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Abstract: Economic dispatch has a significant effect on optimal economical
operation in the power systems in industrial revolution 4.0 in terms of con-
siderable savings in revenue. Various non-linearity are added to make the
fossil fuel-based power systemsmore practical. In order to achieve an accurate
economical schedule, valve point loading effect, ramp rate constraints, and
prohibited operating zones are being considered for realistic scenarios. In this
paper, an improved, and modified version of conventional particle swarm
optimization (PSO), called Oscillatory PSO (OPSO), is devised to provide a
cheaper schedule with optimum cost. The conventional PSO is improved by
deriving a mechanism enabling the particle towards the trajectories of oscilla-
tory motion to acquire the entire search space. A set of differential equations
is implemented to expose the condition for trajectory motion in oscillation.
Using adaptive inertia weights, this OPSO method provides an optimized cost
of generation as compared to the conventional particle swarm optimization
and other new meta-heuristic approaches.

Keywords: Economic load dispatch; valve point loading; industry 4.0;
prohibited operating zones; ramp rate limit; oscillatory particle swarm
optimization

1 Introduction

Management of energy would-be highly effective and efficient by optimizing the generat-
ing cost of fossil fuel-based systems. Economic operation of the power system with effective
and reliable generation is highly essential for Industry 4.0, as the electricity market is moving
towards the deregulated market. The generation cost of thermal power plants mostly relies on
fuel cost. Economic load dispatch is a process of economic scheduling of generating power from
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each generator to meet the demand and attain the optimum fuel cost by considering various
constraints [1]. Economic Dispatch is an optimization problem-solving method where the entire
requisite generation is being dispersed amongst the operated generating units, by reducing the
consumed fuel cost, considering equality, inequality and operational constraints. ELD governs
the output power of every generating division for the specific system under a specified load
condition by minimizing the fuel cost to meet the load demand. ELD processes such a real-time
management of energy in the current power system to control, assign, and distribute the total
generation among the accessible units [2]. Generating units used different types of fuel for power
generation. During the practical operation, the spinning reserve constraints make a significant
impact on financial planning. Considering all the constraints, the economic dispatch problem
behaves as a non-convex, complex, and non-smooth optimization problem.

In recent years, the generator processed for the generation of electricity is non-linear as
compared to the customary generator. The non-linearity are by the concern of valve point
loading, prohibited operating zones, and ramp rate limit. The practical economic dispatch (ED)
also satisfies the problems due to non-linearity, non-convexity, and non-smooth operation of the
generator. Previously for solving ELD problem, some classical and conventional methods such
as lambda iteration [3], quadratic programming [4], gradient programming [5], and non-linear
programming [6] others were applied. These classical methods face many challenges during the
problem solving of ELD with non-linearity. To overcome the challenges, many meta-heuristic
approaches, swarm evolutionary methods, and evolutionary computing methods were applied
to the problem. These methods are Particle swarm optimization [7], Genetic Algorithm [8],
Differential Evolution [9], Exchange Market Algorithm [10], Social Spider Algorithm [11], Bio-
geography based optimization [12], Tabu Search Method [13], Particle Diffusion [14], Artificial
Bee Colony [15], Grey wolf optimization [16,17] and Spotted Hyena Optimization [18]. Some
of the original methods get stock in the local optima and take more time for the searching
process; therefore, to improve the quality of the solution, many hybrid techniques were pro-
posed to overcome the difficulties. Recently some hybridized and modified version of existing
techniques are applied to ELD problem such as Differential evolution-biogeography based opti-
mization (DE-BBO) [19], Differential Evolution and harmony search (DHS) [20], Hybridization
of Genetic Algorithm with Differential evolution (HDEGA) [21], Combination of Simulated
Annealing and PSO (SAPSO) [22], Particle Swarm Optimization and Sequential Programming
technique (PSO-SQP) [23], Hybrid Chemical Reaction optimization and Differential Evolution
Algorithm (CRO-DE) [24], Multi-objective Spotted Hyena Optimizer and Emperor Penguin Opti-
mizer (MOSHEPO) [25], Hybrid Firefly and Genetic algorithm [26], Adaptive real coded genetic
algorithm (ARCGA) [27], Improved harmony search (IHS) [28], Modified differential evolution
(MDE) [29], Species-based Quantum Particle Swarm Optimization (SQPSO) [30], Modified parti-
cle swarm optimization [31], Improved Differential Evolution [32], Modified Artificial Bee Colony
algorithm [33], Modified Bacterial Foraging Algorithm (MBFA) [34], Improved Harmony Search
with Wavelet Mutation (IHSWM) [35], DHIMAN Algorithm [36] . In addition, authors in [37]
propose a Clustering-based Travel Planning System while a network route optimizations scheme is
proposed in [38]. According to No Free Lunch theorem (NFL) [39], no optimization technique will
be able to claim as the superior optimized solution for the concerned problem. The existence for
improvement of cost for economic dispatch problem encourages to further improving the quality
of solution regarding optimum cost and convergence property. Each applied technique to get the
solution of the economic dispatch problem is having some advantages and disadvantages.
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In this paper, an improved version of conventional Particle Swarm Optimization (PSO) is
applied to overwhelm certain difficulties. Oscillatory PSO instincts the particle to acquire the total
search space for finding optimum cost in ELD problem by balancing exploration and exploitation
perfectly. An actual setting of parameter attains the optimum cost. The selections of cognitive
and social learning factors are taken by confirming that the divergence does not occur before the
optimum cost.

2 Problem Formulation

The formulated problem of ELD is the economic scheduling of electric power among the
committed generating units to satisfy the load demand and satisfying various constraints. The
major objective is to optimize the cost of fuel by generator scheduling [15].

2.1 Objectives for Economic Load Dispatch Problem
The characteristics of every generator are unique with respect to cost. The steam valve

controls the operation of the turbine for the generation of power and is known as the valve
point loading effect. This practical approach due to valve point loading characteristics curve of
the generator becomes non-convex curve. The cost curve behaves as a piecewise linear increasing
quadratic function as shown in Fig. 1. The fuel cost function is dependent on the real power
generation from each unit and is shown in Eq. (1) [15].
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Figure 1: Cost characteristics of fossil fuel-based generator

Here FCC is the fuel cost of all committed generator. F(Pgenc) is the cost function of the
generator. Agenc, Bgenc and Cgenc are the cost co-efficients and, Egenc and Fgenc are the co-efficients
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due to the valve point loading effect. Pgenc is the scheduled output power. The cost function for
multiple fuel options is represented in Eq. (2) [40].∑
genc=1

F
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(2)

Agencj, Bgencj, Cgencj, Egencj and Fgencj are the cost co-efficients for genc number of generating
units and ‘j’ type of fuel.

2.2 Constraints
The economic scheduling of the generator should have to satisfy the practical operational

constraints.

2.2.1 Power Balance Constraint
This is an equality constraint. In a given period, the total scheduled output power of commit-

ted generators should satisfy the load estimated following electricity demand and the transmission
line losses in the power system [16].

N∑
genc=1

Pgenc−Pde−PLoss= 0 (3)

Here Pgenc total scheduled power generation. Pde is forecasted load demand by the consumer.
PLoss is Transmission line loss. PLoss is expressed in terms of B co-efficient by using Eq. (4) [16].

PLoss=
N∑

genci=1

N∑
gencj=1

PgenciBgencigencjPgencj +
N∑

genci=1

Bgenc0iPgenci+Bgenc00 (4)

2.2.2 Generating Capacity Constraint
Real power generates at the output of the generator should be within a prescribed limit higher

and basic limit as shown in Eq. (5) [16].

Pgencmin <Pgenc <Pgencmax (5)

Pgencmain and Pgencmax are the minimum and higher bound for the generation of power.

2.2.3 Generator Ramp Rate Limit
The operational performance for generating units is reserved by ramp rate limits. These limits

influencefunctional decisions. The present scheduling may interrupt the upcoming scheduling as a
generation grows due to ramp rate bounds [19].

max
(
Pmin
gencj, P

0
gencj −DRj

)
≤Pgencj ≤min

(
Pmax
gencj +URj

)
(6)

2.2.4 Prohibited Operating Zones
The generator performance is having some discontinuous portions due to some unsought and

uncontrollable physical restrictions such asmechanical lossesorfailures. The generator discontinu-
ities are shown in Fig. 2 and Eq. (7) [19].
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Pmin
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Figure 2: Generator characteristics with existing prohibited zones

3 Particle Swarm Optimization

The approached method is a swarm intelligence method based upon the process of collection
of food by bird and fish. PSO works in the mechanism of birds to search for food randomly in
a specified region. The key approach is to detect food with a reduced time [41]. This approach is
based on the procedure to get the food and to observe the bird nearer to the food. The orthodox
PSO learned from the condition and handled it to resolve the course to achieve an optimum value.
Each bird is an alone solution in the total search space is known as a particle. All the particles
are assessed by their corresponding fitness function, which is to be optimized. All the particles in
the search space are having their velocities to search for the direction of food.

The initialization of PSO was done by using an arbitrary particle, which is the solution to
find the optimal position by the process of updating during generations. During each reiteration
course, the entire solutions particles are updated with two optimum values: (1) The finest value
among the whole particles obtained by searching the food known as global best and, (2) the finest
value monitored by the swarm itself during exploration in repetition process known as personal
best. During the process of searching food, the velocity of the bird is to be maintained, by using
the following formula by Eq. (8) [42].

Vk (i+ 1)=we×Vk (i)+Ce1 × (pebestk−Pk (i))+Ce2× (gebestk−Pk (i)) (8)

Pk (i+ 1)=Pk (i)+Vk (i+ 1) (9)

In the above equation, Vk(i + 1) and Vk(i) is the velocity component and rand () ×
(pebestk−Pk (i)) is particle memory inspiration & rand ()× (gebestk−Pk (i)) is swarm inspiration.
Vk(i) is the velocity of kth particle at iteration (i) must lie in the range of velocity with upper
and lower bounds.
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Vmin ≤Vk (i)≤Vmax (10)

Vmax and Vmin are the velocity indicesfor upper and lower boundaries of the particle to move
in the search space to locate the food. If Vmax is extremely high, the particles have a chance to
past better solutions. If Vmin is much small, then particles have a chance not to discover further
than local optima. Ce1 and Ce2 are two constants to attract each solution towards the best among
individual and whole particle locations.

The weight of inertia (w) follows the equation,

we =wemax−
{
wemax−wemin

itermax

}
× iter (11)

where we, wemax, wemin are the weight of inertia and (iter) is the iteration number.

4 Oscillatory Particle Swarm Optimizer

In this algorithm, the update equation of the conventional PSO isspecified as a differential
equation of second order. The characteristics of convergence are resultant of social and cognitive
learning rates. The particle transitional activities dependency on the inertia weight is discovered.
Further, the induced oscillation feature and adaption of weight are derived.

4.1 Updating PSO as a Differential Equation of Second Order
In the conventional PSO, the velocity and position as per the above Eqs. (8) and (9) is

processed. By reducing the iteration count, i + 1 to i the velocity particle is like Vk (i) =
Pk (i)−Pk (i− 1).

The updated position is represented in the expansion form as in Eq. (12):

Pk (i+ 1)=Pk (i)+we (Pk (i)−Pk (i− 1))+Ce1 (Pebestk−Pk (i))+Ce2 (gebestk−Pk (i)) (12)

=Pk (i) (1+we−Ce1 −Ce2)−wePk (i− 1)+Ce1Pebestk+Ce2gebestk (13)

Rearranging the above Eq. (13) can be rewritten as:

Pk (i+ 1)+Po1Pk (i)+Po2Pk (i− 1)=Rk (14)

Here the coefficients are Po1 =Ce1+Ce2 −we− 1, Po2 =we, Rk =Ce1Pebestk+Ce2gebestk.

4.2 Factors of Cognitive and Social Learning
From Eq. (14), the coefficients Po1 and Po2 determine the particle behavior. Assume the best

position of a particle and global as Pebestk and gebestk respectively remain constant, and both are
equal for two successive iterations as shown in Eq. (15). One particle is having the personal best
as the global best and the Eq. (15) can be rewritten as Eq. (16) as, Pk∗ =Pebestk∗ = gebestk∗.

Pk
∗ +Pk1

∗ +Pk2
∗ =Ce1Pebestk

∗ +Ce2gebestk
∗ (15)

(1+Po1+Po2)Pk
∗ =Ce1Pk

∗ +Ce2Pk
∗ = (Ce1 +Ce2)Pk

∗ (16)

1+Po1+Po2 =Ce1 +Ce2 (17)

Letting Po1+Po2 = 0 then, Ce1+Ce2 = 1, their trajectories satisfy

Pk (i+ 1)+Po1Pk+Po2Pk (i− 1)=Ce1Pebestk+ (1−Ce1)gebestk (18)
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Here the right-hand side shows the weighted sum of particle best and global best. Consider
the complementary equation.

Pk (i+ 1)+Po1Pk+Po2Pk (i− 1)= 0, (19)

In the last iteration, the best particle value (Pebestk) and best global value (gebestk) were
considered as the optimal solution. The complexity of the applied algorithm was reduced by
considering the social and cognitive leaning rates of personal and global best as Ce1+Ce2 = 1

4.3 Weight of Inertia in OPSO
When the cognitive and social learning factor is Ce1 + Ce2 = 1, the coefficients become as

per Eq. (20) and the complementary equation is Eq. (21). Here the inertia weight shows the
convergence property of the particle trajectories while moving forward the iteration.

Po1 =Ce1+Ce2 −we− 1=−we (20)

Pk (i+ 2)−wePk (i+ 1)+wePk (i)= 0 (21)

For oscillating condition, considering the characteristics Eq. (21) with roots are shown in
Eqs. (22) and (23) respectively.

λo
2+Po1λo+Po2 = 0 (22)

λo1,2 = −Po1±
√
Po12− 4Po2
2

(23)

Applying De Moivre’s formula for the condition Po12 < 4Po2, the particle Pk(i) will be shown
in Eq. (24).

Pk (i)= ri [b1 cos iθ + b2 sin iθ ] (24)

Another phase angle φ is presented in Eq. (25).

φ = tan−1
(
b1
b2

)
cosφ = b1/

√
b1

2+ b2
2

sinφ = b2/
√
b1

2+ b2
2 (25)

The homogeneous equation solution will be shown in Eq. (26).

Pk (i)= ri
√
b1

2+ b2
2 [cosiθ cosφ + siniθ sinφ] (26)

=Bri cos (iθ −φ)

where B=
√
b1

2+ b2
2 and the Pk(i) oscillates for the term cos (iθ −φ) in Eq. (26).

From Eq. (26), Pk(i) will converge for r < 1 and ‘r’ will be
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r=
√
Po12

4
+ 4Po22−Po12

4
=
√
Po2 =

√
we (27)

The oscillatory behavior of particle is governed by the amplitude an phase angle. The fre-
quency of oscillation is determined by angles of the complex roots of the characteristics equation.
And by substituting Po1 =−we and Po2 = we, the angle of the root is given byte Eq. (28).

θ1, 2 = tan−1

(
±
√
4we−we2

we

)
(28)

Determination of inertia weight can be done by applying normal distribution to the random
inertia weights according to Eq. (29).

w̃e =N (we, σ) , σ =we (29)

In this method the inertia weight is calculated by using the Eq. (30).

we (i)=wein−weend ×
i

imax
,

wk =N (wek, wek)

(30)

The detail pseudo of the applied algorithm for economic load dispatch is given in
Algorithm 1.

Algorithm 1:
Step 1 Initialize the no. of Iterations imax, Population, Particles, Velocity, Start and End inertia

weight
Step 2 Convential PSO

For i = imax do()
Find the fitness function (Cost) for each particle (Generator)
Identify the best fitness value (Cost) for each particle (Pebest) and global best (gebest)
Oscillatory PSO
Generate the social learning factor Ce2, and Cognitive learning factor Ce1 = 1 − Ce2
Calculate the inertia weight using Eq. (29)
Update the Particle Velocity and Particle Position
endfor

Step 3 Best fitness value find (Optimum Generation Cost) due to the best particle is found

5 Results and Discussion

The proposed technique is applied to optimize the overall cost of four different test systems
within the framework of different linear and non-linear technical constraints and multiple fuel
systems. The four test systems considered in this study are: (1) A 6-unit system considering the
transmission losses, (2) A 15-unit system considering the transmission losses (3) A large power
system with 40 generating units considering valve-point loading and, (4) A ten-unit test system for
different types of fuel. The simulation is performed on the MATLAB (version R2016b) platform.
A total of 100 runs have been executed for generating an optimum solution to the discussed
dispatch problem.
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Case 1: Six generating Units test system

This case consists of six generating units to fulfill the load demand of 1263 MW. As
transmission losses make a huge impact on the power system, transmission losses, prohibited
operating zones, ramp rate limits, and valve point loading effect are considered. The system input
data for all the constraints, cost co-efficient, and loss co-efficient are considered from [7]. The
scheduled generation among all the six generating units within the capacity constraint with the
optimum cost is presented in Tab. 1. The comparison of cost and scheduled generation with
other techniques is also presented in Tab. 1. Fig. 4 shows the comparison graph of optimum cost
with other techniques to validate the superiority of the applied technique. The optimum cost for
this test system is found as 15,440.0982 $/h with a lesser transmission loss of 12.178 MW. The
convergence graph is shown in Fig. 3. Prohibited operating zones, valve point loading, and ramp
rate constraints are also considered for the complex problem. All the input data and co-efficient
are referred to from [7] for this test system.

Table 1: Comparison table for scheduled generation and optimum cost for case 1 with losses

Method P1
(MW)

P2
(MW)

P3
(MW)

P4
(MW)

P5
(MW)

P6
(MW)

Total
generation
(MW)

Total
loss
(MW)

Generation
cost ($/h)

BSA [43] 447.4902 178.3308 263.4559 139.0602 165.4804 87.1409 1275.9583 12.9583 15449.8995
BFO [44] 449.4600 172.8800 263.4100 143.4900 164.9100 81.2520 1275.4020 12.4020 15,443.8497
CRO [45] 447.9314 173.5548 262.9452 138.8521 165.3046 86.8575 1275.4456 12.4456 15,443.080
HCRO-DE [24] 447.4021 173.2407 263.3812 138.9774 165.3897 87.0538 1275.4449 12.4449 15,443.0750
MIQCQP [46] 447.4000 173.2400 263.3800 138.9800 165.3900 87.0500 1275.4400 12.4400 15,443.0700
IABC-LS [47] 451.5204 172.1750 258.4186 140.6441 162.0797 90.3415 1275.1795 12.1795 15,441.1080
DHS [20] 447.5285 173.2791 263.4772 139.0291 165.4864 87.1587 1275.9590 12.9590 15,449.8996
SQ-PSO [30] 446.7273 173.4511 263.5318 138.9152 165.4092 87.2577 1275.2923 12.4422 15,441.0497
NPSO [48] 447.4734 173.1012 262.6804 139.4156 165.3002 87.9761 1275.9500 12.9571 15,450.0000
�–PSO [49] 445.5434 171.5376 263.0251 138.6269 165.6061 91.1055 1275.4446 12.4459 15,443.2717
MPSO-GA [50] 444.3230 173.1810 265.0000 140.3290 166.1200 86.4210 1275.3770 12.3700 15,442.4640
ICS [51] 447.6162 173.5795 262.7578 139.1206 165.6426 86.6658 1275.3800 12.3924 15,442.2652
APSO [52] 446.6690 173.1560 262.8260 143.4690 163.9140 85.3440 1275.3800 12.4220 15,443.5800
PSO 447.4970 173.3221 263.4745 139.0594 165.4761 87.1280 1276.0100 12.9583 15,450.0000
MPSO 446.4870 168.6610 265.0000 139.4930 164.0040 91.7470 1275.3900 12.3740 15,443.1000
OPSO 451.518 172.175 258.413 140.644 162.078 90.342 1275.17 12.178 15,440.0982
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Figure 3: Convergence characteristics for case 1 with 1263 MW load demand
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Figure 4: Comparison graph for six generating units with other applied techniques

Table 2: Comparison table for an optimum cost for 15 generating units with variation

Techniques Best cost
($/h)

Average
cost ($/h)

Worst
cost ($/h)

Output
power (MW)

CPU
time (s)

ICS [51] 32,706.7358 32,714.4669 32,752.5183 2660.734 –
�-PSO [49] 32,706.5504 32,738.0235 32,707.6065 2660.8213 36.88
MIQCQP [46] 32,704.58 – – 2660.66 4.65
MPSO-GA [50] 32,702 32,733.29 32,755.19 2660.034
NRTO [53] 32,701.81 32.704.53 32,715.18 2660.42 29.38
RCCRO [54] 32,698.9950 32.698.995 32,698.995 2658.7040 4.0
MBBO [55] 32,692.3972 32,692.3973 32,692.3975 2659.5848 –
OLCSO [56] 32,692.3961 32,692.3981 32,692.4033 2659.5846 –
DEPSO [57] 32,588.81 32,588.99 32,591.49 2657.966 –
λ-Con [58] 32,568.06 – – 2659.60 –
KGMO [59] 32,548.1736 32,548.2163 32,548.3755 2656.8983 7.24
PSO 32,705.3214 32,812.6654 32,922.3274 2660.479 10.25
MPSO 32,554.365 32,614.9854 32,662.3765 2658.586 7.41
OPSO 32,548.021 32,549.2541 32,549.9874 2656.899 4.12

Case 2: Fifteen generating units test system with transmission losses

Fifteen generating units are used for the generation of demand of 2630 with consideration
of transmission losses, in the test generation for optimum cost from the applied technique with
comparison to other techniques. Tab. 2 shows the evidence of the superiority of the applied
technique for optimum cost with lesser variation during the iteration process as compared to
MPSO-GA [50], NRTO [53], MsBBO [55], DEPSO [57], λ-Con [58], ICS [51] techniques. Fig. 5
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represents the optimum cost comparison of the applied technique to the other techniques and
Fig. 6 represents the convergence characteristics of the applied technique with the conventional
PSO. Tab. 3 compares scheduled generation and optimum cost for case 2 with losses.
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Figure 5: Comparison graph for fifteen generating units with other techniques
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Figure 6: Convergence characteristics of case 2 for fifteen generating units

Table 3: Comparison table for scheduled generation and optimum cost for case 2 with losses

Method DEPSO [57] WCA [60] DHS [20] λ-Con [58] EMA [10] OLCSO [56] MPSOGA [50]

P1 (MW) 455.000 455.000 455.0000 455.0000 455.0000 455.0000 455.0000
P2 (MW) 420.000 380.000 420.0000 455.0000 380.0000 380.0000 380.0000
P3 (MW) 130.000 130.000 130.0000 130.0000 130.0000 130.0000 130.0000
P4 (MW) 130.000 130.000 130.0000 130.0000 130.0000 130.0000 130.0000
P5 (MW) 270.000 170.000 270.0000 298.2294 170.000 170.000 169.9600
P6 (MW) 460.000 460.000 460.0000 460.0000 460.0000 460.0000 460.0000
P7 (MW) 430.000 430.000 430.0000 465.0000 430.0000 430.0000 430.0881
P8 (MW) 60.000 71.721 60.0000 60.0000 74.042 69.4738 60.1300
P9 (MW) 25.000 58.941 25.0000 25.0000 58.621 60.1108 72.6064
P10 (MW) 62.966 160.000 62.9762 25.0000 160.000 160.0000 157.0093
P11 (MW) 80.000 80.0000 80.0000 44.9350 80.0000 80.0000 80.0000
P12 (MW) 80.000 80.0000 80.0000 56.4370 80.0000 80.0000 79.2381

(Continued)
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Table 3: Continued

Method DEPSO [57] WCA [60] DHS [20] λ-Con [58] EMA [10] OLCSO [56] MPSOGA [50]

P13 (MW) 25.000 25.0000 25.0000 25.0000 25.0000 25.0000 26.0017
P14 (MW) 15.000 15.0000 15.0000 15.000 15.0000 15.0000 15.0000
P15 (MW) 15.000 15.0000 15.0000 15.000 15.0000 15.0000 15.0000
Total
generation
(MW)

2657.966 2660.66 2657.9762 2659.60 2660.66 2659.5846 2660.034

Total loss
(MW)

27.976 30.66 27.9762 29.60 30.66 29.5846 29.4031

Cost ($/h) 32,588.81 32,704.449 32588.9182 32,568.06 32,704.450 32,692.3961 32,702

Method NRTO [53] MIQCQP [46] MsBBO [55] �–PSO [49] PSO MPSO OPSO

P1 (MW) 455.0000 455.0000 455.0000 455.0000 455.0000 454.8914 454.8229
P2 (MW) 380.0000 380.0000 380.0000 380.0000 380.0000 454.8914 449.0101
P3 (MW) 129.9999 130.0000 130.0000 130.0000 129.9998 129.9997 129.4101
P4 (MW) 129.9999 130.0000 130.0000 130.0000 129.9998 129.9997 129.9999
P5 (MW) 170.0000 170.000 170.000 170.000 170.000 235.7547 239.7498
P6 (MW) 460.0000 460.0000 460.0000 460.0000 460.0000 459.9632 459.5598
P7 (MW) 430.0000 430.0000 430.0000 430.0000 430.0000 464.9668 464.9799
P8 (MW) 70.2250 72.13 69.4798 71.8045 70.3544 60.3255 61.2211
P9 (MW) 60.1965 58.54 60.1049 60.2379 60.1247 25.3741 25.5999
P10 (MW) 159.9999 160.00 160.0000 158.7524 159.9998 29.3001 28.1127
P11 (MW) 80.0000 80.0000 80.0000 80.0000 80.0000 77.7147 78.7451
P12 (MW) 80.0000 80.0000 80.0000 80.0000 80.0000 80.0201 80.3658
P13 (MW) 25.0000 25.0000 25.0000 25.0078 25.0000 25.3741 25.3214
P14 (MW) 15.0000 15.0000 15.0000 15.0147 15.0000 15.0010 15.0001
P15 (MW) 15.0000 15.0000 15.0000 15.0040 15.0000 15.0090 15.0001
Total
generation
(MW)

2660.4216 2660.66 2659.5848 2660.8213 2660.479 2658.586 2656.899

Total loss
(MW)

30.4216 30.66 29.5848 30.8319 30.479 28.586 26.899

Cost ($/h) 32701.8145 32,704.45 32692.3972 32,706.5504 32,705.3214 32,554.365 32,548.021

Case 3: Test system 3 for forty generating units

This test system is considered for a large power system consisting of 40 generators. In this
case, the effect of valve-point loading is considered as the non-linear constraint. The input data
is referred from [61] for the co-efficient and various load demands. The scheduled generation
among 40 units to meet the total demand of 10500 MW is illustrated in Tab. 4. Tab. 5 shows
a comparison with other recent techniques for minimum cost. The deviation of the costs among
different optimization techniques along with the proposed technique is presented in Tab. 5. The
convergence graphs and cost comparison are shown in Figs. 7 and 8 respectively. It is analyzed
from this case study that the applied OPSO algorithm provides better performance for minimizing
the cost of the power supply, losses, and the convergence time as compared to the existing
optimization techniques under the considered operating condition.
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Table 4: Scheduled generation among 40 generators to satisfy the demand for optimum cost

UNIT Output
power (MW)

UNIT Output
power (MW)

UNIT Output
power (MW)

UNIT Output
power (MW)

P1 (MW) 110.7987 P11 (MW) 94.0000 P21 (MW) 523.2803 P31 (MW) 190.0000
P2 (MW) 110.7987 P12 (MW) 94.0000 P22 (MW) 523.2801 P32 (MW) 190.0000
P3 (MW) 97.4121 P13 (MW) 214.7602 P23 (MW) 523.2801 P33 (MW) 190.0000
P4 (MW) 179.7411 P14 (MW) 394.2833 P24 (MW) 523.2803 P34 (MW) 164.7875
P5 (MW) 87.8099 P15 (MW) 394.2833 P25 (MW) 523.2801 P35 (MW) 199.9988
P6 (MW) 140.0000 P16 (MW) 394.2833 P26 (MW) 523.2803 P36 (MW) 194.3198
P7 (MW) 259.6018 P17 (MW) 489.2801 P27 (MW) 10.0000 P37 (MW) 110.0000
P8 (MW) 284.6121 P18 (MW) 489.2801 P28 (MW) 10.0000 P38 (MW) 110.0000
P9 (MW) 284.6008 P19 (MW) 511.2811 P29 (MW) 10.0000 P39 (MW) 110.0000
P10 (MW) 130.0000 P20 (MW) 511.2811 P30 (MW) 87.8184 P40 (MW) 511.2866

Total
generation
(MW)

10,500.00

Cost ($/h) 1,21,410.3232

Table 5: Comparison of cost with deviation for 40 generators in test system 3

Techniques Best cost
($/h)

Average
cost ($/h)

Worst
cost ($/h)

Output
power (MW)

CPU
time (s)

AA [62] 121,788.70 – – 10500 –
CPSO–SQP [61] 121,458.54 122,028.16 – 10500 98.49
THS [63] 121,425.15 121,528.65 – 10500 –
�–PSO [49] 121,420.90 121,509.84 121,852.42 10500
CRO [45] 121,416.69 121,418.03 121,422.92 10500 8.15
DFA [64] 121,414.64 121,415.78 121,422.12 10500 –
C-GRASP [65] 121,414.621 – – 10500 –
NTHS [66] 121,412.74 121,549.95 – 10500 –
IABC [47] 121,412.73 – 121,471.61 10499.9999 8.76
DE [67] 121,412.68 121,439.89 121,479.63 10500 31.50
DEPSO [57] 121,412.56 121,419.31 121,468.25 10500 –
HCRO-DE [24] 121,412.55 121,413.11 121,415.66 10500 7.64
OIWO [68] 121,412.54 – – 10500 –
MABC [33] 121,412.54 – – 10500 –
ORCSA [69] 121,412.535 121,472.45 121,596.18 10500 3.02
MsBBO [55] 121,412.5344 121417.1877 121450.0026 10500 –
MINLP [70] 121,412.53 121,412.53 121,412.53 10500 39.33
PSO 121,426.21 121,433.14 121,438.85 10500 15.22
MPSO 121,412.33 121,415.65 121,416.73 10500 10.37
OPSO 121,410.32 121,410.55 121,410.86 10500 6.32
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Figure 7: Convergence characteristics for test system 3 with 40 generators
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Figure 8: Comparison graph for forty generating units with other techniques

Table 6: Scheduled generation among 10 generators with multiple fuel types for minimum cost

Unit Fuel type Power output (MW)

P1 (MW) 2 218.722
P2 (MW) 1 211.361
P3 (MW) 1 281.682
P4 (MW) 3 239.379
P5 (MW) 1 279.198
P6 (MW) 3 239.362
P7 (MW) 1 287.796
P8 (MW) 3 239.703
P9 (MW) 3 426.803
P10 (MW) 1 275.994

Total output power 2700 MW
Generation cost ($/h) 623.542
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Case 4: Test system 4 for ten generating units with multiple fuels as input

In this case, the performance is evaluated on a system with 10 generating units with multiple
fuel options and valve point loading effects. The input data have been referred to from [71]. From
the input data, it has been observed that the first generator is having options of two types of
fuel and the other generating units have an option of three types of fuel. The total load demand
is 2700 MW with no transmission losses. The optimum cost produced during the experiment is
623.542 $/h for OPSO. The comparison of cost with different techniques is represented in Tab. 7
and, it is found that the OPSO is optimizing the system cost for multiple fuel systems. Fig. 9
shows the convergence graph of OPSO and PSO with a faster convergence rate. The scheduled
output with different fuels is depicted in Tab. 6.

Table 7: Comparison of cost with deviation for 10 generating units with different types of fuel

Techniques Best cost ($/h) Average cost ($/h) Worst cost ($/h)

IGA-MU [71] 624.72 627.61 633.87
CGA-MU [71] 624.52 625.87 630.87
RCGA [72] 623.83 623.85 623.89
CBPSO-RVM [73] 623.96 624.08 624.29
ARCGA [74] 623.83 623.84 623.86
NPSO-LRS [48] 624.13 625.00 627.00
DEPSO [57] 623.83 623.90 624.08
PSO 625.21 626.32 627.74
MPSO 624.14 624.89 625.37
OPSO 623.542 623.65 623.33
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Figure 9: Comparison graph for ten generating units for case 4

Recent works presented in [75–78] depict interesting optimization works in different domains.

6 Conclusion

The increasing complexity of today’s electrical networks in Industry 4.0 further adds to the
severity of the issue which can be mitigated through robust economic load dispatch strategies.
Application of Oscillatory Particle Swarm Optimization algorithm-a meta-heuristic algorithm, to
solve complex ELD problems is presented in this paper. The performance of OPSO is evaluated
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for four different test systems with increasing complications considering various practical technical
constraints such as valve-point loading effect, prohibited operating zones, ramp rates, and multiple
fuel system. The effectiveness of different techniques for optimizing the cost and their convergence
profiles and times have been studied for all these cases. A comparison is performed between the
proposed and existing techniques based on the above-discussed problem. It is concluded from
the work that the proposed OPSO algorithm provides better performance for minimizing the cost
of the power supply, losses, and the convergence time as compared to the existing optimization
techniques.

The applied technique can be further applied to an enhanced version of economic dispatch
problems such as economic emission dispatch problem, dynamic dispatch problem, and economic
dispatch incorporating renewable energy system.
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