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Abstract: Vehicle type classification is considered a central part of an intel-
ligent traffic system. In recent years, deep learning had a vital role in object
detection in many computer vision tasks. To learn high-level deep features
and semantics, deep learning offers powerful tools to address problems in
traditional architectures of handcrafted feature-extraction techniques. Unlike
other algorithms using handcrated visual features, convolutional neural net-
work is able to automatically learn good features of vehicle type classification.
This study develops an optimized automatic surveillance and auditing system
to detect and classify vehicles of different categories. Transfer learning is used
to quickly learn the features by recording a small number of training images
from vehicle frontal view images. The proposed system employs extensive data-
augmentation techniques for effective training while avoiding the problem
of data shortage. In order to capture rich and discriminative information of
vehicles, the convolutional neural network is fine-tuned for the classification
of vehicle types using the augmented data. The network extracts the feature
maps from the entire dataset and generates a label for each object (vehicle) in
an image, which can help in vehicle-type detection and classification. Experi-
mental results on a public dataset and our own dataset demonstrated that the
proposed method is quite effective in detection and classification of different
types of vehicles. The experimental results show that the proposed model
achieves 96.04% accuracy on vehicle type classification.

Keywords: Vehicle classification; convolutional neural network; deep
learning; surveillance

1 Introduction

Surveillance systems have achieved good results in terms of security. Image analysis, such as
detecting a moving vehicle in an image, is a challenging task that can be solved by analyzing
the foreground [1]. Dramatic improvements have been observed in the areas of speech recognition
and document recognition genomics for automation technologies [2]. Major issues in surveillance
systems include brightness, lighting, occlusion of shadows, and fragmentation, and all have a
negative impact on objects to be detected [3,4]. Much research has been done on vehicle-type
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recognition systems that include handcrafted feature-extraction techniques such as speeded-up
robust features (Surf), local binary patterns (LBPs), histogram of gradients (HOG) [5], annular
coil, radar detection radio wave or infrared contour scanning, vehicle weight, and laser sensor
measurement [6,7]. Automatic detection and classification of vehicle types using a convolutional
neural network (CNN) is an unsolved problem. Deep CNNs [8,9], as well as extensively annotated
datasets (e.g., ImageNet [10]), have brought remarkable progress in image recognition. Deep learn-
ing approaches are useful for feature extraction, and selection without prior knowledge has been
investigated [11]. The most popular form of deep learning model, the CNN, consists of a series
of convolutional layers followed by pooling layers and fully connected layers. The convolutional
layer forms feature maps within which each unit is associated with a set of weights called filters.
The pooling layer computes the sampling feature maps by summarizing the presence of feature
maps. The fully connected layers are used for classification. All the weights are updated by
gradient-based learning.

In this research, we employed the AlexNet CNN architecture and customized its network
layers and options according to our classification objectives. Image features are the primary ele-
ments for any object detection. The model extracts the features from the training dataset through
convolutional and pooling layers. The proposed model works on backpropagation gradients that
help to reduce the discrepancy between the correct output and that produced by the system. The
CNN helps learns the semantics of the categories of vehicle images so as to produce accurate
detection and classification results.

The key contributions of this work follow.

• Vehicles are automatically detected and classified irrespective of brightness, lighting, occlu-
sion of shadows, and fragmentation.

• The AlexNet model is used to classify vehicle types by customizing layers according to the
problem domain.

• Deep learning helps to automatically learn features through filters in the convolutional layer.
• The system helps in vehicle-tracking systems in commercial parking areas and assists in

counting the number of vehicles on a road.

2 Related Work

The classification of vehicles is a challenging problem in the field of vision-based surveillance.
There is huge within-class variability in vision-based vehicle detection systems, as vehicles may
differ in color, size, and shape, illumination can vary, and background can be cluttered. Further-
more, the appearance of vehicles depends on their posture and might be affected by neighboring
objects [12]. Shallow classification models are used by traditional image classification systems, such
as support vector machine (SVM) [13], Bayesian [14], random forest (RF) [15], and boosting [16],
to extract features for classification, such as local binary patterns (LBP), histogram of oriented
gradients (HOG) [17], and scale-invariant feature transform (SIFT) [18]. These methods rely
on hand-designed features. Shallow models are trained by original training data with limited
fitness in representation learning [8]. Fu et al. [19] proposed a hierarchical multi-SVM method
for vehicle classification. Other methods include a real-time system for multiple vehicle detection
and classification using a Gaussian mixture model with hole filling algorithm (GMMHF), Gabor
kernel for feature extraction, and multi-class vehicle classification [20]. Use of a CNN to classify
images marks a massive revolution. Some deep learning techniques surpass humans on tasks like
face recognition and image classification [21–23]. Machine learning techniques have seen successful
application, and are considered the best choice compared to neural networks and support vector
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machine for vehicle detection and classification [24]. Roadside LiDAR sensors [25], frequency-
modulated continuous-wave (FMCW) radar signals [26], sensors for vehicle classification and
counting [27], and distributed optical sensing technology in vibration-based vehicle classification
systems [28] also play a significant role in vehicle classification.

3 Proposed System

Increased traffic has become an issue in many towns and cities, causing serious traffic conges-
tion problems. This paper develops a simple and efficient vehicle-type recognition system using a
CNN model. The framework, as shown in Fig. 1, includes three steps: a) preparing the dataset;
b) feature extraction by CNN; and c) classification of test data.

Preparing the Dataset Feature extraction by CNN Classification of theTest
data 

Figure 1: Proposed framework for vehicle-type detection and classification

3.1 Preparing the Dataset
For effective learning patterns, a huge amount of data is required for a deep learning-

based approach. The effective deployment of deep learning models requires abundant high-quality
data [13]. To attain the desired accuracy, we apply four data-augmentation techniques to extend
the dataset. Tab. 1 shows the extended dataset. Data augmentation includes flipping, skewness,
rotation, and translations for geometric transformation invariance. The second column in Tab. 1
lists techniques, and the third column shows their invariance parameters.

The four augmentation techniques and 16 parameters extend each sample to form 16 samples.
Tab. 2 shows eight classes of vehicles: bike, bus, car, horse buggy, jeep, rickshaw, truck, and
van. The third column presents the number of images of each vehicle type before and after
augmentation. The purpose of augmentation is the effective deployment of the deep learning
model. It also helps to avoid overfitting and memorizes the targeted details of the training images.
All of the images in the dataset are preprocessed to the size of 227 (width) × 227 (height) × 3
(color channels) to prepare for training.
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Table 1: Different techniques of data augmentation with respective parameters

No. Techniques of data augmentation Parameters

1. Flip Top
Left
Bottom
Right

2. Shear Along X-axis at 10◦
Along Y-axis at 10◦

3. Rotation 90◦
60◦
45◦
−45◦
−60◦
−90◦

4. Skewness Left
Right
Forward
Backward

Table 2: Statistics of vehicle type data set before augmentation and after augmentation

No. Vehicle type Number of images

Before augmentation After augmentation

1 Bike 40 640
2 Bus 37 592
3 Car 37 592
4 Horse buggy 47 752
5 Jeep 35 560
6 Riksha 50 800
7 Truck 45 720
8 Van 51 816

3.2 Feature Extraction by CNN
In the proposed system, the AlexNet CNN architecture is fine-tuned [9], as shown in Fig. 2.

AlexNet has eight layers. Five are convolutional (conv) layers, where conv1, conv2, conv3, and
conv4 are followed by the max-pooling layer, and the last three are fully connected layers. Dataset
features are extracted by applying a deep CNN model containing manifold convolutional layers. A
feature map (fmap) that represents a higher-level abstraction of the input data is generated by each
convolutional layer. The fmaps of the starting convolutional layers extract low-level features such
as color, shape, corners, and edges, and the fmap of the last convolutional layer includes the high-
level features, which are forwarded to the fully connected layers for classification. Tab. 3 provides
an architectural analysis of each layer of the fine-tuned AlexNet model. The first convolutional
layer is produced by applying a filter of size 11×11×3 on an image of size 227×227×3. Images
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are convolved with their respective filters. The convolutional layers detect the same features at
different locations in an image. Layers learn all the edges and blobs of the images in the dataset
by learning the 34,944 parameters.

Figure 2: Architecture of fine-tuned Alex net CNN mode

Table 3: LayerWise analysis of CNN architecture of Alex net model

Layer name Size of layer Weights Biases Parameters

Input image 227× 227× 3 0 0 0
Conv-1 55× 55× 96 34,848 96 34,944
MaxPool-1 27× 27× 96 0 0 0
Conv-2 27× 27× 256 614,400 256 614,656
MaxPool-2 13× 13× 256 0 0 0
Conv-3 13× 13× 384 884,736 384 885,120
Conv-4 13× 13× 384 1,327,104 384 1,327,488
Conv-5 13× 13× 256 884,736 256 884,992
MaxPool-3 6× 6× 256 0 0 0
FC-1 4096× 1 37,748,736 4096 37,752,832
FC-2 4096× 1 16,777,216 4096 16,781,312
FC-3 8× 1 32,768 8 32,776
Output 8× 1 0 0 0

The number of parameters of the convolutional layer is formulated as

Wc =K2×C×N, (1)

Bc =N, (2)

Pc =Wc+Bc, (3)

where

WC = number of weights of the convolutional layer,

BC = number of bases of the convolutional layer,

PC = number of parameters of the convolutional layer,

K = size of kernels used in the convolutional layer,

N = number of kernels,
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C = number of channels of the input image.

The size (O) of the output tensor (image) of the maximum pool layer is formulated as

O= I −Ps
S

+ 1, (4)

where

O= size of output image,

I = size of input image,

S= stride of the convolution operation,

Ps= pool size.

The number of parameters is formulated as

Wff = F−1×F , (5)

Bff = F , (6)

Pff =Wff +Bff , (7)

where

Wff = number of weights of an FC layer which is connected to an FC layer,

Bff = number of biases of an FC layer which is connected to an FC layer,

Pff = number of parameters of an FC layer which is connected to an FC layer,

F = number of neurons in the FC layer,

F−1 = number of neurons in the previous FC layer.

Fig. 3 shows the features extracted from an image by the deep CNN model. In the first
convolutional layer, conv1 extracts the edges and blobs, conv2 and conv3 extract the texture, conv4
and conv5 extract the object parts, and the last fully connected layer detects the object classes.

3.3 Vehicle Type Classification
We discuss the classification of multiple categories of vehicles through several experiments

on the dataset. The parameters used in the AlexNet model were customized for optimal results.
The network was trained by splitting the dataset into 70% for training and 30% for validation.
The activations of the pre-trained model learned patterns in different datasets through transfer
learning. All the layers of the pre-trained network were extracted, except the last three layers,
which were configured for 1000 classes. We fine-tuned these three layers for our classification
problem. Training was optimized by setting the minibatch size to 7, maximum epochs to 35, and
learning rate to 1e−5. Experiments were evaluated using MATLAB with a deep learning toolbox.
The proposed model was trained on a GPU. The elapsed time was 47 s. The model took random
images from the validation dataset and accurately labeled them according to their type. Fig. 4
shows random images from the training dataset, classified with their class labels from the testing
(validation) dataset. Images were correctly classified according to their type, except the one in
the third row and first column; this means that the model needed more data for training of that
particular image to give better results.
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Vehicle type Conv1 Conv2 Conv3 Conv4 Conv5

Bike

Bus

Car

Jeep

Rickshaw

Truck

Van

Horse buggy

Figure 3: Features extraction of the 5 convolutional layers

Figure 4: Random images of vehicles from training dataset
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3.4 Evolution Method
We present accuracy as the evaluation method. This is computed with the help of a confusion

matrix, as shown in Fig. 5, which shows the performance of the algorithm for each class of
vehicle. Accuracy shows the percentage of the correctly predicted class in the entire testing dataset,
and is formulated as

Accuracy= correctly predicted class
total testing class

× 100. (8)

Figure 5: Confusion matrix of the optimized vehicle classification approach

4 Results and Discussion

We discuss the experimental assessment for the detection and classification of vehicle types.
We evaluated the dataset with the stochastic gradient descent with momentum (SGDM) and adap-
tive moment estimation (Adam) algorithms with epochs ranging from 10 to 40. The optimizers
were used to change the weights of CNN to reduce the losses. During training, optimization is a
key component that helps the model to adjust weights during backpropagation [29,30], which is
formulated as:

repeat until convergence{θj := θj−∝ ∂

∂θj
j (θ0, θ1)} (9)

where j = 0, 1 represents the feature index number.
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4.1 Results with SGDM Optimizer
The gradient vectors were accelerated in the right direction, leading to fast convergence with

the help of SGD with momentum (SGDM) [31]. We trained the model with an SGDM optimizer
by applying different epochs. The SGDM algorithm is formulated as:

ϑ = θ −α.�J (θ .h (i) ; h (j)) (10)

h (i) ; h (j) are the training data

ϑ = updated weight

α = learning rate

�J = cost function.

The model first trained with 10 epochs, giving 94.06% accuracy with a collapse time of 15 s.
For better performance, the model was trained further with 15, 20, 25, 30, 35, and 40 epochs.
The number of iterations is directly proportional to the number of epochs. It is observed that
the system showed the best result on epoch 35, with 95.02% accuracy. System performance then
started to decline due to overfitting.

4.2 Results with ADAM Optimizer
The Adam optimizer iteratively updated the network weights in the training dataset [29].

After training the model with an SGDM optimizer, it was assessed with an Adam optimizer for
improved accuracy. The Adam algorithm is formulated as:

m̂t = mt

1−βt1
(11)

v̂t = vt
1−βt2

(12)

where

m (t) and v (t) are the first estimation moment and second estimation moment respectively.

The model was trained with the same number of epochs as previously described. It is observed
that the best result obtained with the Adam optimizer was at 35 epochs, with 90.10% accuracy.
The literature shows that SGDM performs better than Adam in reducing the loss [31]. The
experimental results in Tabs. 4 and 5 show that the accuracy of the model with SGDM was
95.02% with 46 s training time, while the accuracy with Adam was 90.10%, with a training time
of 50 s. Therefore, SGDM provided better accuracy than Adam.

4.3 Model Accuracy with SGDM Optimizer and Different Learning Rates
For more convincing results, the model was evaluated with different learning rates with 35

epochs, which gives the best results in Tabs. 4 and 5. The learning rate determines the step size
at each iteration in an optimization algorithm. It is a tuning parameter that minimizes the loss
function [32,33]. The model was trained again with SGDM and 35 epochs, with learning rates
ranging from 1e−3 to 1e−6. The learning rate affected the quick convergence of the model toward
local minima. It improved the performance of our model from 95.02% to 96.04% by adjusting
the learning rate α = 1e−5, as shown in Tab. 6.
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Table 4: Model accuracy with SGDM optimizer

Optimizer Epochs Iteration Iteration/epoch Validation accuracy (%) Training time (s)

SGDM 10 70 7 94.06 15
SGDM 15 105 7 94.06 20
SGDM 20 140 7 94.06 26
SGDM 25 175 7 94.06 33
SGDM 30 210 7 94.08 41
SGDM 35 245 7 95.02 46
SGDM 40 280 7 88.42 54

Table 5: Model accuracy with ADAM optimizer

Optimizer Epochs Iteration Iteration/epoch Validation accuracy (%) Training time (s)

ADAM 10 70 7 84.16 15
ADAM 15 105 7 85.12 20
ADAM 20 140 7 87.11 29
ADAM 25 175 7 88.15 30
ADAM 30 210 7 89.12 43
ADAM 35 245 7 90.10 50
ADAM 40 280 7 87.13 58

Table 6: Model accuracy with SGDM optimizer with different learning rates

Optimizer Epochs Learning rate Training time (s) Validation accuracy (%)

SGDM 35 1e−6 52 88.12
SGDM 35 1e–5 47 96.04
SGDM 35 1e−4 46 95.02
SGDM 35 1e−3 45 76.3

Figs. 6 and 7 show the training progress of the model used in this study. The upper graphs
show the accuracy of the model, which is measured by the performance estimated on a set of
samples from the test data. The lower graph shows the loss of the model. It is computed by the
gradient of the loss function concerning the parameters [34], and it shows the gap between the
actual and expected output scores. During the first epoch, the rate of accuracy increased from
20% to 80% due to backpropagating gradients that updated the maximum weights of the filters
in our classification task. For this, SGDM was set at a learning rate of 0.00001. This allowed
for fine-tuning to make progress in the remaining epochs. The accuracy fluctuated between 80%
and 95% because the maximum number of weights had been trained. Similarly, during the first
epoch, the loss decreased dramatically from 2.5 to 0.5 in each iteration; the model minimized the
error by updating the weights. By the completion of 35 epochs, the proposed model had 96.04%
accuracy on the validation dataset.
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Figure 6: Best result with SGDM optimizer

Figure 7: Best result with Adam optimizer

4.4 Comparative Analysis
We evaluated the proposed method against state-of-the-art deep learning methods [35]. Dong

used CNN for automatic feature extraction by classifying four categories of vehicles, with 89.4%
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accuracy. Another method, based on a comparative analysis of ANN, SVM, and logistic regres-
sion, classified small vehicles and big vehicles with 93.4% accuracy. Huttuman automatically
extracted features using deep neural networks, and classified four classes of vehicles with 97%
accuracy. Adu Gyamfi used a deep CNN to classify 13 vehicle classes with 89% accuracy. The last
two methods, as mentioned in Tab. 7, used LeNet, AlexNet, VGG-16, and an inception module
for vehicle classification, with respective accuracies of 80% and 80.3% which are much lower
than those of our proposed system. Our method achieved better accuracy than all of the above
methods except the Huttuman approach, whose accuracy was high, but could classify only four
classes of vehicles while the proposed method classified eight classes of vehicles. Tab. 7 shows a
comparative analysis of the proposed method.

Table 7: Comparative analysis of the proposed method

No. Publications Accuracy
(%)

Key features Vehicle classes Vehicle
categories

1 Dong et al. TITS’ 15 [36] 89.4 Automatic feature
extraction using CNN and
Softmax classifier for
multi-task learning

Truck, minivan,
passenger car, sedan

4

2 Denis et al.’ 15 [24] 93.4 ANN, SVM, Logistic
regression

Light motor vehicle,
high motor vehicle

2

3 Huttuman et al.’ 16 [37] 97 Automatically extracted
features using DNN

Bus, truck, van,
small car

4

4 Adu_Gyamfi et al.’ 17 [38] 89 Deep convolutional neural
network

13 vehicle classes 13

5 Audebert et al.’ 17 [39] 80 LeNet, AlexNet, VGG-16
for vehicle classification

Sedans, vans,
pickups, trucks

4

6 Tan et al., 18 [40] 80.3 AlexNet and inception
module for vehicle
classification

Sedans, vans,
pickups, trucks

4

7 Proposed system 96.04 CNN with SGDM and
ADAM optimizer

Bus, van, truck, bike,
car, Jeep, Horse
Buggy

8

5 Conclusion

Our method detects and classifies multiple classes of vehicles through a deep learning model.
It can help in vehicle tracking systems for surveillance in big parking slots where security is a
concern. It can help solve traffic issues by directing large vehicles to one side of a road and keep
the traffic moving by knowing what vehicles are ahead in a queue. This research will help by
classifying the vehicles in parking zones and automatically allocate tickets according to vehicle
types. The accuracy of the model can be improved by increasing the sample size.
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