorithm. The HW-DBN algorithm is based on an improved
RBMs (Deep GB-RBM) algorithm that is combined with a Weighted DNN (WDNN) algorithm
to construct a novel DeepIoT.IDS model.

3 Research Background

3.1 Bernoulli–Bernoulli Restricted Boltzmann Machine (BB-RBM) Algorithm
The basic RBM algorithm represents a neural network with directional connections of multi-

ple hidden layers. A basic structure of the RBM is the vi, which represents the visible node of the
input layer, and hj, which represents the hidden node of the output layer. Meanwhile, ai denotes
the biases of the input layer, bj denotes the biases of the output layer, and Wij denotes the weights
between the nodes of the two layers. The RBM increases its generation probability by adjusting
the training weights between the nodes, as shown in Fig. 3a. A deep restricted Boltzmann machine
(deep RBM) consists of several RBMs in which each RBM output is fed to the following RBM,
as shown in Fig. 3b [39]. The energy function is defined as:

E (v, h)=−
m∑
i=1

n∑
j=1

wijhjvi−
n∑
i=1

vibi−
m∑
j=1

cjhj (1)

where m is the number of visible nodes, n is the number of hidden nodes, and the values’ range
of visible and hidden nodes is between {0, 1}. The conditional probabilities p (hi = 1 | v) and
p (vi = 1 | h), are:

p (hi = 1 | v)= σ

(
ai+

m∑
i

wijvi

)
(2)

Eq. (2) shows the probabilities of a hidden layer using sigmoid function σ and the probabil-
ities of a visible layer using sigmoid function σ , as defined in Eq. (3):

p (vi = 1 | h)= σ

⎛⎝bi+ n∑
j=1

hjwij

⎞⎠ (3)

CMC, 2021, vol.69, no.3 3951

Figure 3: The improvement of deep RBMs (a) Basic structure of RBM (b) Deep RBMs

We can use the Gibbs sampling algorithm [40] to sample the nodes of hidden and visible
layers; each iteration of Gibbs sampling consists of two steps: (1) sample a new hidden vector
h (h) based on the conditional probability p(h | v(t− 1)) and (2) sample a new visible vector v (t)
based on the conditional probability p (v | h (t)) . The log-likelihood loss is used to train the RBM
algorithm, and the derivative with respect to θ = {W , b, c} takes the following form:

∂

∂wij
logl (θ | v)= p (hi = 1 | v) vi−

∑
v

p (v)p (hi = 1 | v) vi (4)

Similarly, the log-likelihood derivatives for the bias bi of the ith visible node and the bias cj
of the jth hidden node are, respectively, given by:

∂

∂bi
log l (θ | v)= vi−

∑
p (v) vi (5)

∂

∂ci
log l (θ | v)= p

(
hj = 1 | v)−∑p (v)p

(
hj = 1 | v) (6)

The training of the RBM algorithm differs from the training of regular neural networks. The
learning process used a contrastive divergence (CD) algorithm [41] to estimate the log-likelihood
gradient derivatives of an RBM using Gibbs sampling. In CD learning, a Markov chain is run
only for k steps (typically, k = 1, 2,. . ., 10). The Gibbs chain is initialized with one of the
training vectors, v (0). During each Gibbs sampling step t, h (t) is sampled from the conditional
probability p (h | v (t− 1)), followed by the sampling of v (t) based on p (v | h (t)). The k steps of
Gibbs sampling yield v (k) and h (k), which are subsequently used for estimating the log-likelihood
derivatives.

3.2 Conventional Deep Belief Network (DBN) Algorithm
A deep belief network (DBN) algorithm is a greedy layer-wise technique that learns features

from unlabeled data in a UL manner [42]. The DBN consists of a stack of RBMs; any RBM’s
output forms the next RBM input. It uses a small labeled dataset to associate patterns that the

3952 CMC, 2021, vol.69, no.3

RBMs learn to form classes. The pre-training of the DBN provides a way to develop neural
networks while only training shallow networks. In cybersecurity, DBN [43] can be used for
classification tasks by adding backpropagated two layers classifier to the end of RBMs to classify
learned features, as shown in Fig. 4a. The training process of the DBN is the same as the learning
process of the RBM, in which the layers of the DBN are learning individually until they reach
optimal parameters, then start extracting important features. Lastly, the backpropagated two layers
are trained based on significant features in the SL manner.

Figure 4: The DBN vs. the HW-DBN (a) CDBN algorithm (b) HW-DBN algorithm

4 Research Methods

This section describes the main components of this work and presents the theoretical concepts
behind the novel DeepIoT.IDS model, which detects intrusions by classifying network states into
normal and several abnormal types of attack. This paper proposes a few improvements to the
conventional training methods for CDBN to overcome the existing difficulties, based on the GB-
RBM algorithm for extracting important features in the pre-training stage and DNN for the
classification task.

4.1 Deep Gaussian–Bernoulli Restricted Boltzmann Machine (GB-RBM) Algorithm
Different types of RBM algorithms have a similar structure but different parameters, such as

the Gaussian–Bernoulli RBM (GB-RBM) algorithm. RBM defines each neuron’s state as binary
numbers, limiting their application in domain cybersecurity. One common approach to address
this difficulty is to substitute the visible binary neurons with the Gaussian ones. The GB-RBM

CMC, 2021, vol.69, no.3 3953

has several real values of the visible nodes vm and binary values of the hidden nodes hn [36,44].
We define the deep GB-RBM based on the same idea of the BB-RBM algorithm by using the
energy function as follows:

E (v, h)=−
m∑
i=1

n∑
j=1

wijhj
vi
σi

−
m∑
i=1

(vi− bi)
2σ 2 −

n∑
j=1

cjhj (7)

where in (7), σ 2 is the variance associated with the Gaussian visible unit, ai and bi represent
the biases of the visible and hidden nodes, wij represents the weights that connect the visible
and hidden nodes, σi represents the standard deviation that is associated with the Gaussian
visible nodes vi, and m and n specify the number of visible and hidden nodes, respectively. The
conditional probability of the nodes is as below:

p (vi = v | h)=N

⎛⎝v | bi+∑
j

hjwij, σ 2
i

⎞⎠ (8)

where N(x |μ, σ2) is a probability density of normal distribution with a mean μ and a standard
deviation σ , and:

p (hi = 1 | v)= σ

(
ai+

∑
i

wij
vi
σ 2
i

)
(9)

where σ (x) is the logistic sigmoid function, i.e., σ(x)= 1/(1+ e−x).
The free energy f (v) is an energy function that assigns low energies to the variables with

correct values and higher energies to the remaining variables with incorrect values. The f (v) of
an RBM with binary units further simplifies to:

f (v)=−b̀v−
∑
i

log
(
1+ e(bi+Wiv)

)
(10)

The improved RBMs are trained based on the contrastive divergence (CD) algorithm. The
main aim of the CD algorithm is to find optimal parameters θ according to the procedures of
Gibbs sampling, loss function, weights modification, and new weights calculation as follows:

Gibbs sampling: The first part of the training is called Gibbs sampling. Given an input
vector v, we use p (h | v) for the prediction of the hidden values h. Knowing the hidden values, we
use (v | h):

hi ≈ p (hi = 1 | v)= σ

(
ai+

∑
i

wij
vi
σ 2
i

)
(11)

This process is repeated for k iterations to predict new input values v. Subsequently, new input
values vk are obtained from the original input values vo.

vi ≈ p (vi = v | h)=N

⎛⎝v | bi+∑
j

hjwij, σ 2
i

⎞⎠ (12)

3954 CMC, 2021, vol.69, no.3

Loss function: We compute the loss function using mean squared error by squaring the
difference of distribution probability of data < � >d and expecting the distribution probability of
the model < � >m as in the following Eq. (12):

li = 1
n

n∑
i=1

(〈�〉d −〈�〉m)2 (13)

Gradient descent computing: Using the updated matrix of θ , we calculate the new θ with
Adam’s algorithm given by Adam (θ , v, m, lr(η), t), where v and m are the variance and mean
of the last step of the parameters, respectively. We assume the constants, which are beta1= 0.9,
beta2= 0.999, eps_stable (ε)= 1e− 8, and η = 0.0001. Then we have gradients (g) of weights and

biases and g= ∂p(x)
∂θ

≈ ∂f (x)
∂θ

− ∂f
(
x̂
)

∂θ
, mt = β1mt−1+ (1−β1)×gt and vt = β2vt−1+ (1−β2)×g2t .

From the above, we can calculate the m̂t and v̂t by using m̂t = vt(
1.− beta1t

) and v̂t =
mt

1.− beta2tt
. Finally, we can update the parameters θ based on the calculated moving averages

with a step size η:

θi = θi−1− η
m̂i

2
√
v̂i+ ε

(14)

In general, learning in RBMs involves minimizing the mean square error given by:

�wij = ∂li
∂Wij

(
1
N

(e< vi, hi >d −e< vi, hi >m)2
)

(15)

and

�aij = ∂li
∂aj

(
1
N

(
< hj >d −< hj >m

)2) (16)

and

�bij = ∂li
∂bj

(
1
N

(< bi >d −< bi >m)2
)

(17)

The < � >d denotes the expected values of the data and < � >m denotes the expected values
of the model. The expectation for the binary data is performed by using Eq. (10), whereas the
expectation for the expected data is performed by using Eq. (11). Eq. (12) calculates the error,
and Eqs. (14)–(16) minimize the error using gradient descent.

New weights calculation: The Adam algorithm calculates the new weights, given by Eq. (17)
using the updated matrix:

θnew = θold − η
m̂i

2
√
v̂i+ ε

(18)

CMC, 2021, vol.69, no.3 3955

We implement many steps with the above forms to get the optimal parameters θ = {W, a, b};
this minimizes the loss to the lowest point and ensures that the cost function is at the optimal
value (minima).

4.2 Weighted Deep Neural Network (WDNN) Algorithm
A weighted deep neural network (WDNN) is made up of densely connected or fully connected

neural layers based on a cross-entropy loss function [45]. Specifically, weight cross-entropy loss
(WCEL) is used for solving imbalanced data in cybersecurity. It can distribute labels for enhancing
the training of the classification task. The structure of a WDNN consists of three layers. The first
layer is training data, which is extracted from the last layer of the RBM. The second layer is a
hidden layer with a rectified linear activation (ReLU) function and 78 neurons. Lastly, the output
layer has neurons that are equal to the labels of the dataset and softmax activation function. The
loss is calculated by using the WCEL function, and Eqs. (18) and (19) are used to calculate the
weights wk for each label of training data. Generally, the weights of positive classes are higher
than negative classes. During the training of the model, the parameters (w, b) are updated for the
low-frequency classes more than the high-frequency classes. It is mathematically represented as:

wk=0 =
(

1
len(normal)

)
× (len(data))

K
(19)

and

wKk=1 =
(

1
len(positive)

)
× len (data)

K
(20)

where Zj = xW + bi, Yj =ReLU(Zj) and P(y= j | x)= softmax(Y).

Then weight-categorical cross-entropy loss is calculated using Eq. (21):

lossweight =− 1
M

K∑
k=1

M∑
m=1

wk× ykm× log (P (γ)) (21)

where M represents the number of training examples, K represents the number of classes, wk
represents the weight for a class k, ykm represents the target label for training example m for the
class k, xm represents the input for training example m, and hθ represents the model with neural
network weights.

4.3 Hybrid Weighted Deep Belief Network (HW-DBN) Algorithm
The conventional DBN has a multi-layer RBM for feature extraction and a backpropagation

SL algorithm for classification, as shown in Fig. 4a. Subsequently, we propose a novel hybrid
weighted deep belief network (HW-DBN) algorithm for building an anomaly-based IDS model.
The HW-DBN integrates the deep GB-RBM algorithm as a UDL approach with the WDNN
classifier that has a backpropagation algorithm as an SDL approach.

The HW-DBN has the advantage of classifying based on extracted features fed from the
proposed deep GB-RBM algorithm. We pre-train the first and second layers of the HW-DBN
algorithm during the pre-training phase and then extract the features from the last layer and feed
them into the training algorithm at the classification stage of the WDNN to further minimize

3956 CMC, 2021, vol.69, no.3

the prediction error. The algorithm HW-DBN comprises three hidden layers of the deep GB-
RBM for the UDL technique with two hidden layers of WDNN backpropagation for the SDL
technique at the other end, as shown in Fig. 4b. Hence, there are two core training techniques
performed in the training phase of the HW-DBN algorithm. Firstly, we pre-train, individually,
each layer of the deep GB-RBM algorithm using UDL and CD algorithms. We then use the
initial stage’s extracted features as an input feature of the SDL technique for the training process
of the classification phase. In the subsequent decision stage, we collectively train the two layers of
the WDNN algorithm. Then the HW-DBN algorithm employs the WDNN algorithm to decide
on normal and multi-class attack traffic. Algorithm 1 outlines the main steps of the HW-DBN
algorithm of the DeepIoT.IDS model:

Algorithm 1: The HW-DBN algorithm
01 Construct GB-RBM;
02 Set input Data: Si is a sample of Features (X) = {x1, x2, . . . , xn}; label: Y ; Epoch = N;

threshold = 0.99999; Bach size (m) is samples number of data;
03 WHILE condition �= threshold DO:
04 WHILE (len(X)) Do:
05 FOR (li)∈X DO UDL to each layer (i) :
06 FOR Sni=0 to Xm DO training:
07 Compute hidden units(hi) as in Eq. (10);
08 Compute visible units(vi) as in Eq. (11);
09 Compute loss function(erri) as in Eq. (12);
10 Compute gradient to the parameters:
11 Calculate Δwij as in Eq. (14); calculate Δbij as in Eq. (15);
12 Calculate Δcij as in Eq. (16);
13 Update the parameters(θ) using Adam algorithm:
14 wnew; bnew; cnew; as in Eq. (17)
15 END-FOR
16 END-FOR
17 END-WHILE /*****Deep GB-RBM*****/
18 Xnew = Extracted features using Deep GB-RBM;
19 FOR (Sm) ∈Xnew DO SL to each layer (i):
20 FOR Sni=0 to Sm DO backpropagation training:
21 Ypredicted =DNN (Sn);
22 lossweight = weight cross-entropy loss (Ypredicted) as in Eq. (20);
23 Compute gradient using Nadam algorithm to lossweight;
24 Update the parameters(θ):
25 wnew =wold − η�w; bnew = bold − η�b;
26 END-FOR
27 END-FOR
28 END-WHILE

During the training phase, the WDNN of the HW-DBN algorithm classifies labeled and
unlabeled network traffic instances to build the optimized classification model. The false positive
alarms are reduced based on the weight of classes using gradient computing, which is a Nesterov-
accelerated adaptive moment estimation algorithm [46]. In this way, the model is not biased and

CMC, 2021, vol.69, no.3 3957

reduces the overfitting to the majority labels with limited epochs. Moreover, it can detect skewed
attacks and has a low number of false alarms.

4.4 DeepIoT.IDS Model
The DeepIoT.IDS model consists of four phases: data pre-processing, UDL pre-training, SDL

classification, and evaluation. The first two phases represent the initial data-processing stage, and
the last two phases represent the final decision stage. The DeepIoT.IDS model starts with the
data pre-processing phase that performs statistical analysis on the CICIDS2017 dataset to discover
defects, missing data, and noise. It then converts the dataset to raw data in a specific format and
normalizes it by the min-max normalization method, also known as deviation standardization. We
need to normalize the dataset to meet the standard conditions of the HW-DBN’s input dataset.
This normalization makes a linear modification to the original data and maps the result to become
a value between [0, 1]. It is represented as Xnew = (X – Min)/(Max – Min) where Max is the
maximum value, and Min is the minimum value of the sample data.

Then the initial stage employs the deep GB-RBM algorithm to extract network traffic features.
This phase generates low presentation features from high dimension data to increase the detection
rate for low-frequency attacks. In order to classify the connections of lines to different classes, the
deep GB-RBM algorithm provides an abstract feature space to distinguish between attacks and
normal traffics of the network. At each layer of the deep GB-RBM, the algorithm minimizes the
errors arising from reconstructing the input features. The original unlabeled features are inputs to
the first layer, and the output-compressed features are inputs to the second layer. Fig. 5 shows
the main components of the DeepIoT.IDS model along with the four processing phases.

Figure 5: The DeepIoT.IDS model

3958 CMC, 2021, vol.69, no.3

The proposed DeepIoT.IDS uses the HW-DBN algorithm to build its HDL classification
model. Thus, the DeepIoT.IDS model operates according to UDL and SDL techniques. The
termination condition of the UDL technique is represented by the N number of epochs. In
contrast, the SDL technique’s termination condition is represented by exceeding the thresholds of
pre-determined evaluation parameters. The evaluation phase represents a set of evaluation metrics
that measure the proposed model’s performance according to the obtained results during the
testing of unlabeled data. These metrics include accuracy, G-mean, precision, recall, and F_Score
criteria, as defined in Section 5.2.

5 Experiments

In this work, we propose a DeepIoT.IDS model that integrates a deep Gaussian–Bernoulli
type of RBM (Deep GB-RBM) with a WDNN of the HW-DBN algorithm for efficient and
reliable IoT network IDS. In this section, we show the implementation results and evaluation of
the DeepIoT.IDS model. We evaluate the DeepIoT.IDS model based on 78 features of realistic
and new benchmark datasets.

5.1 Benchmark Datasets Description
This work utilizes the CICIDS2017 benchmark dataset that represents BENIGN and modern

network traffic attacks [47]. We obtained the dataset from the Canadian Institute for Cybersecu-
rity’s datasets repository.1 We generated the dataset over two different simulation periods of five
days and a total of 80 features. We then collected raw data of 51 GB using TCPDUMP and
analyzed it with the CICFlowMeter tool. We distinguished this dataset from other datasets by
using protocols such as email protocols, FTP, SSH, HTTP, and HTTPS. Moreover, this dataset
includes most of the up-to-date common attacks, according to the 2016 McAfee report. The
CICIDS2017 dataset includes web attacks and infiltration datasets, which we used to evaluate the
DeepIoT.IDS model. Fig. 6 shows the distribution of the CICIDS2017 scenarios that were used
to train and test the model.

0

100000

200000

300000

BENIGN Bot

288566,
[PERCENTAGE]

36

0
20000
40000
60000
80000

100000
120000
140000
160000
180000

BENIGN Brute
Force

XSS Sql
Injection

168186

1507 652 21

(a) (b)

Figure 6: The distribution of web and bot attacks in the CICIDS2017 dataset (a) Bot attack
scenarios (b) Web attack scenarios

1 Canadian Institute for Cybersecurity

CMC, 2021, vol.69, no.3 3959

The BENIGN class has 168,186 samples, and other rarer classes have 2153 samples. The
infiltration dataset has two classes, which are BENIGN with 288,566 samples and bot with 36
samples. Redundant instances may lead to the problem of imbalanced class distribution, which
is known to bias a machine learning classifier towards the majority class [48]. However, these
datasets have many issues that affect the configuration of the training model and the testing
model’s construction. We explain these issues as follows:

• Huge volume of data: As mentioned earlier, the CICIDS2017 dataset contains data of almost
all recent attack labels, which makes the size of the dataset huge. The data size causes a
limitation for the research in that there is a huge increase in the loading and processing
overheads. The huge amount of data affects the attack detection ability of the conventional
NIDS and mandates the development of advanced algorithms.

• Missing values: The CICIDS2017 dataset contains duplicate samples and a lot of instances
of missing data. Therefore, it requires advanced pre-processing algorithms.

• High imbalance classes: The CICIDS2017, like most cybersecurity datasets, is extremely
imbalanced. The imbalanced dataset is known to have a high imbalance ratio (IR) when
comparing the majority and minority classes, as shown in Eq. (22):

IR= majority class
minority classes

(22)

Table 1: The specifications of the CICIDS2017 dataset

Dataset Class No. Type of class Instance No. IR

DDOS 2-classes DDoS 128027 1.3102
BENIGN 97718

PortScan 2-classes PortScan 158930 1.2461
BENIGN 127537

Bot 2-classes BENIGN 189067 96.168
Bot 1966

Infiltration 2-classes BENIGN 288566 8015.7
Bot 36

Web attacks 4-classes BENIGN 168186 ∗
Brute Force 1507 111.97
XSS 652 257.95
SQL Injection 21 800.85

Patator 3-classes BENIGN 432074 ∗
FTP-Patator 7938 44.364
SSH-Patator 5897 73.270

DoS, Heartbleed 5-classes BENIGN 440031 ∗
DoS Hulk 231073 1.9042
DoS GoldenEye 10293 42.750
DoS slowloris 5796 75.919
DoS Slowhttptest 5499 80.021
Heartbleed 11 40002.8

3960 CMC, 2021, vol.69, no.3

The CICIDS2017 includes several imbalanced benchmark multi-class datasets, as defined in
Tab. 1. The level of imbalanced attacks differs from other attacks. The higher IR indicates an
extremely imbalanced dataset, e.g., infiltration and web attacks; hence, we used them for testing
the DeepIoT.IDS model. The web attacks dataset has four classes: BENIGN (168 instances and
186 IR), brute force (1507 instances and 111.97 IR), XSS (652 instances and 257.95 IR), and SQL
injection (21 instances and 800.85 IR). The infiltration dataset has two classes: BENIGN (288,566
instances) and bot (36 instances and 8015.7 IR).

5.2 Evaluation Metrics
We cannot visually and easily interpret most real data; therefore, we must rely upon more

quantitative metrics to evaluate a model and determine which classes are easy for a model to use.
This entails the use of recommended metrics for the evaluation of the DeepIoT.IDS model by
utilizing performance metrics like accuracy, precision, sensitivity (recall), F_Score, training time,
and prediction time, as follows [3,10]:

• Accuracy is the ratio of correct predictions for both TP and TN prediction of attacks
compared with the total number of tested cases:

Accuracy= TP+TN
TP+TN +FN +FP

(23)

• Precision (true positive rate) is used to measure the proportion of positives that are correctly
identified:

Precision= TP
TP+FP

(24)

• Recall (sensitivity) measures the number of correct classifications penalized by the number
of missed entries identified:

Recall= TP
TP+FN

(25)

• F_Score is a measure to find a balance between precision and recall:

F_Score= 2 ∗ Precision+Recall
Precision ∗Recall (26)

• Testing time describes how much time an approach has taken to predict the whole dataset
as either normal or attack:

Testing time= endtestingtime − starttestingtime (27)

We quantify true positive (TP) measures as the number of attacks appropriately determined as
attacks. In contrast, we define false positive (FP) measures as the number of normal connections
wrongly determined as attack connections. In addition to that, we define true negative (TN)
measures as the number of normal connections accurately determined as normal. Finally, we
define the false negative (FN) measures as the number of attack connections wrongly determined
as normal [11]. We use the G-mean of Eq. (19) to evaluate the degree of inductive bias that
considers both negative accuracy and positive accuracy. The G-mean is less sensitive to data

CMC, 2021, vol.69, no.3 3961

distributions in that its high value denotes high classification performance for the majority and
minority classes. The G-mean formula is given as follows:

G-mean=
√

TP
TP+FN

× TN
TN+FP

(28)

5.3 Results and Discussion
We conducted the experimental tests of the DeepIoT.IDS models using TensorFlow 1.2 ver-

sion NVIDIA 1080 on a desktop with a 2.0 GHz Intel Core i3 CPU, 4 GB RAM, and 64-bit
Ubuntu16.06 operating system. The test considered a case in which the proposed model detects
an anomaly in the computer network system. The test benchmarks consisted of three DL models–
BB-RBM, BB-DBN, and deep AE–and our proposed DeepIoT.IDS model. We selected these other
models due to their similarity to our DeepIoT.IDS model. The experimental setting included a
deep GB-RBM consisting of three layers, 100 hidden neurons, and 78 visible neurons. We selected
the ReLU function as the model’s activation function and randomly set the initial weights of the
78 hidden neurons. We used five epochs to train the model and divided the dataset into 70%
training set and 30% testing set [20]. We used the evaluation criteria of precision, recall, F_Score,
and G-mean to evaluate the four models. The first experiment implemented the CICIDS2017
dataset in the web attack scenarios containing four classes (BENIGN, brute force, XSS, and SQL
injection). The pre-processing of this experiment removed three of the 81 features (leaving a total
of 78). Subsequently, we performed a column-wise normalization of [0, 1] interval, as described
in Section 3.3. The results from running the BB-RBM, BB-DBN, deep AE, and our proposed
DeepIoT.IDS models for web attack scenarios are shown in Tab. 2.

Table 2: Comparing the performance of the four models in the web attack scenarios

No. Model Classes Precision Recall F_Score Support

1. BB-RBM BENIGN 0.99 1.00 0.99 55527
Brute Force 0.00 0.00 0.00 485
XSS 0.00 0.00 0.00 200
SQL Injection 0.00 0.00 0.00 9

2. BB-DBN BENIGN 0.99 1.00 0.99 55527
Brute Force 0.00 0.00 0.00 485
XSS 0.00 0.00 0.00 200
SQL Injection 0.00 0.00 0.00 9

3. Deep AE BENIGN 0.99 1.00 0.99 55527
Brute Force 0.95 0.16 0.28 485
XSS 0.40 0.00 0.00 200
SQL Injection 0.00 0.00 0.00 9

4. DeepIoT.IDS BENIGN 1.00 1.00 1.00 55527
Brute Force 0.60 0.91 0.73 485
XSS 0.40 0.01 0.02 200
SQL Injection 1.00 0.56 0.67 9

3962 CMC, 2021, vol.69, no.3

As shown in Tab. 2, the proposed DeepIoT.IDS provides the best learning and testing results,
which surpassed the BB-RBM, BB-DBN, and deep AE classifiers. In general, the results show
that the HW-DBN algorithm of the DeepIoT.IDS model was able to learn a greater number of
important features of the CICIDS2017 dataset than the other models. Consequently, the model
generated confusion matrices that gave superior performance compared to those of the other
models. Hence, the DeepIoT.IDS model was able to detect the four types of attack (BENIGN,
brute force, XSS, and SQL injection) while other models suffered low detection rates for brute
force, XSS, and SQL injection because of their poor handling of the skewed attacks distribution,
noise, and high data dimensionality problems. Tab. 3 reports the results of the four models for
the web attack and bot attack scenarios of the CICIDS2017 dataset. The results show that
DeepIoT.IDS achieved the highest accuracy (99.38%) and the highest G-mean (99.40%) compared
with the other three models. Furthermore, it performed with a lower number of epochs to achieve
the required results and with the best execution time of 363.941 ms.

Table 3: Comparing the accuracy and G-mean of the four models

No. Model Accuracy G-Mean Iteration of FL Testing time (ms)

Web attack scenarios
1. BB-RBM 0.9874 0.1110 100 980.07
2. BB-DBN 0.9874 0.1110 100 2735.98
3. Deep AE 0.9890 0.3610 100 498.37
4. DeepIoT.IDS 0.9938 0.9940 5 363.94
Bot attack scenarios
1. BB-RBM 0.9874 0.0001 3 126.37
2. BB-DBN 0.9998 0.9573 20 338.78
3. Deep AE 0.9998 0.0112 1000 2.63
4. DeepIoT.IDS 0.9999 0.9574 5 265.39

The bot attack scenarios only included two classes of attack, BENIGN, and bot, as shown
in the evaluation phase of Fig. 6. The results in Tab. 3 show that the DeepIoT.IDS achieved
the highest accuracy (99.99%) and the highest G-mean (95.74%) compared with the other three
models. Furthermore, it performed with the second lowest number of epochs to get the required
results but with the second highest execution time of 265.39 ms. For a better demonstration of
the results of both web and bot attacks, Fig. 7 compares the accuracy and G-mean of the four
models according to the web attack and bot attack test scenarios.

Subsequently, the benchmarking analysis compared the newly developed model with the exist-
ing ones, which confirmed the superiority of the DeepIoT.IDS model. A two-stage deep feature
extraction and learning algorithms support the DeepIoT.IDS model to enable it to detect existing
and newly discovered intrusion attacks. The model achieves higher accuracy and G-mean by
constructing features from a huge amount of data for a set of refined training features. The results
confirm that the model is less vulnerable to multi-type and unbalanced attacks than other DL
models.

Anomaly IDSs (AIDS) in general have several limitations, including low accuracy and high
false alarms. Signature-based IDS models could detect traditional intrusions, and AIDS could

CMC, 2021, vol.69, no.3 3963

detect novel attacks. Furthermore, developing a real-time detection, anomaly-based IDS for IoT
networks is very demanding. This is because such an IDS would need to distinguish a normal
behavior first and then detect malicious behavior to produce more realistic results. Subsequently,
we summarize the limitations of the present work as follows: (i) additional classification models
should be tested to provide a more comprehensive evaluation of the results, (ii) given that the
proposed DeepIoT.IDS model relies on all available features. A feature reduction approach might
limit the computational cost and time complexity of the training and testing processes, and
(iii) other evaluation criteria and testing datasets should be considered to further the analysis of
the proposed model.

Figure 7: The relationship between accuracy and G-mean

6 Conclusion and Future Work

This paper proposes a novel hybrid weighted deep belief network (HW-DBN) algorithm that
integrates a deep Gaussian–Bernoulli type of RBM (deep GB-RBM) algorithm with a weighted
deep neural network (WDNN) algorithm. The HW-DBN algorithm deploys the deep GB-RBM
for unsupervised deep learning (UDL) and WDNN backpropagation for supervised deep learn-
ing (SDL) to manifest a hybrid deep learning (HDL) approach. The HW-DBN algorithm is
incorporated within a DeepIoT.IDS model to deal with the problem of intrusion detection in
IoT networks efficiently and reliably. The DeepIoT.IDS model’s operating regime covers both
processing and decision stages. The processing stage includes pre-processing and pre-training
phases, while the decision stage involves the classification and evaluation phases. We tested the
DeepIoT.IDS model by utilizing the CICIDS2017 benchmark datasets. The CICIDS2017 dataset
is suitable to represent IoT environments because it has complex anomaly patterns, novel attacks,
and highly imbalanced classes. We conducted extensive experiments on web attack and bot attack
scenarios to evaluate the performance of the model. The web attack scenarios comprise multi-
class detection of BENIGN, brute force, XSS, and SQL injection attacks, while the bot attack
scenarios comprise signal-class detection of BENIGN and bot attacks. In the first set of scenarios,
the results show that the DeepIoT.IDS model achieved the highest accuracy (99.38%) and the
highest G-mean (99.40%) compared with the BB-RBM DBN, GB-RBM DBN, and deep AE
models. Furthermore, it performed with a lower number of epochs to get the required results and
the best execution time of 363.941 ms. In the second set of scenarios, the results show that the
DeepIoT.IDS model also achieved the highest accuracy (99.99%) and the highest G-mean (95.74%)

3964 CMC, 2021, vol.69, no.3

compared with the other three models. Furthermore, it performed with the second lowest number
of epochs to get the required results but with the second highest execution time of 265.39 ms.
The results, therefore, demonstrate the robustness and efficiency of the DeepIoT.IDS model to
represent a future benchmark for constructing IDS based on deep learning algorithms in the
research community of network and security. Future work may consider developing a real-time
AIDS that improves the overall performance of IoT networks. Such an AIDS model would be
more realistic and would need to quickly detect normal behaviors in order to trace and eliminate
malicious behaviors.

Acknowledgement: This work was partially funded by the Industry Grant Scheme from Jaycorp
Berhad in cooperation withUNITAR International University. The authors would like to thank
INSFORNET, the Center for Advanced Computing Technology (C-ACT) at Universiti Teknikal
Malaysia Melaka (UTeM), and the Center of Intelligent and Autonomous Systems (CIAS) at
Universiti Tun Hussein Onn Malaysia (UTHM) for supporting this work.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

References
[1] A. Sivanathan, H. H. Gharakheili, F. Loi, A. Radford and C. Wijenayake, “Classifying IoT devices

in smart environments using network traffic characteristics,” IEEE Trans. Mob. Comput., vol. 18, no. 8,
pp. 14, 2019.

[2] Ericsson, “Ericsson mobility report–On the brink of the information society,” Ericsson, pp. 1–36, 2019.
[3] Palo Alto, Unit 42 IoT Threat Report. California, United States: Palo Alto, 2020.
[4] H. Tahaei, F. Afifi, A. Asemi, F. Zaki and N. B. Anuar, “The rise of traffic classification in IoT

networks: A survey,” J. Netw. Comput. Appl., vol. 154, pp. 102538, 2020.
[5] A. Thakkar and R. Lohiya, A Review on Machine Learning and Deep Learning Perspectives of IDS for

IoT: Recent Updates, Security Issues and Challenges. Netherlands: Springer, 2020.
[6] C. Liang, “Intrusion detection system for the internet of things based on blockchain and multi-agent

systems,” Electron, vol. 9, no. 7, pp. 1–27, 2020.
[7] B. A. Khalaf, S. A. Mostafa, A. Mustapha, M. A. Mohammed and W. M. Abduallah, “Comprehensive

review of artificial intelligence and statistical approaches in distributed denial of service attack and
defense methods,” IEEE Access, vol. 7, pp. 51691–51713, 2019.

[8] M. Jiang, “Text classification based on deep belief network and softmax regression,” Neural Comput.
Appl., vol. 29, no. 1, pp. 61–70, 2018.

[9] A. D’Alconzo, I. Drago, A. Morichetta, M. Mellia and P. Casas, “A survey on big data for network
traffic monitoring and analysis,” IEEE Trans. Netw. Serv. Manag., vol. 16, no. 3, pp. 800–813, 2019.

[10] F. Sadikin, T. Van Deursen and S. Kumar, “Internet of things: A hybrid Zigbee IoT intrusion detection
system using secure and efficient data collection,” Internet of Things, vol. 12, pp. 100306, 2020.

[11] K. Kim and M. E. Aminanto, “Deep learning in intrusion detection perspective: Overview and further
challenges,” Proc. Int. Res. Conf. Eng. Technol., pp. 1–12, 2017.

[12] B. A. Tama, L. Nkenyereye, S. M. R. Islam and K. S. Kwak, “An enhanced anomaly detection in web
traffic using a stack of classifier ensemble,” IEEE Access, vol. 8, pp. 24120–24134, 2020.

[13] D. Papamartzivanos, F. Gomez Marmol and G. Kambourakis, “Introducing deep learning self-adaptive
misuse network intrusion detection systems,” IEEE Access, vol. 7, pp. 13546–13560, 2019.

[14] T. Aldwairi, D. Perera and M. A. Novotny, “An evaluation of the performance of restricted Boltzmann
machines as a model for anomaly network intrusion detection,” Computer Networks, vol. 144, pp. 111–
119, 2018.

CMC, 2021, vol.69, no.3 3965

[15] A. Elsaeidy, K. S. Munasinghe, D. Sharma and A. Jamalipour, “Intrusion detection in smart cities
using restricted Boltzmann machines,” J. Netw. Comput. Appl., vol. 135, no. 6, pp. 76–83, 2018.

[16] A. Ng, Deep Learning Tutorial. California, USA: Univ. Stanford, 2015.
[17] C. Zhang, K. C. Tan and R. Ren, “Training cost-sensitive deep belief networks on imbalance data

problems,” Proc. Int. Jt. Conf. Neural Networks, vol. 2016, pp. 4362–4367, 2016.
[18] P. Wei, Y. Li, Z. Zhang, T. Hu, Z. Li et al., “An optimization method for intrusion detection

classification model based on deep belief network,” IEEE Access, vol. 7, pp. 87593–87605, 2019.
[19] M. Z. Alom and T. M. Taha, “Network intrusion detection for cyber security using unsupervised deep

learning approaches,” Proc. Int. Jt. Conf. Neural Networks, vol. 2017-May, pp. 3830–3837, 2017.
[20] Z. K. Maseer, R. Yusof, N. Bahaman, S. A. Mostafa and C. F. M. Foozy, “Benchmarking of machine

learning for anomaly based intrusion detection systems in the CICIDS2017 dataset,” IEEE Access, vol.
9, pp. 22351–22370, 2021.

[21] A. Verma and V. Ranga, “On evaluation of network intrusion detection systems: Statistical analysis of
CIDDS-001 dataset using machine learning techniques,” Pertanika J. Sci. Technol., vol. 26, no. 3, pp.
1307–1332, 2018.

[22] T. Janarthanan and S. Zargari, “Feature selection in UNSW-NB15 and KDDCUP’99 datasets,” in 2017
IEEE 26th Int. Symp. on Industrial Electronics, Edinburgh, UK, IEEE, pp. 1881–1886, 2017.

[23] M. Nawir, A. Amir, N. Yaakob and O. N. G. B. I. Lynn, “Multi-classification of UNSW-NB15 dataset
for network anomaly detection system„” Journal of Theoretical and Applied Information, vol. 96, no. 15,
pp. 5094–5104, 2018.

[24] E. Hodo, X. Bellekens, A. Hamilton, C. Tachtatzis and R. Atkinson, “Shallow and deep networks
intrusion detection system: A taxonomy and survey,” arXiv preprint arXiv: 1701.02145, 2017.

[25] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, A. Al-Nemrat et al., “Deep learning
approach for intelligent intrusion detection system,” IEEE Access, vol. 7, pp. 41525–41550, 2019.

[26] F. A. Khan, A. Gumaei, A. Derhab and A. Hussain, “TSDL: A two-stage deep learning model for
efficient network intrusion detection,” IEEE Access, vol. 7, pp. 30373–30385, 2019.

[27] C. Yin, Y. Zhu, J. Fei and X. He, “A deep learning approach for intrusion detection using recurrent
neural networks,” IEEE Access, vol. 5, pp. 21954–21961, 2017.

[28] S. Gamage and J. Samarabandu, “Deep learning methods in network intrusion detection: A survey and
an objective comparison,” J. Netw. Comput. Appl., vol. 169, pp. 102767, 2020.

[29] G. Zhao, C. Zhang and L. Zheng, “Intrusion detection using deep belief network and probabilistic
neural network,” in 2017 IEEE Int. Conf. on Computational Science and Engineering and IEEE Int. Conf.
on Embedded and Ubiquitous Computing, Guangzhou, China, IEEE, vol. 1, pp. 639–642, 2017.

[30] T. F. Ghanem, “A hybrid approach for efficient anomaly detection using metaheuristic methods,”
Journal of Advanced Research, vol. 6, no. 4, pp. 609–619, 2015.

[31] V. Hajisalem and S. Babaie, “A hybrid intrusion detection system based on ABC-AFS algorithm for
misuse and anomaly detection,” Comput. Networks, vol. 136, pp. 37–50, 2018.

[32] M. A. Ferrag, L. Maglaras, S. Moschoyiannis and H. Janicke, “Deep learning for cyber security
intrusion detection: Approaches, datasets, and comparative study,” J. Inf. Secur. Appl., vol. 50, pp.
102419, 2020.

[33] D. Charte, F. Charte, S. García, M. J. Del Jesus and F. Herrera, “A practical tutorial on autoencoders
for nonlinear feature fusion: Taxonomy, models, software and guidelines,” Inf. Fusion, vol. 44, pp. 78–
96, 2018.

[34] Y. Imamverdiyev and F. Abdullayeva, “Deep learning method for denial of service attack detection
based on restricted Boltzmann machine„” Big Data, vol. 6, no. 2, pp. 159–169, 2018.

[35] U. Fiore, F. Palmieri, A. Castiglione and A. De Santis, “Network anomaly detection with the restricted
Boltzmann machine,” Neurocomputing, vol. 122, no. 3, pp. 13–23, 2013.

[36] S. M. Erfani, S. Rajasegarar, S. Karunasekera and C. Leckie, “High-dimensional and large-scale
anomaly detection using a linear one-class SVM with deep learning,” Pattern Recognition, vol. 58, no.
7, pp. 121–134, 2016.

3966 CMC, 2021, vol.69, no.3

[37] K. Alrawashdeh and C. Purdy, “Toward an online anomaly intrusion detection system based on deep
learning,” in 2016 15th IEEE Int. Conf. onMachine Learning andApplications, Anaheim, CA, USA, IEEE,
pp. 195–200, 2016.

[38] I. Sharafaldin, A. H. Lashkari and A. A. Ghorbani, “Toward generating a new intrusion detection
dataset and intrusion traffic characterization,” in ICISSP 2018-Proc. 4th Int. Conf. Inf. Syst. Secur. Priv.,
vol. 2018, pp. 108–116, 2018.

[39] H. Yu, “A gentle tutorial on restricted Boltzmann machine and contrastive divergence,” 2017.
[40] G. Casella and E. I. George, “Explaining the Gibbs sampler,” vol. 3, no. 3, pp. 167–174, 2016. Stable

URL: [Online]. Available: http://www.jstor.org/stable/2685208.
[41] G. E. Hinton, “Training products of experts by minimizing contrastive divergence,” NeuralComputation,

vol. 14, no. 8, pp. 1771–1800, 2002.
[42] J. Tao, Y. Liu and D. Yang, “Bearing fault diagnosis based on deep belief network and multisensor

information fusion,” Shock and Vibration, vol. 2016, no. 7, pp. 1–9, 2016.
[43] Z. Alom, V. Bontupalli and T. M. Taha, “Intrusion detection using deep belief networks,” in 2015

National Aerospace and Electronics Conf., Dayton, Ohio, USA, IEEE, pp. 339–344, 2015.
[44] H. Shao, H. Jiang, X. Li and T. Liang, “Rolling bearing fault detection using continuous deep belief

network with locally linear embedding,” Comput. Ind., vol. 96, no. 61, pp. 27–39, 2016.
[45] Y. Ho and S. Wookey, “The real-world-weight cross-entropy loss function: Modeling the costs of

mislabeling,” IEEE Access, vol. 8, pp. 4806–4813, 2020.
[46] S. Ruder, “An overview of gradient descent optimization algorithms,” Sebastian Ruder, 2016. [Online].

Available: https://ruder.io/optimizing-gradient-descent/.
[47] C. Zhang, K. C. Tan, H. Li and G. S. Hong, “A cost-sensitive deep belief network for imbalanced

classification,” IEEE Trans. Neural Networks Learn. Syst., vol. 30, no. 1, pp. 1–14, 2018.
[48] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Trans. Knowl. Data Eng., vol. 21, no.

9, pp. 1263–1284, 2009.

http://www.jstor.org/stable/2685208
https://ruder.io/optimizing-gradient-descent/

