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Abstract: Automatic gastrointestinal (GI) tract disease recognition is an
important applicationof biomedical image processing. Conventionally,micro-
scopic analysis of pathological tissue is used to detect abnormal areas of the
GI tract. The procedure is subjective and results in significant inter-/intra-
observer variations in disease detection. Moreover, a huge frame rate in video
endoscopy is an overhead for the pathological findings of gastroenterologists
to observe every frame with a detailed examination. Consequently, there is
a huge demand for a reliable computer-aided diagnostic system (CADx) for
diagnosing GI tract diseases. In this work, a CADx was proposed for the
diagnosis and classification of GI tract diseases. A novel framework is pre-
sented where preprocessing (LAB color space) is performed first; then local
binary patterns (LBP) or texture and deep learning (inceptionNet, ResNet50,
and VGG-16) features are fused serially to improve the prediction of the
abnormalities in the GI tract. Additionally, principal component analysis
(PCA), entropy, andminimum redundancy andmaximum relevance (mRMR)
feature selection methods were analyzed to acquire the optimized characteris-
tics, and various classifiers were trained using the fused features. Open-source
color image datasets (KVASIR, NERTHUS, and stomach ULCER) were
used for performance evaluation. The study revealed that the subspace dis-
criminant classifier provided an efficient result with 95.02% accuracy on the
KVASIR dataset, which proved to be better than the existing state-of-the-art
approaches.

Keywords: Convolutional neural network; feature fusion; gastrointestinal
tract; handcrafted features; features selection

1 Introduction

The medical industry is adopting advanced technology, through which it can improve healthy
living. With the help of endoscopy and other techniques, medical doctors can visualize the
human body’s internal tracts from the mouth to the intestines that were unapproachable in
the past. Generally, the vast expertise of medical doctors is desired for problem recognition in the
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gastrointestinal (GI) tract [1]. Upper endoscopy and colonoscopy are the two main endoscopic
methods. A tube is inserted through the mouth, throat, and stomach in the upper endoscopy
method, and the small intestine is examined. During colonoscopy, the tube is inserted through
the anus to examine the rectum and colon. The lower part of the GI tract consists of the bowel,
which is influenced by several illnesses, such as cancer and incessant aggravation.

In the United States, 60–70 million people are affected by GI diseases every year [2]. Early
examination and tests are carried out to detect colon disorders with the help of colonoscopy. The
screening test procedure requires significant time for the medical specialist and high costs, which
causes an unpleasant environment and dissatisfaction for the patients. Norway and the United
States have performed tests that cost $450 and $1100 per case of GI complaint, respectively [3].

Several research methodologies improve the health care system by using technologies, such
as artificial intelligence, multimedia data analyses, and distributed processing [4]. Several research
societies have offered many proposals for automatic abnormality detection in the GI tract [5]. Dif-
ferent diagnostic imaging modalities are used for diagnosing human body abnormalities, such as
CT scan, X-ray, and MRI. However, GI tract abnormalities are observed through colonoscopy and
endoscopy (traditional and wireless) [6]. A challenge with endoscopy is that it is time consuming
for gastroenterologists to go through each image and mark irregularities, making the procedure
hectic and costly [7]. Similarly, colonoscopy faces miss rate challenges because doctors fail to find
abnormalities.

Wireless capsule endoscopy consists of a CMOS camera that is to be swallowed by a patient.
The capsule endoscopy camera transmits the captured images to a receiving digital storage unit for
up to 7 h. After swallowing, the patient can perform normal activities as usual [8]. In contrast, the
traditional wired video endoscopy in which the gastroenterologist can control the wire to observe
the desired area in the GI tract, while in capsule endoscopy, captured frames are beyond the
control of the gastroenterologist. Therefore, the fundamental aim of this study was to predict the
variations from the norm in the GI tract through wired endoscopy. The major goal is to resolve
the multi-class categorization issue in the GI tract by characterizing GI tract pictures into various
categories. A computer-aided diagnostic system (CADx) assists medical experts in diagnosing and
detecting abnormalities by providing an effective assistant for pathological findings. Therefore, the
demand for medical image datasets is increasing worldwide for automatic disease detection, recog-
nition, and assessment. Deep learning models are becoming vital players in spotting abnormalities
in the GI tract.

The proposed method was explored in five steps. Preprocessing is the first step in which
histogram equalization and color space transformation methods are employed for image enhance-
ment. Visual information is learned in the second phase using handcrafted and deep learning
methods. Accordingly, the local binary patterns (LBP) method is adopted to extract handcrafted
features, while inceptionNet, ResNet50, and VGG-16 are utilized for acquiring deep features.
Principal component analysis (PCA), entropy, and minimum redundancy and maximum relevance
(mRMR) were analyzed in the third step, which improved the classification accuracy. In the fourth
step, feature fusion is employed serially. The last and most important phase is classification, where
several supervised classifiers are trained using integrated features. The proposed model is compared
with several state-of-the-art methods. We observed that the proposed approach achieved improved
results and performance.
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The manuscript is styled as follows: Related works are presented in Section 2; Section 3
details the proposed approach; Section 4 highlights the outcomes of the tests performed; Section
5 summarizes the achievements.

2 Related Work

Endoscopy is the key for the treatment and diagnosis of diseases in the GI tract. CADx
systems have recently been introduced, in which existing endoscopy procedures involving operator
variations are diminished and guided for accurate diagnoses of the disease [9]. The CADx system
classifies diseases found in the GI tract using the training and testing feature sets. Generally,
classification task results are based on methods, such as preprocessing, feature extraction, and
feature selection. Additionally, preprocessing involves segmentation and image enhancement pro-
cesses that help diagnose illness in the GI tract [10]. Feature extraction enriches system accuracy
and endures system computation [7]. It is categorized into two methods: handcrafted and deep
learning. Handcrafted features include shape (superpixel), texture (Gabor), and statistical, cellular,
and color features. Meaningful handcrafted approaches help refine features to classify melanoma
dermoscopy images [11]. Additionally, color features are valuable and return the location infor-
mation of the disease, and shape features include a histogram of oriented gradient (HOG) [12],
and segmentation-based fractal texture analyses (SFTA) are employed to acquire the features
from the grayscale image to obtain information on the shape gradient and orientation. LBP
features render the information of image patterns from color images [12,13]. In the past decades,
extracting well-organized and optimized image features has been the primary goal of image
classification tasks. Information from the images was extracted from different perspectives, such
as handcrafted features using a color histogram [14], which calculates the color distribution of
the images. Similarly, edges and texture information are collected by Gabor and LBP, whereas
HOG can extract shape information that helps in disease detection. However, handcrafted features
failed to detect the features of all aspects in the frames. Thus, the syndicate features of the deep
convolutional neural network (CNN), and handcrafted features have been utilized.

Additionally, CNN models, such as AlexNet, ResNet50, inceptionNet, and VGG16 Net learn
visualized features more precisely than handcrafted features. Therefore, the performance of CNN
in the image recognition task is outstanding; however, various handcrafted features still play an
important role in some domains. Handcrafted features provide image content from specific aspects,
contrary to information for CNN in image classification tasks. The CNN learns features automat-
ically, and thus it is difficult to understand the kind of features learned by the network. Using a
CNN, it is difficult to control the composite features of a network. Therefore, some researchers
have attempted to understand the interpretability and explainability of networks [15]. Therefore, in
many studies, handcrafted and CNN features have been studied and implemented. These studies
provide ideas of links between CNN and handcrafted features; therefore, it has now become
a new research area in computer vision and image processing. Transfer learning techniques are
introduced with different classification learning techniques without redesigning neural networks;
moreover, classification performance is evaluated, and diseases are automatically detected [16].
In previous studies, feature fusion was introduced, where CNN and handcrafted features were
fused, and in some domains, many handcrafted features played an important role; however, the
obtained information did not describe all aspects of images, so, CNN features were introduced
with handcrafted features [17]. Therefore, deep learning and texture features are integrated so
that the performance of the model can be enhanced and domain information can be extracted
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from the frames of endoscopy, and multimedia content and machine learning techniques can be
explored [18].

3 Proposed Methodology

In the this study, a novel framework is presented that comprises five phases: preprocessing,
feature extraction, feature selection, feature fusion, and classification methods. The LAB color
space transformation and histogram equalization methods were used in the preprocessing phase
to increase the accuracy of the model. The CNN learns features and handcrafted methods, and
feature selection methods, such as PCA, entropy, and mRMR are analyzed using the selection of
features alternatively. Additionally, the proposed study is confined to the feature fusion approach,
where CNN and handcrafted features are fused, and later, train various classifiers. Fig. 1 shows
the proposed model. The proposed model results were compared with existing state-of-the-art
methods, which proved the effectiveness and robustness of the model. The steps of the proposed
model are discussed in detail in the following section.

3.1 Preprocessing
In this study, the transformation of the L*a*b* color space was performed, and the individual

components of L*a*b* were extracted. The luminance of L* components was equalized by the
histogram equalization method, and later, the L* components were merged with a*b* components
that resulted in an enhanced L*a*b* frame. The complete KVASIR dataset, which consists of
4000 frames, was enhanced using this method. Preprocessing improves the overall performance of
the model. The preprocessing process is illustrated in Fig. 2. The L*a*b* space evaluates colors
better than the RGB color space and separates the luminosity and color. The L*a*b color space
comprises three channels: luminosity L*, chromaticity a*, and b*, where L* represents different
ranges of colors, such as black represents 0 level and 100 represents white levels. Similarly, a* and
b* both have intensity values ranging from −128 to +127.

Moreover, L* components are used to adjust the contrast that closely matches the human
perception of luminosity. Therefore, for transformation to the L*a*b* space, RGB channels are
first converted to CIR channels and then to L*a*b* space channels. The L* transformation is
expressed as follows:⎡
⎣XY
Z

⎤
⎦ =

⎛
⎝0.412453 0.357580 0.180423
0.212671 0.715160 0.072169
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1/3 (29/6)2 v+ 4/29 others
(3)

where X , Y , Z and Xn, Yn, Zn are components of CIE XYZ color space and tristimulus values
respectively. In addition, histogram equalization is a common technique for image enhancement
that equalizes individual pixel values and improves the overall dataset performance.
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Figure 1: CNN and handcrafted features fusion model

3.2 Feature Extraction
Detailed information cannot be represented efficiently when the images are in raw form.

Therefore, descriptors were used for feature extraction from which abnormalities were found in
the images. There are several types of features in the image processing domain, such as the spatial
and frequency domains. A special temporal domain is employed for feature acquisition through
endoscopic images. The techniques of feature extraction and reduction have become essential in
computer vision owing to applications, such as agriculture, robotics, surveillance, and medicine.
The purpose of feature acquisition is to transform the input image data such that significant
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information can be extracted. Thus, the focus of feature extraction is to reduce the computation
time and enhance the overall system performance. The two methods, handcrafted and CNN
methods, are considered for feature acquisition.

Figure 2: Image enhancement with L*a*b color space and histogram equalization methods

3.2.1 Handcrafted Features Extraction
Several methods are used for feature extraction; however, LBP features return the best per-

formance with a combination of deep features. Hence, the LBP feature extraction method was
employed in this study. The LBP operator represents texture information [19]. The LBP code
represents the circular neighborhood of the pixel. Let LBPU ,V introduce LBP as code, where U
represents the sample points in the neighborhood of the radius V, and the gray intensity of the
center pixel, and the gray value of its uth adjacent pixel. The LBPU ,V mathematical model is as
follows:

LBPU ,V =
U−1∑
u=0

s (gu− gn)2U , s (x)=
{
1, x≥ 0
0, x< 0 (4)

After LBP-based feature extraction, the histogram is constructed to represent an image and
used as pattern recognition, known as features. Fig. 3 illustrates the visualization of the extracted
LBP features.

Figure 3: LBP features (a) Original image (b) Visual features

3.2.2 CNN Features Extraction
Generally, feature extraction techniques based on CNNs are used in several problems of image

processing [20], such as face recognition and breast cancer mitosis detection [21,22]. In this study,
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various experiments were performed for feature extraction (visual information) using various deep
learning models; however, the best results were achieved from the three transfer learning models,
namely ResNet50 [23], InceptionNet [24], and VGG16 [25].

The architecture of the VGG16 model is a series network consisting of 41 layers. The network
accepts a 224 × 224 size dimension as its input; the most repeated active layers in the network
are the convolutional layers, rectified linear unit (ReLU), and max-pooling layers. It had a total
of 16 convolutional layers, where 13 layers are convolutional, and three layers are fully connected.
The first convolutional layer had a 3 × 3 filter size, and stride and padding were set to one.
The features were acquired from the flattened layer, referred to as a fully connected (fc7) layer
with an output size of 1 × 1 × 4096, weight size of 4096 × 4096, and bias of 4096 × 1.
Finally, the network provides 4000 × 4096 features set over the complete dataset. Fig. 4 shows the
architecture of VGG16, including visual features selected from the convolutional 4, convolutional
5_1, convolutional 5_2, and convolutional 5_3 layers.

Figure 4: VGG16 architecture and visual features selected from convolutional layers (conv 4, conv
5_1, conv 5_2 and conv 5_3 layers)

The architecture of the ResNet50 model, referred to as a directed acyclic graph (DAG)
network, consists of 177 layers. The architecture comprises five stages, where a convolutional
layer and identity block are found in each stage. Additionally, there are three convolutional layers
in a single convolutional block, and each identity block consists of three convolutional layers.
The network accepts 224 × 224 size dimensions as its input; the most repeated active layers
in the network are convolutional, batch normalization, ReLU, and max-pooling layers. The first
convolutional layer contains a 7 × 7 size filter with a depth of 64, using padding 3. After the
convolutional layer, the batch normalization layer was computed with 64 channels. The next layer
is max pooling with stride 2, and padding 0. Convolutional and other processes are repeated
by applying more layers to create a denser network, which can have a better impact on the
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accuracy, however the computational power also increases, which cannot be ignored. The features
are acquired from the fully connected layer, which has an output size of 1 × 1 × 1000, weight size
of 1000 × 2048, and bias of 1000 × 1; finally, the network provides 4000 × 1000 features over
the complete dataset. Fig. 5 shows the architecture of VGG16 and visual features that are selected
from layers, such as res2b_branch2a, res3c_branch2c, res4f_branch2b, and res5c_branch2a.

Figure 5: Resnet50 architecture and visual features selected from layers (res2b_branch2a, res3c_-
branch2c, res4f_branch2b and res5c_branch2a)

The architecture of the inceptionNet model is a convolution-based DAG network consisting
of 316 layers. The network accepts 229 × 229 size dimensions as its input; the most repeated
active layers in the network are the convolutional layers, batch normalization layers, average
pooling, depth concatenation, ReLU, and max-pooling layers. The entire network branches are
joined together at the depth concatenation point, where the network is also divided into four or
three branches that represent a dense network. The features are acquired from the average pooling
layer (avg_pool) in the network which has an output size of 1 × 1 × 20481, offset of 1 × 1 ×
320, and a scale of 1 × 1 × 320; finally, the network provides 4000 × 2048 features over the
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entire dataset. Fig. 6 shows the visual features that were selected from convolutional layers, such
as conv2d_1, conv2d_10, conv2d_52, and conv2d_94. Image recognition performance has been
improved by deep CNN in recent years. InceptionNet is an example of a deep neural network;
therefore, a very good performance is achieved using this architecture, while the computation cost
is very low. The accuracy achieved is credible when the CNN is used in a composite fashion. The
number of convolutional layers of VGG16 is greater than that of AlexNet, and this CNN retains
three fully connected layers [26]. Adding the features of the VGG16 network with InceptionNet
and ResNet50 features in the feature fusion matrix causes an improvement in the overall efficiency
of the proposed model (see Fig. 7 for a detailed view of extracted features and their fusion after
feature selection). In the same manner, in Fig. 7, the feature extraction method including a single
frame is represented, whereas features of all 4000 frames are extracted from the KVASIR dataset.
The size of the feature vector of the same image was different when using different CNN models,
such as ResNet50 (1 × 1000), InceptionNet (1 × 2048), VGG16 (1 × 4096), and LBP (1 × 59).
However, when the visual features of 4000 frames are extracted, the size of the feature set of
every model becomes ResNet50 (4000 × 1000), InceptionNet (4000 × 2048), VGG16 (4000 ×
4096), and LBP (4000 × 59). Subsequently, the best scores are computed by PCA, entropy, and
mRMR methods using the extracted features, which are then fused in a serial fashion that is used
by various classifiers for GI tract disease classification.

Figure 6: Inceptionv3 architecture and visual features selected from layers (conv2d_1, conv2d_10,
conv2d_52 and conv2d_94)

3.3 Features Selection
Three feature selection approaches are analyzed for better feature selection in this study.

3.3.1 PCA
Feature selection methods, such as PCA, is used to reduce the size of the feature vectors.

PCA is utilized for the transformation of the correlated variable into uncorrelated variables, also
called clusters, and to calculate the optimized distance between each cluster to draw principal
components between them. Moreover, PCA computes the learned features, such as handcrafted
and deep CNN extracted features. In addition, the dataset contains information on the common
structure of latent content extracted by PCA. Generally, when the dataset size is very large, PCA
is considered a popular technique in multivariate scenarios [27]. The first and second principal
components, P1 and P2, respectively, are represented with N variables and multiple data samples,
where x1, x2, . . . , xN show the linear combination of variables.

P1 = α11x1 +α12x2+ . . .+α1NxN (5)
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P1 = α1
TX (6)

The first component shows the greatest variance among components in the sample space, and
A= α11, α12, . . . , α1N are the weights that provide the greatest value of P1.

α11
2+α12

2+α1N
2 = 1 (7)

P2 = α21x1+α22x2+ . . .+α2NxN (8)
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Figure 7: CNN and handcrafted features extraction, selection and fusion model

All transformations are performed mostly in matrix multiplication, which makes computation
fast, and P is the overall PCA transformation of the variables, where A is the eigenvector and
diagonal elements are called eigenvalues, which are explained by each principal component [28].

P=XA (9)
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3.3.2 Entropy
Entropy is an optimal feature searching algorithm that resolves the problem of the selected

initial population. It reduces the features based on the highest entropy and computes them
repeatedly up to the final optimal features. The entropy finds the root node and computes all
entities [29].

Entropy=
∑
i

∑
j

X(i, j) log f (i, j) (10)

Then the entropy of ε (LBP) , ε (ResNet) , ε (VGG) and ε (inceptionNet) are defined as

ε(LBP) =Entropy
(
ε(LBP)

)
(11)

ε(ResNet) =Entropy
(
ε(ResNet)

)
(12)

ε(VGG) =Entropy
(
ε(VGG)

)
(13)

ε(inceptionNet) =Entropy
(
ε(inceptionNet)

)
(14)

3.3.3 Minimal-Redundancy-Maximal-Relevance (mRMR)
The heuristic techniques for removing redundant features in the dataset are known as

mRMR [30]. The specific and optimal characteristics were obtained using this method without
compromising the classification accuracy. High-dimensional data increase the error rate of the
learning algorithms and cause overfitting of the model. However, the best features are selected
based on the principal component, entropy, and mRMR. Moreover, the dimensions of the learned
features set were characterized as ResNet50 (4000 × 1000), InceptionNet (4000 × 2048), VGG16
(4000 × 4096), and LBP (4000 × 59), which are illustrated as ResNet50 (4000 × 200), Incep-
tionNet (4000 × 200), VGG16 (4000 × 200), and LBP (4000 × 59), which provide the best
performance of the model.

3.4 Feature Fusion
In the proposed study, various methods of transfer learning are employed, such as ResNet50,

InceptionNet, and VGG16 for feature learning. Several texture feature methods are utilized,
such as LBP, to obtain texture information. However, the best performing deep learning and
handcrafted feature models were selected and represented in this study. The novel approach of
feature fusion is implemented in which the deep model learned features and texture information
of the LBP model were fused serially. The individual feature sets of each method are represented
as:

fLBP =
{
r | r ∈RMXN

}
(15)

where r is the features set of LBP having dimensions 4000 × 59.

fResNet =
{
s | s ∈RMXN

}
(16)

where s is the features set of ResNet having dimensions 4000 × 200.

fVGG =
{
t | t ∈RMXN

}
(17)
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where t is the features set of VGG having dimensions 4000 × 200.

finceptionNet=
{
u | u ∈RMXN

}
(18)

where u is the features set of an inceptionNet having dimensions 4000 × 200. The individual
feature sets are fused with serial concatenation as

γ = fLBP+ fResNet+ fVGG + finceptionNet (19)

∇ = {
γ | γ ∈RMXN

}
is a complete feature set that is used for training the classifier model.

Moreover, fused features are split into training and testing in the classification procedure [31].

3.5 Classification
In the classification method, anomalies are identified and classified by a classifier that takes

a set of fused features at its input and predicts the class label after feature computation. The
accuracy depends on several factors, such as the weight initialization activation function and the
selection of deep layers. Moreover, image preprocessing, learned features, and feature fusion meth-
ods also play an important role in enhancing the model accuracy. However, several classifiers were
trained to predict abnormalities in the frames of the GI tract. In this manner, many classifiers
have been investigated, including linear discriminant, linear support vector machine (SVM), cubic
SVM, coarse Gaussian SVM, cosine KNN, and subspace discriminant. Consequently, subspace
discriminant analysis achieved a high score in accuracy when compared with the other classifiers.

4 Experimental Setup and Results

The performance of the CADx was evaluated in the this study, where the anomalies of the GI
tract were automatically detected and classified using endoscopic frames. Moreover, experiments
are performed using KVASIR as the main dataset, which consists of eight different classes, such
as three normal and five disease classes of endoscopic frames. Similarly, the model was also
evaluated with two other datasets, ULCER and NERTHUS, as state-of-the-art system evaluations.
The evaluation metrics addressed in the prevailing publications are also compared. The proposed
model’s results are reported in tabular form, where features, such as LBP, ResNet50, inceptionNet,
and VGG16 deep CNN models are used for feature learning. The learned features are then serially
fused. Similarly, several tests were carried out, and three of them were chosen based on high
performance. Additionally, the selected models provided the best results in this study. The system
used for all the evaluations was an Intel Core i5-4200U CPU running at 1.60 GHz and 8 GB
RAM.

4.1 Dataset
Three datasets, KVASIR [32], NERTHUS [33], and ULCER [13] were considered in this

study. Annotated KVASIR consists of 4000 images with eight categories, each class containing 500
images. Of the eight classes, a single frame of each class is illustrated in Fig. 8. The major issues
faced by qualified staff are high dimensionality and great similarities between certain disorders.
ULCER datasets consist of 2413 images with three classes namely, bleeding, healthy, and ulcer.
The bleeding class contains 1086 images, the healthy class contains 709 images, and the ulcer class
contains 618 images. This dataset was obtained by colonoscopy.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8: Eight types of classes taken from KVASIR dataset (a) Dyed-Lifted-Polyp (b) Dyed-
Resection-Margins (c) Esophagitis (d) Normal-Cecum (e) Normal-Pylorus (f) Normal-z-Line
(g) Polyps (h) Ulcerative-Colitis

It is an open-source dataset that shows different degrees of bowel cleansing in the GI tract.
The NERTHUS dataset comprises a total of 5525 bowel frames from 21 videos [33]. Tab. 1 lists
the details of each of the datasets mentioned above.

Table 1: Datasets information with modalities

Datasets KVASIR ULCER NERTHUS

Origin Simula Research
Laboratory
Norway [34]

POF Hospital
Pakistan [13]

Simula Research
Laboratory
Norway [33]

Year 2017 2018 2017
Imaging modality Endoscopic Endoscopic Endoscopic
No. of
images/frames

4000 2413 5525 frames

No. of classes 8 3 4
Normal samples
per class

500 1086, 709, 618 500, 2700, 975,
1350

File access Free Free Free
Image type jpg jpg jpg

4.2 Overview of Conducted Experiments on KVASIR Dataset
Various experiments were performed to improve the performance of the proposed model. Of

the several tests, only three that show the best results are presented. A summary of the three
tests performed is presented in Tab. 2. Each test contained eight classes and 4000 images of the
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GI tract, test1 contained collectively 280 features, such as HOG (100), SFTA (21), LBP (59),
and AlexNet (100) features, test2 contained collectively 459 features, such as LBP (59), ResNet50
(200), and VGG16 (200) features, and test3 contained collectively 659 features, such as LBP
(59), ResNet50 (200), InceptionNet (200), and VGG16 (200) features. Performance measurement
parameters were calculated for each test. Test3 reported the best results compared to previous
studies.

Table 2: Overview of conducted experiments

Test/Experiment Classes Total features HOG SFTA LBP ResNet50 InceptionNet VGG16

1 08 280 100 21 59 100 – –
2 08 459 – – 59 200 – 200
3 08 659 – – 59 200 200 200

4.2.1 Test 1(HOG = 100, SFTA = 21, LBP = 59, RESNET = 100 KVASIR DATASET)
In experiment 1, one class out of eight classes contained 500 images; therefore, 4000 images

were used collectively. A 10-fold cross-validation was utilized to evaluate all outcomes. From
several classifiers, only six classifiers were trained, as shown in Tab. 3. Linear SVM performed
well when compared to other classification methods, with an accuracy of 88.9, by consuming a
training time of 35.96 s. The performance evaluation of test1 is presented in Tab. 3.

Table 3: Classification and performance evaluation of test 1

Classifier Sens % Spe % Pre % FPR % ACC % AUC % FNR % Train time (s)

Lin discr 88.5 .98 88.5 .011 88.5 .973 .115 8.43
Lin SVM 89.12 .983 88.87 .017 88.9 .9912 .108 35.96
Cubic svm 87.75 .982 87.625 .017 87.8 .991 .123 55.89
Co-ga svm 87.875 .982 88.25 .017 87.9 .99 .121 74.24
Cosin KNN 83.25 .979 83.25 .020 83.2 .973 .167 17.71
Sub-discr 88 .982 88.375 .017 88.1 .98 .120 57.33

4.2.2 Test 2(LBP = 59, RESNET = 200, VGG16= 200 KVASIR DATASET)
In this experiment, 10-fold cross-validation was used to assess all the results. The subspace

discriminant performance was better than other prediction techniques, with an accuracy of 93.62.
and a training time of 91.079 s. The graphical comparisons of classification methods in terms of
precision, sensitivity, accuracy, and training time are shown in Tab. 4.

4.2.3 Test 3(LBP = 59, RESNET = 200, INCEPTIONNET = 200, VGG16 = 200 KVASIR
DATASET)

In this experiment, 5-fold cross-validation was used to evaluate all results. A total of six
classification methods were used. The subspace discriminant classifier’s performance was the best
in comparison to other prediction methods, with an accuracy of 95.02, and a training time
of 134.09 s; this was found to outperform the methods prevalent in the literature. Graphical
comparisons of classification methods in terms of precision, sensitivity, accuracy, and training
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time for test3 are presented in Tab. 5. The confusion matrix in Tab. 6 shows the satisfactory true
positive values per class for test3.

Table 4: Classification results and performance evaluation of test 2

Classifier Sens % Spe % Pre % FPR % ACC % AUC % FNR % Train time (s)

Lin discr 94 .99 94 .01 93.6 .99 .06 12.32
Lin SVM 94 .99 94 .01 93.6 .99 .06 51.62
Cubic SVM 93.37 .99 93.25 .01 93.5 .99 .069 92.61
Co-ga SVM 93.625 .988 93.75 .012 93.6 .985 .064 115.91
Cosin KNN 88.37 .982 88.25 .017 88.4 .985 .116 24.85
Sub-discr 93.62 .990 93.62 .01 93.6 .993 .064 91.079

Table 5: Classification results and performance evaluation of test 3

Classifier Sens % Spe % Pre % FPR % ACC % AUC % FNR % Training time (s)

Lin discr 97.30 99.20 94.25 .01 94.20 .99 2.7 18.02
Lin SVM 95.10 99.10 94.00 .06 94.25 .997 4.9 87.76
Cubic svm 94.25 99.03 94.30 .01 94.30 1.00 5.75 145.65
Cosin KNN 89.50 99.24 89.75 .02 89.90 .99 10.5 32.18
Bagg tree 83.10 98.01 83.00 .02 82.90 .98 16.9 54.5
Sub-discr 94.87 99.10 94.75 .01 95.02 99 5.3 134.09

Table 6: Confusion matrix of test 3
Predicted Class

A/P d-l-
polyps

d-r-
margins esophagitis n-

cecum
n-
pylorus

n-z-
line polyps u-

colitis

ssal
Clautc

A

d-l-polyps 445 53 2
d-r-

margins 47 453

esophagitis 434 66
n-cecum 497 3
n-pylorus 500
n-z-line 19 1 480
polyps 3 1 492 4

u-colitis 1 2 4 493

4.3 Analyzing Feature Selection Methods
Three feature selection approaches, PCA, mRMR, and entropy-based, were employed to check

for optimal features. A performance comparison of these results is shown in Tab. 7.
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The comparison highlights that the evaluation of the PCA method was better than that of the
other feature selection methods. The maximum achieved accuracy was 95.02% using PCA, with
a training time of 134.09 s, which shows that the proposed approach is better than the previous
approaches. Based on the best results, we selected the configuration of test3, including the PCA
feature selection method. This configuration is considered with other state-of-the-art configurations
for comparison.

Table 7: Comparison between PCA, entropy, and mRMR features selection methods on KVASIR
dataset

Methods Subspace discriminant classifier

Sensitivity
%

Specificity
%

Precision
%

FPR
%

Accuracy
%

AUC
%

FNR
%

Training
time (s)

Entropy 87 63 89 .01 89.5 97 0.145 130.5
PCA 94.87 99.10 94.75 .01 95.02 99 5.3 134.09
mRMR 80 66 89 .03 88.8 97 0.111 1295.1

Table 8: Datasets results comparisons

Classifier Sens % Spe % Pre % FPR % ACC % AUC FNR % Training
time (s)

KVASIR Lin discr 97.30 99.20 94.25 .01 94.20 0.99 2.7 18.02
Lin SVM 95.10 99.10 94.00 .06 94.25 0.997 4.9 87.76
Cubic SVM 94.25 99.03 94.30 .01 94.30 1.00 5.75 145.65
Cosine KNN 89.50 99.24 89.75 .02 89.90 0.99 10.5 32.18
Bagg tree 83.10 98.01 83.00 .02 82.90 0.98 16.9 54.5
Sub-discr 94.87 99.10 94.75 .01 95.02 0.99 5.3 134.09

NERTHUS Method Sens % Spe % Pre % FPR % ACC % AUC % FNR % Training
time (s)

Lin discr 99.5 99.5 99 .05 99.9 1.00 .05 21.502
Lin SVM 99.5 99.4 99 .05 99.9 1.00 .04 49.55
Cubic SVM 99.5 99.0 99 .01 99.9 1.00 .05 99.824
Cosin KNN 99.5 99.2 99 .05 99.9 1.00 .045 58.447
Bagg tree 96.75 99.5 93 .01 98.4 1.00 .04 58.024
Sub-discr 99.8 99.4 99 .01 99 1.00 .05 147.4

ULCER Method Sens % Spe % Pre % FPR % ACC % AUC % FNR % Training
time (s)

Lin discr 99.33 99.96 99.89 .04 99.9 1.00 .67 14.204
Lin SVM 99.33 99.85 99.77 .15 99.8 1.00 .67 18.389
Cubic SVM 100 100 100 .00 100 1.00 .00 29.134
Cosin KNN 98.66 99.55 99.24 .45 99.2 1.00 .34 14.113
Bagg tree 99.10 99.55 99.44 .45 99.2 1.00 .90 23.909
Sub-discr 99.33 99.96 99.90 .04 99.9 1.00 .67 65.65
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4.4 Results Comparisons Between KVASIR, NERTHUS and ULCER Datasets
The model performance was checked with the configurations mentioned in test3 on the other

two datasets (NERTHUS and ULCER). The model also performed well, as shown in Tab. 8.
A comparison of the six classifiers is presented in Tab. 8. Classifiers, such as linear discrimi-
nators, linear support vector machines, cubic SVMs, cosine KNNs, bagged trees, and subspace
discriminators were used for classification. KVASIR was the most challenging dataset, with an
accuracy of 95.02% on the Sub-Discr classifier. The best accuracy on the NERTHUS dataset was
99.9% for the four classifiers, as shown in Tab. 8. Cubic SVM showed the best results with an
accuracy of 100% on the ULCER dataset. The subspace discriminator classifier showed stability
and satisfactory accuracy on all datasets.

4.5 Comparisons with Existing Approaches
Tab. 9 depicts the comparison of the proposed method with the existing approaches. The

proposed system showed better results than the other methods.

Table 9: Datasets results comparisons

Year Refs. GI area Method Results (accuracy) (%)

2017 [34] GI tract Weighted AVG 3 layer CNN 95
2017 [35] GI tract Ensemble texture features 94.2
2018 [18] Stomach SVM, LDA 83
2020 GI tract Classical, deep features fusion, LSVM 95.02

5 Conclusion

Automatic disease detection and classification using endoscopic frames of the GI tract were
addressed in the proposed study. The handcrafted features (LBP) and deep learning features
(VGG16, inceptionNet, ResNet50) were extracted, and their subsets were selected using PCA,
entropy, and mRMR feature selection methods. The subsets were then fused using the serial
feature fusion method. Three datasets were used for the performance evaluation. High accuracies,
such as 95.02%, 99.9%, and 100% on the KVASIR, NERTHUS, and ulcer datasets, respectively,
were achieved. The most stable classifier was the Sub-Discr classifier with a satisfactory overall
accuracy. Our experiments show that techniques such as preprocessing and feature fusion are
efficient techniques that boost the overall performance of the model. Although using this method,
we achieved a fairly high accuracy compared with existing approaches, there is still scope for
further improvement which must be addressed in future research. Using other preprocessing
techniques and deep learning models for feature extraction can improve model performance.
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[21] D. C. Cireşan, A. Giusti, L. M. Gambardella and J. Schmidhuber, “Mitosis detection in breast cancer
histology images with deep neural networks,” in Int. Conf. on Medical Image Computing and Computer-
assisted Intervention, Berlin, Heidelberg, pp. 411–418, 2013.

[22] S. Sornapudi, R. J. Stanley, W. V. Stoecker, H. Almubarak, R. Long et al., “Deep learning nuclei
detection in digitized histology images by superpixels,” Journal of Pathology Informatics, vol. 9, no. 1,
pp. 1–9, 2018.

[23] S. Targ, D. Almeida and K. Lyman, “Resnet in resnet: Generalizing residual architectures,” arXiv
preprint arXiv:1603.08029, 2016.

[24] X. Wang, Y. Lu, Y. Wang and W.-B. Chen, “Diabetic retinopathy stage classification using convolu-
tional neural networks,” in 2018 IEEE Int. Conf. on Information Reuse and Integration, Salt Lake City,
UT, USA, pp. 465–471, 2018.

[25] E. Rezende, G. Ruppert, T. Carvalho, A. Theophilo, F. Ramos et al., “Malicious software classification
using VGG16 deep neural network’s bottleneck features,” in Information Technology-New Generations,
Cham: Springer, pp. 51–59, 2018.

[26] S. Han, J. Pool, J. Tran and W. Dally, “Learning both weights and connections for efficient neural
network,” Advances in Neural Information Processing Systems, vol. 28, pp. 1135–1143, 2015.

[27] Y. Aït-Sahalia and D. Xiu, “Principal component analysis of high-frequency data,” Journal of the
American Statistical Association, vol. 114, no. 525, pp. 287–303, 2019.

[28] S. M. Holland, Principal ComponentsAnalysis (PCA). Athens, GA: Department of Geology, University
of Georgia, pp. 30602–32501, 2008.

[29] M. A. Khan, M. Sharif, M. Y. Javed, T. Akram, M. Yasmin et al., “License number plate recognition
system using entropy-based features selection approach with SVM,” IET Image Processing, vol. 12,
no. 3, pp. 200–209, 2017.

[30] C. Xu, S. Zhao and F. Liu, “Distributed plant-wide process monitoring based on PCA with minimal
redundancy maximal relevance,” Chemometrics and Intelligent Laboratory Systems, vol. 169, pp. 53–63,
2017.

[31] M. A. Khan, T. Akram, M. Sharif, M. Y. Javed, N. Muhammad et al., “An implementation of opti-
mized framework for action classification using multilayers neural network on selected fused features,”
Pattern Analysis and Applications, vol. 22, no. 4, pp. 1377–1397, 2019.

[32] K. Pogorelov, K. R. Randel, C. Griwodz, S. L. Eskeland, T. de Lange et al., “Kvasir: A multi-
class image dataset for computer aided gastrointestinal disease detection,” in Proc. of the 8th ACM on
Multimedia Systems Conf., Taipei, Taiwan, pp. 164–169, 2017.

[33] K. Pogorelov, K. R. Randel, T. de Lange, S. L. Eskeland, C. Griwodz et al., “Nerthus: A bowel
preparation quality video dataset,” in Proc. of the 8th ACMonMultimedia SystemsConf., Taipei, Taiwan,
pp. 170–174, 2017.

[34] K. Pogorelov, P. T. Schmidt, M. Riegler, P. Halvorsen, K. R. Randel et al., “Kvasir,” in Proc. of the 8th
ACM on Multimedia Systems Conf., Taipei, Taiwan, pp. 164–169, 2017.

[35] S. S. A. Naqvi, S. Nadeem, M. Zaid and M. A. Tahir, “Ensemble of texture features for finding
abnormalities in the gastro-intestinal tract,” in MediaEval, 2017.


