
echT PressScienceComputers, Materials & Continua
DOI:10.32604/cmc.2021.014759

Article

An Optimized Convolutional Neural Network Architecture Based on
Evolutionary Ensemble Learning

Qasim M. Zainel1, Murad B. Khorsheed2, Saad Darwish3,* and Amr A. Ahmed4

1College of Physical Education and Sports Sciences, University of Kirkuk, Kirkuk, 36001, Iraq
2College of Administration & Economics, University of Kirkuk, Kirkuk, 36001, Iraq

3Department of Information Technology, Institute of Graduate Studies and Research, Alexandria University,
Alexandria, Egypt

4Department of Computer Engineering, Alexandria Higher Institute of Engineering & Technology (AIET),
Alexandria, Egypt

*Corresponding Author: Saad Darwish. Email: saad.darwish@alexu.edu.eg
Received: 14 October 2020; Accepted: 15 April 2021

Abstract: Convolutional Neural Networks (CNNs) models succeed in vast
domains.CNNsare available in a variety of topologies and sizes. The challenge
in this area is to develop the optimal CNN architecture for a particular issue
in order to achieve high results by using minimal computational resources to
train the architecture. Our proposed framework to automated design is aimed
at resolving this problem. The proposed framework is focused on a genetic
algorithm that develops a population of CNN models in order to find the
architecture that is the best fit. In comparison to the co-authored work, our
proposed framework is concerned with creating lightweight architectures with
a limited number of parameters while retaining a high degree of validity accu-
racy utilizing an ensemble learning technique. This architecture is intended
to operate on low-resource machines, rendering it ideal for implementation
in a number of environments. Four common benchmark image datasets are
used to test the proposed framework, and it is compared to peer competitors’
work utilizing a range of parameters, including accuracy, the number of model
parameters used, the number of GPUs used, and the number of GPU days
needed to complete the method. Our experimental findings demonstrated a
significant advantage in terms of GPU days, accuracy, and the number of
parameters in the discovered model.

Keywords: Convolutional neural networks; genetic algorithm; automatic
model design; ensemble learning

1 Introduction

Convolutional Neural Networks (CNNs) design has become a rapidly growing area, requiring
significant effort on the part of researchers [1]. Numerous common state-of-the-art CNN architec-
tures, such as ResNet [2] and GoogleNet [3], are generated manually by experts. These methods are
mostly iterative in nature and necessitate a thorough understanding of the architecture dimensions

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

http://dx.doi.org/10.32604/cmc.2021.014759

3814 CMC, 2021, vol.69, no.3

of CNN models. To address this issue, a research path is taken that focuses on the automation
of CNN design through artificial intelligence techniques. The approaches to automated CNN
programming are classified into a variety of methodologies, the majority of which are focused
on Evolutionary Algorithms (EAs), such as Particle Swarm Optimization (PSO) or Reinforcement
Learning (RL) [4]. For RL-based methods, such as those described in [5–10], these methods rely
heavily on recurrent networks to serve as the controller for model generation. This approach con-
sumes a significant number of computational power. For instance, in Neural Architecture Search
(NAS) [5], the process requires 800 Graphical Processing Units (GPUs) over a three-week span.
The successor researchers attempted to reduce computation costs by efficiency enhancements, as
described in [6–10], but the RL methods still need a massive computational overhead, ranging
from 400 GPUs for 4 days to more than 30 GPUs for 3 days.

For the PSO-based methods described in [11–13], the researchers must discretize the naive
PSO, as architecture design is a discrete optimization problem and PSO is continuous in
nature [14]. Additionally, the binary PSO inherits certain limitations, one of which is its poor
convergence rate [15]. As a consequence, the PSO must be changed to account for the fact that
it demands additional work overhead in addition to its high computational expense, which is
particularly visible for broad image datasets [16]. EA-based methods are paradigmatic to natural
selection [17]. Parallelism is enabled by EAs, which assists in preventing local optima. Genetic
Algorithms (GAs) are the most often used EA technique [18]. GAs have been applied in a
broad variety of domains and have demonstrated their ability to solve a variety of optimization
problems, especially multi-objective problems [19]. In the CNN automated design domain, GA-
based methods such as those described in [20] achieved approximately the same efficiency as
RL-based methods thus using significantly less resources and time.

When developing lightweight architectures, the designer must take into account the number
of parameters, as in MobileNet [21] and SqueezeNet [22]. MobileNet and SqueezeNet have used a
mix of basic filters to reduce the architecture’s trainable parameters, thus speeding up training [23].
The issue is that since accuracy is proportional to the number of parameters in the model,
the designer must prioritize model size while maintaining accuracy, which is deemed a difficult
task [24]. Additionally, manually constructing these models is a difficult challenge due to the
designer’s need to handle the various forms of layers and their parameters.

1.1 Novelty and Contribution
To create our proposed paradigm, we considered the following hypotheses: (1) manually

designing CNNs is a time-consuming process that results in suboptimal topologies; (2) using
lightweight CNN building blocks will result in a reduction in the number of parameters in
discovered models; (3) produced structures would outperform manually designed structures. We
consider introducing an automated GA-driven paradigm based on these working hypotheses. The
proposed structure is novel in that it completely automates the process of defining lightweight
CNN architectures that better match the defined domain dataset in terms of validation accuracy
and parameter count.

The achievements estimated to make the study effective and have an effect on the sci-
ence domain are grouped into three major categories in this proposed work: (1) Architecture
Search Method: Introducing an encoding method for variable-length multi-level chromosomes
that denotes the CNN model topology that can be used by a specified evolutionary algorithm
approach; (2) Architecture Building Elements: Dealing with lightweight building blocks to cus-
tomize the proposed framework in order to generate CNN topologies with a small number of

CMC, 2021, vol.69, no.3 3815

parameters with predefined parameters; and (3) Ensemble Learning: Build a tailored ensemble at
the completion of our system to improve the performance of a committee of the best generated
CNN architectures obtained via the proposed framework’s search mechanism.

2 Related Work

This section would discuss similar work on automated CNN design methods that use GA.
In [20] the authors addressed a technique named Genetic CNN “GeNet” for optimizing CNN
architectures by the use of GA. It is based on graph evolution and operates by connecting various
convolutional layer nodes. Since the chromosomes are set in duration in this encoding process,
the number of CNN nodes and stages must be predefined, preventing the exploration of several
different CNN structures. Additionally, since the GeNet method only encodes layer connections,
it does not accept other hyperparameters such as the number of generated feature maps, kernel
size, dropout rates, or layer pooling.

In [25], a system dubbed “EDEN” was proposed that utilizes GA with two genes chro-
mosomes reflecting the learning rate and a CNN structure. The learning rate gene encodes the
value used to train each produced structure. The structure gene specifies the order of the CNN
layers and the sort of operations performed by each layer. However, this method of encoding
chromosomes with a fixed size results in shallow CNN-generated topologies; additionally, this
method does not support skip connections or layer pooling. In [26], the authors addressed a
completely automated approach-based GA named “AE-CNN” that evolves CNN topologies using
blocks from ResNet and DenseNet. The developers asserted that their algorithm does not need
any predefined expert experience to operate efficiently. This strategy needs several GPU days
to complete. The authors of [27] suggested a methodology dubbed “CGP-CNN” that employs
Cartesian Genetic Programming (CGP) for CNN topology generation. This strategy considers
six distinct layers. Due to the predefined matrix dimension, CGP-CNN can only explore a finite
number of CNN constructs. According to their experiments, the cost of CGP-CNN calculation
is extremely high due to the time-consuming nature of the CNN fitness assessment method.

In addition to the majority voting ensemble, the authors in [28] utilized pre-trained CNN
models in the initial population. However, since the produced models are based on basic building
elements, the performance accuracy is poor. Recent work in [4] developed a completely auto-
mated design algorithm dubbed “CNN-GA” for generating a chromosome based on real numbers.
The primary disadvantage is that the chromosome number is predetermined. Additionally, they
neglected to account for the completely linked layers that would be encoded inside the created
chromosome. We assume that the following gaps exist between the above associated approaches:
(1) The majority of similar methods are impractical since they need a large amount of com-
putational power and time to operate; (2) The design of lightweight CNN topologies was not
contemplated in these approaches; and (3) The majority of methods did not address the possibility
of integrating the generated models within an ensemble structure.

3 The Proposed Framework

The proposed framework’s overall workflow is depicted in Fig. 1, and it is divided into three
major phases: (1) it begins with the generation of an initial random CNN population for use in
the GA search process; (2) it uses the GA-based search algorithm to navigate the solution space;
and (3) it uses the customized stack ensemble technique to improve the overall output validation
accuracy from the GA search process. In the following sub-sections, we describe each part in depth
to demonstrate how it works.

3816 CMC, 2021, vol.69, no.3

Figure 1: The proposed framework

CMC, 2021, vol.69, no.3 3817

3.1 Encoding Method
The proposed framework employs an encoding technique to construct the GA chromosomes

that describe the created CNN architectures. Unlike the GeNet method, which is based on a one-
dimensional fixed binary encoded chromosome, we suggested a variable multi-level chromosome
that encodes CNN parameters using real strings. The following are the benefits of using a multi-
level encoding scheme for our chromosomes: (1) It supports a variety of data types; (2) The
chromosomes may be expanded in terms of layers inside each block. This chromosome represents
a set of blocks; the suggested encoding procedure arbitrarily initializes the number of blocks. Each
block is composed of many layers that are randomly initialized. The layer is composed of CNN
components.

These components are stored in the components list Lc, which allows the encoding algorithm
to choose one or more elements from which to build the layer inside the block. The convolutional
module (F), the ReLU activation function (R) [29], batch normalization (B) [30], and dropout
units (D) [31] are the layer components. The convolutional module can be Normal Convolution
(NC), Depth-Wise Separable Convolution (DSC), or squeeze net fire. The use of various types
of convolution, particularly the second and third, enables us to meet the requirement for a
lightweight CNN architecture. The method specifies the output (Out) for each block in the
produced chromosome. At the end of the chromosome, there is a final block that indicates the
existence or absence of fully connected layers in the created CNN model.

3.2 Architecture Search Framework
The central component of our proposed system is the GA-based search approach [32]. The

proposed framework begins by initializing some of GA’s primary parameters. A random popu-
lation of initial CNN architectures is produced using the proposed technique of encoding the
CNN chromosomes as nested layers inside sequential blocks. The proposed structure procedure
is based on a central iteration loop that regulates evolution through generation. The learning
rate is known to be the most critical hyperparameters to tune while training deep CNNs. The
Cyclic Learning Rate (CLR) [33] is used in our case since it practically eliminates the need to find
the optimal values and schedule for global learning rates experimentally. Early Stopping (ES) is
another technique that is used during the training phase [34] and it is a well-known strategy for
reducing overfitting during training. This technique significantly reduces training time, as we are
training a large number of different created architectures in our case.

The trained CNN is then validated using the given validation dataset in the second stage.
The third operation is an assessment process that involves computing the CNN chromosome’s
fitness, which in this case is the validation accuracy. The system then selects a predefined number
of fittest validated CNN chromosomes and saves them in a list that includes the GA Elitism
chromosomes [35]. It mitigates genetic drift by ensuring that the right chromosomes pass on their
characteristics across generations. This technique enables the GA to rapidly converge [36]. The GA
selection procedure is based on the “Roulette Wheel” strategy of selection [37]. A two-dimensional
array is constructed that includes the index of each chromosome, its fitness value, and its prob-
ability of selection value. Various operations are performed on the list during the framework
process, such as inserting or deleting individuals based on their fitness, as the chromosomes may
be substituted by the fittest component of each generation. Additionally, the list is iteratively
sorted after each generation. The individual’s fitness function fi is determined as follows:

fi = TP+TN
TP+FP+TN +FN

(1)

3818 CMC, 2021, vol.69, no.3

where TP “True Positives” is the class instances number that is recognized correctly, TN “True
Negatives” is the class instances number that is recognized correctly which do not belong to
the class, “False Positives” FP is the class instances number that the instances were mistakenly
assigned to the class, and “False Negatives” FN is the class instances number that the instances
were not recognized within the class instances.

To produce new offspring, the mechanism employs crossover and mutation at predefined
rates that are initialized at the algorithm’s outset. The framework must expand its search space
to include different regions in order to increase the consistency of solutions, prevent premature
convergence, and maintain chromosome diversity; the framework then enters a loop to verify chro-
mosome similarity. The following two Equations describe the relation of two CNN chromosomes
ci and cj:

Similarity
(
ci, cj

) =

⎧⎪⎪⎨
⎪⎪⎩

∣∣ci ∩ cj
∣∣

|c| , if n(i)
B = n(j)

B

0, otherwise

(2)

Similarity
(
Bik , Bjk

) =

⎧⎪⎪⎨
⎪⎪⎩

∣∣Bik ∩Bjk
∣∣

|Bk|
, if n(ik)

L = n(jk)
L

0, otherwise

(3)

These similarity equations are influenced by the one used in [38], but as previously mentioned,
the suggested encoding scheme relies on blocks to build the CNN chromosome, and each block
has its own layers. Thus, we must first evaluate the number of blocks nB in the ci and cj to
ensure that the blocks are identical in size, and then the number of layers nL inside each block to
determine the size of the specified block in one chromosome Bik compared to the corresponding
block in the other chromosome Bjk . If they are of similar scale, the system verifies that they share
common components such as the ReLU activation function, batch normalization, and dropout
units. The suggested framework prevents duplications by repairing the population of CNN entities
by mutation.

The new generation is created by combining the existing generation’s descendants with the
elite list. Prior to progressing to the next generation, the framework saves the CNN individual
with the highest validity accuracy in a list called “Top Global” TG list, which includes the Top-1
CNN architectures from each generation. The key loop iterates until the predefined limit number
of generations has been reached. Each CNN in the TG list has a retraining step that optimizes
the weights of these CNN architectures over a predefined number of epochs. The proposed
framework’s final step makes use of the stacked ensemble, in which each CNN individual with
its qualified weights in the global list is combined into the stack ensemble model. To obtain the
overall prediction accuracy, the ensemble model is learned and validated.

3.3 The Customized Stack Ensemble
Finally, we add a customized stacking ensemble to the suggested structure [39]. The stacking

ensemble approach blends several first-level classifiers by feeding their outputs to a higher-level
second-level classifier (meta-classifier). The meta-level classifier is regarded as the ensemble com-
mittee’s master classifier. This committee is made up of a variety of base classifiers. Each member
of the committee receives unique training in order to obtain varying degrees of classification

CMC, 2021, vol.69, no.3 3819

accuracy. Thus, the best CNN architectures saved in the TG list are used as the base classifiers,
while the meta-classifier is chosen to be a completely linked neural network that concatenates
the output classification weights from each trained CNN base model’s final layer. To obtain new
validation accuracy, the meta-classifier is trained and tested on the benchmark dataset.

3.4 Architecture Building Elements
The lightweight CNN models rely heavily on convolutional modules, which have a small

number of trainable parameters in comparison to the standard convolutional module. As a result,
we proposed that the layers within the created CNN chromosome blocks be constructed using a
modified squeeze fire module. The updated fire module is constructed using Depth-wise Separable
Convolution (DSC fire Module) rather than Squeeze Net’s initial fire module, which is constructed
using natural convolution (NC fire Module). As opposed to the initial NC fire module, this
module reduces the amount of parameters by 68.34 percent [40]. The number of parameters
(PFIRE−DSC) is calculated according to:

PFIRE−DSC = I ∗OS+OS ∗OE +OS ∗SK ∗SK (4)

where I denotes the number of layer input channels, OS denotes the number of channels of
squeeze layer output, OE denotes the number of channels of the expand layer output, and SK is
the size of the kernel. The skip connection is a structural feature [41]. It functions as shortcuts
through the layers, allowing the system to bypass one or more layer. The following explanations
justify the usage of skip connections in our work: (1) Skip connections mitigate the effect of
vanishing gradients and allow the training of very deep models; (2) They simplify the model
during the early stages of training, accelerating the learning process by reusing activations from
previous layers [42]; (3) As in [43], skip connections resolve the singularities problem by breaking
the neural network nodes permutation symmetries.

4 Experimental Settings and Results

4.1 The Datasets
MNIST [44], CIFAR-10 [45], CIFAR-100 [45], and ImageNet [46] were used as benchmark

datasets in this study. They are often used datasets by researchers to evaluate various machine
learning and image recognition techniques. The significant feature of these datasets is that the
item in the sample image often occupies a variety of positions and areas and is not consistent
across images. Additionally, they require limited formatting and preprocessing steps.

4.2 Experimental Setup
In this subsection, we will demonstrate how to set up experiments, which is a critical part

of reproducible research. In our case, the experiment configuration consists primarily of GA
parameter settings (as shown in Tab. 1) and CNN training parameter settings (as shown in
Tab. 2). To define the maximum number of generations and population size, we must strike a
compromise between obtaining the optimal solution and minimizing the time required by GA to
perform the search. We found that when the GA reaches 20 generations, there is no improvement;
although this calculation does not often guarantee convergence, it is considered a reasonable
trade-off for reducing the search time for the method. As in [47,48], the crossover and mutation
frequencies are set at 0.9 and 0.03 respectively. For training parameters, we chose to train each
produced CNN for 50 epochs with 128 sample batch sizes using the optimizer “Adam stochastic
optimization” algorithm [49]. The CLR system is used, with a base learning rate of 0.001 and a

3820 CMC, 2021, vol.69, no.3

maximum learning rate of 0.006. During training, the cutout data augmentation technique [50] is
used to prevent overfitting by randomly erasing neighboring pixels in the images to be applied as
changed data samples to the dataset. After the GA method is complete, the best architectures are
retrained to optimize their weights for 500 epochs.

Table 1: The parameters settings used for the GA

Parameter Value

Maximum number of generations 20
Population size 20
Mutation rate 0.03
Crossover rate 0.9
Top global list 5
Elite size 2

Table 2: The CNN training parameters settings

Parameter Settings

Optimizer Adam stochastic
Batch size 128
Epochs number 50
Learning rate CLR (0.001–0.006)
Data augmentation Cutout
Retraining phase epochs 500

4.3 Experiments Environment
The proposed architecture is implemented in Python 3 and trained using the Keras framework

with a TensorFlow backend. The computer machine used in the experiment has an Intel core-i7-
8700K 3.7 GHz CPU and 16 GB of RAM, and all the produced CNN models are trained and
validated on a single GPU with the model form “NVIDIA GeForce GTX 1080.”

4.4 Experiments Results
This subsection would discuss the experimental results obtained for the proposed framework

in order to evaluate its success under various configurations of usable architectural building
components.

4.4.1 Result Analysis
We investigated the impact of four different configurations on the created CNN architectures

in terms of performance validation accuracy and parameter number. Normal convolution (NC),
depth-wise separable convolution (DSC), NC fire module, and DSC fire module are the four
configurations where each configuration is designed to be the primary convolution module for
the framework’s CNN model generation. We replicated the experiments ten times on each design
on the four datasets chosen to determine the degree of outcome uncertainty. Tab. 3 provides
a statistical evaluation of the validation accuracy for the NC fire module configuration for the

CMC, 2021, vol.69, no.3 3821

ImageNet dataset using these ten runs of twenty generations in terms of mean, median, standard
deviation, minimum, and maximum. Fig. 2 illustrates the plot of ten runs of this configuration
through twenty GA generations in terms of maximal validity accuracy. The plot depicts the
search evolution mechanism for feasible validation accuracies in different runs of the proposed
framework, which continues to converge over generations. The results in Tabs. 4 and 5 show the
performance of the proposed model concerning validity accuracy (Val. Acc.) for the fewest CNN
model trainable parameters (Param. #) for the four configurations (see Tab. 4) along with its GPU
days needed and stack ensemble overall accuracy (See Tab. 5).

Table 3: Statistical evaluation (accuracy) of the 10 runs through 20 generation

Generation Mean Std. Dev. Median Minimum Maximum

1 0.396393 0.065108 0.3777 0.314 0.5153
2 0.471047 0.086131 0.4778 0.3449 0.6291
3 0.537657 0.09306 0.53455 0.4247 0.6862
4 0.591424 0.088075 0.5871 0.476 0.7268
5 0.62688 0.085415 0.63295 0.5082 0.7744
6 0.661242 0.068391 0.66795 0.5306 0.7809
7 0.682659 0.061484 0.69115 0.5835 0.7862
8 0.709617 0.054652 0.71715 0.6083 0.789
9 0.729273 0.044909 0.72895 0.6583 0.7944
10 0.748911 0.038386 0.73945 0.6839 0.8056
11 0.76282 0.03383 0.7559 0.7184 0.8181
12 0.778337 0.028863 0.7755 0.7385 0.8254
13 0.792745 0.02673 0.7962 0.7485 0.8289
14 0.802175 0.023563 0.80463 0.7586 0.8353
15 0.809467 0.019967 0.81193 0.7786 0.8385
16 0.816319 0.018226 0.8181 0.7879 0.8408
17 0.822737 0.018178 0.827975 0.7881 0.8459
18 0.827453 0.017517 0.8356 0.7988 0.8508
19 0.834306 0.013143 0.839083 0.8149 0.85153
20 0.838711 0.008862 0.839841 0.8252 0.8526

As seen in Tab. 4, when we ran our experiments using the four configurations as the archi-
tecture building blocks inside the created CNN chromosomes, we discovered that using the NC
fire module or DSC fire module results in an increase in model accuracy and a decrease in
parameter number. As a general observation, the configuration that performs the highest in
terms of validation accuracy is often the produced CNN models based on the NC Fire Module,
while the configuration with the fewest parameters is the generated CNN models based on DSC
convolution. Meanwhile, we see that the DSC fire module configuration is superior in these two
respects because it enables us to achieve an acceptable level of validation precision with a small
number of model trainable parameters, which has a direct effect on the time required for the
proposed framework’s GA search operation. The results indicate that the number of parameters in
several models, especially DSC-based CNN models, is less than one million trainable parameters,
except for ImageNet.

3822 CMC, 2021, vol.69, no.3

Figure 2: Ten runs of NC fire module configuration on ImageNet

Table 4: The best experiment found for the four configurations on the three datasets

MNIST CIFAR-10 CIFAR-100 ImageNet

Configurations Val. Acc. Param. # Val. Acc. Param. # Val. Acc. Param. # Val. Acc. Param. #

NC 0.9932 2623432 0.9318 2145108 0.7687 3114480 0.826 11623432
DSC 0.9921 906346 0.9270 944195 0.7411 934615 0.783 4356173
NC fire module 0.9957 2225836 0.9681 1888392 0.7995 2879184 0.853 5047134
DSC fire module 0.9943 1010633 0.9526 1053355 0.7720 1007839 0.843 4711892

Table 5: The average GPU days for the four configurations and best ensemble validation accuracy

MNIST CIFAR-10 CIFAR-100 ImageNet

Configurations GPU
days

Ensemble
Val. Acc.

GPU
days

Ensemble
Val. Acc.

GPU
days

Ensemble
Val. Acc.

GPU
days

Ensemble
Val. Acc.

NC 5.3 0.995 5.51 0.943 5.78 0.781 9.1 0.8321
DSC 4.28 0.993 4.56 0.931 4.6 0.753 8.3 0.7902
NC fire module 5.84 0.997 6.1 0.972 6.3 0.802 9.8 0.8671
DSC fire module 5.36 0.996 5.52 0.969 5.83 0.783 8.7 0.8582

We observed that, on average, the fire modules deepen the produced models without sig-
nificantly increasing the number of parameters. As shown in Tab. 5, when applied to different
datasets, the customized stack ensemble technique improves overall validation accuracy by 0.4
percent to 1.7 percent in the case of the CIFAR-10 dataset and by 0.3% to 1.6% in the case of
the CIFAR-100 dataset. In MNIST, the average validity performance improves by 0.09 to 0.18%
following stack ensemble. When compared to other datasets, the increase in accuracy due to the

CMC, 2021, vol.69, no.3 3823

stack ensemble process is small in the case of MNIST. This is because the top CNN models
trained on MNIST reached nearly slope accuracy prior to entering the stack ensemble process.
From a time perspective, the system completed the process in a range of 4.28 to 6.3 GPU days
for the three datasets, which is deemed low in comparison to similar work.

Table 6: The comparisons study on MNIST

Validation
accuracy (%)

Param. # GPU
days

No. of
GPUs

Hand-crafted SqueezeNet 98.99 0.126M – –
MobileNetV1 [21] 99.22 10.844M – –
MobileNetV2 [51] 99.10 2.254M – –
ShuffleNet [52] 98.60 0.911M – –
EffNet [53] 98.69 0.141M – –
Adaptive Kernels [54] 99.04 0.013M – –

Auto. EDEN 98.4 1.858M 0.5 1
Ours (best configuration) 99.57 2.6M 5.84 1
Ours (stack ensemble) 99.7 – – –

Table 7: The comparisons study on CIFAR-10

Validation
accuracy (%)

Param. # GPU
days

No. of
GPUs

Hand-crafted SqueezeNet 75.03 0.12M – –
MobileNetV1 84.72 3.2M – –
MobileNetV2 89.57 2.24M – –
ShuffleNet 90.32 0.229M – –
EffNet 82.850 0.15M – –
Enhanced Mobilenet [55] 89.6 12.85M –
LruNet [56] 89.34 0.206M – –
Adaptive kernels 92.52 0.2M – –

Auto. EDEN 74.5 0.17M 0.5 1
GeNet 92.90 – 17 2
Hierarchical evolution 96.37 0.6M 200 1.5
CGP-CNN 93.66 1.75M 15.2 2
AE-CNN 95.3 2.0M 27 2
CNN-GA 96.78 2.9M 35 3
Ours (best configuration) 96.8 1.9M 6.1 1
Ours (stacking ensemble) 97.2 – – –

4.4.2 Comparison with Related Work
To verify our proposed methodology, we compared it to other related work approaches that

make use of the same benchmark datasets using the validation accuracy metric. Additionally,
since we concentrated on lightweight and resource-constrained models, we compared the model

3824 CMC, 2021, vol.69, no.3

trainable parameters (Param. #), the GPU days, and the amount (no.) of GPUs used, as seen in
Tabs. 6–9. In Tab. 6, we test the proposed framework on the MNIST dataset against EDEN [25].
The suggested framework achieved 1.182% more than their validation accuracy; however, they
have a smaller number of parameters for their model and fewer GPU days. As seen in Tab. 7,
our validation accuracy beats the best-related peer competitor CNN-GA by 0.02%. While this
is a tiny amount, we achieve this precision by reducing the number of parameters by 41% in a
CNN model of 1.9 million parameters. As seen in Tab. 8, we achieved a 0.6% increase over CNN-
GA by reducing the number of parameters by 5%. In the case of ImageNet in Tab. 9, the ideal
configuration improves validation accuracy by 13.2% as opposed to the automated solution EAT-
Net and reduces the number of parameters by 1.98%. Meanwhile, in the hand-crafted domain,
the proposed model outperforms EfficientNet by 1.13% in accuracy and significantly reduces the
number of parameters.

Table 8: The comparisons study on CIFAR-100

Validation
accuracy (%)

Param. # GPU
days

No. of
GPUs

Hand-crafted SqueezeNet 44.20 0.636M – –
MobileNetV1 60.54 0.567M – –
MobileNetV2 69.95 0.603M – –
ShuffleNet 69.97 0.56M – –
EffNet 53.88 0.52M – –
Enhanced Mobilenet 60.9 12.94M – –
LruNet 68.87 0.664M – –

Auto. GeNet 70.97 – 17 10
AE-CNN 77.6 5.4M 36 2
CNN-GA 79.47 4.1M 40 3
Ours (best config.) 79.95 3.9M 6.3 1
Ours (stacking ensemble) 80.2 - - -

Table 9: The comparisons study on ImageNet

Validation
accuracy (%)

Param. # GPU
days

No. of
GPUs

Hand-crafted ResNet [2] 76 26M – –
MobileNet-v2 74.7 6.9M – –
ShuffleNet 73.7 ≈5M – –
DenseNet [57] 77.9 34M – –
Xception [58] 79.0 23M – –
PolyNet [59] 81.3 92M – –
SENet [60] 82.7 146M – –
EfficientNet-B7 [61] 84.3 66M – –

Auto. DARTS [62] 73.3 4.7M 4 1
SNAS [63] 72.7 4.3M 1.5 1
EATNet-A [64] 74.7 5.1M 35.66 8
Ours (best configuration) 85.26 5.0M 9.8 1
Ours (stacking ensemble) 86.71 – – –

CMC, 2021, vol.69, no.3 3825

5 Conclusions and Future Work

In this article, we suggested a method for finding lightweight CNN models that is built on a
genetic algorithm. To create and reflect CNN models, the proposed architecture employs a novel
encoding process. This encoding method is used by the framework search process to describe the
created CNN models as solutions in order to construct the solution search space. Validation of
the system is performed using a variety of image benchmark datasets. It outperformed competi-
tors in terms of validation precision, GPU days, and model parameter count. Additionally, a
stack ensemble approach was adapted for our challenge, and the experiments demonstrate that
it outperformed the single best-generated model. Future research would concentrate on reducing
the amount of time spent on the search method by proposing and implementing increasingly
sophisticated search algorithms. These search algorithms will incorporate multiple-objective fit-
ness requirements in order to handle various facets of the CNN architecture. Another potential
enhancement is the addition of new layer elements such as Long-Short Time Memory units or
some other kind of layer element capable of accommodating non-sequential models in order to
provide a more flexible architecture capable of handling any configuration topology.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

References
[1] J. Gu, Z. Wang, J. Kuen, L. Ma., A. Shahroudy et al., “Recent advances in convolutional neural

networks,” Pattern Recognition, vol. 77, no. 11, pp. 354–377, 2018.
[2] K. He, X. Zhang, S. Ren and J. Sun, “Deep residual learning for image recognition,” in Proc. Int. Conf.

on Computer Vision and Pattern Recognition, Las Vegas, USA, pp. 770–778, 2016.
[3] C. Szegedy, “Going deeper with convolutions,” in Proc. Int. Conf. on Computer Vision and Pattern

Recognition, Boston, MA, USA, pp. 1–9, 2015.
[4] Y. Sun, B. Xue, M. Zhang, G. Yen and J. Lv, “Automatically designing CNN architectures using the

genetic algorithm for image classification,” IEEE Transactions on Cybernetics, vol. 50, no. 9, pp. 3840–
3854, 2020.

[5] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement learning,” in Proc. Int. Conf. on
Learning Representations, Toulon, France, pp. 1–16, 2017.

[6] B. Zoph, V. Vasudevan, J. Shlens and V. Q. Le, “Learning transferable architectures for scalable image
recognition,” in Proc. Int. Conf. on Computer Vision and Pattern Recognition, Salt Lake City, Utah, USA,
pp. 8697–8710, 2018.

[7] Z. Zhong, J. Yan and C. L. Liu, “Practical block-wise neural network architecture generation,” in Proc.
Int. Conf. onComputerVision and Pattern Recognition, Salt Lake City, Utah, USA, pp. 2423–2432, 2018.

[8] B. Baker, O. Gupta, N. Naik and R. Raskar, “Designing neural network architectures using reinforce-
ment learning,” in Proc. Int. Conf. on Learning Representations, Toulon, France, pp. 1–18, 2017.

[9] H. Cai, T. Chen, W. Zhang, Y. Yu and J. Wang, “Efficient architecture search by network transforma-
tion,” in Proc. AAAI Conf. on Artificial Intelligence, Louisiana, USA, pp. 2787–2794, 2018.

[10] H. Pham, M. Guan, B. Zoph, Q. Le and J. Dean, “Efficient neural architecture search via parameter
sharing,” in Proc. Int. Conf. on Machine Learning, Sweden, pp. 4092–4101, 2018.

[11] B. Wang, Y. Sun, B. Xue and M. Zhang, “Evolving deep convolutional neural networks by variable-
length particle swarm optimization for image classification,” arXiv: 1803.06492, pp. 1–8, 2018.

[12] B. Wang, Y. Sun, B. Xue and M. Zhang, “A hybrid differential evolution approach to designing deep
convolutional neural networks for image classification,” in Proc. Int. Joint Conf. on Artificial Intelligence,
Wellington, New Zealand, pp. 237–250, 2018.

3826 CMC, 2021, vol.69, no.3

[13] B. Fielding and L. Zhang, “Evolving image classification architectures with enhanced particle swarm
optimization,” IEEE Access, vol. 6, pp. 68560–68575, 2018.

[14] R. Hassan, B. Cohanim, O. Weck and G. Venter, “A comparison of particle swarm optimization and
the genetic algorithm,” in Proc. AIAA Structural Dynamics, and Materials Conf., Texas, pp. 1–13, 2005.

[15] Z. Beheshti and S. Shamsuddin, “A review of population-based meta-heuristic algorithms,” Interna-
tional Journal of Soft Computing and Its Applications, vol. 5, no. 1, pp. 1–35, 2013.

[16] A. Darwish, A. E. Hassanien and S. Das, “A survey of swarm and evolutionary computing approaches
for deep learning,” Artificial Intelligence Review, vol. 53, no. 3, pp. 1767–1812, 2020.

[17] K. O. Stanley, J. Clune, J. Lehman and R. Miikkulainen, “Designing neural networks through neuro-
evolution,” Nature Machine Intelligence, vol. 1, no. 1, pp. 24–35, 2019.

[18] A. Dastanpour and R. Mahmood, “Feature selection based on genetic algorithm and support vector
machine for intrusion detection system,” in Proc. Int. Conf. on Informatics Engineering and Information
Science, Kuala Lumpur, Malaysia, pp. 169–181, 2013.

[19] Y. Sun, G. Yen and Z. Yi, “IGD indicator-based evolutionary algorithm for many-objective opti-
mization problems,” IEEE Transactions on Evolutionary Computation, vol. 23, no. 2, pp. 173–187,
2019.

[20] L. Xie and A. Yuille, “Genetic CNN,” in Proc. Int. Conf. on Computer Vision, Venice, pp. 1388–1397,
2017.

[21] A. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang et al., “Mobilenets: Efficient convolutional
neural networks for mobile vision applications,” arXiv: 1704.04861, pp. 1–9, 2017.

[22] F. N. Iandola, S. Han, M. W. Moskewic, K. Ashraf, W. J. Dally et al., “Squeezenet: Alexnet-level
accuracy with 50× fewer parameters and <0.5 MB model Size,” arXiv: 1602.07360, pp. 1–13, 2016.

[23] J. Zhou, H. N. Dai and H. Wang, “Lightweight convolution neural networks for mobile edge comput-
ing in transportation cyber physical systems,” ACM Transactions on Intelligent Systems and Technology,
vol. 10, no. 6, pp. 1–20, 2019.

[24] Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen et al., “Gpipe: Efficient training of giant neural
networks using pipeline parallelism,” in Proc. Advances in Neural Information Processing Systems Conf.,
Vancouver, Canada, pp. 103–112, 2019.

[25] E. Dufourq and B. Bassett, “A EDEN: Evolutionary deep networks for efficient machine learning,” in
Proc. Robotics and Mechatronics Conf., Bloemfontein, South Africa, pp. 110–115, 2017.

[26] Y. Sun, B. Xue, M. Zhang and G. G. Yen, “Completely automated CNN architecture design based
on blocks,” IEEE Transactions on Neural Networks and Learning Systems, vol. 31, no. 4, pp. 1242–1254,
2019.

[27] M. Suganuma, S. Shirakawa and T. Nagao, “A genetic programming approach to designing convo-
lutional neural network architectures,” in Proc. Genetic and Evolutionary Computation Conf., Berlin,
Germany, pp. 497–504, 2017.

[28] A. A. Ahmed, S. Darwish and M. M. El-Sherbiny, “A novel automatic CNN architecture design
approach based on genetic algorithm,” in Proc. Int. Conf. on Advanced Intelligent Systems, Cairo, Egypt,
pp. 473–482, 2019.

[29] V. Nair and G. E. Hinton, “Rectified linear units improve restricted Boltzmann machines,” in Proc. Int.
Conf. on Machine Learning, Haifa, Israel, pp. 807–814, 2010.

[30] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal
covariate shift,” in Proc. Int. Conf. Machine Learning, Lille, France, pp. 448–456, 2015.

[31] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov, “Dropout: A simple way
to prevent neural networks from overfitting,” Journal of Machine Learning Research, vol. 15, pp. 1929–
1958, 2014.

[32] D. Lin and C. Lee, “A multi-level GA search with application to the resource-constrained re-entrant
flow shop scheduling problem,” World Academy of Science, Engineering and Technology, vol. 6, pp. 788–
792, 2012.

CMC, 2021, vol.69, no.3 3827

[33] L. N. Smith, “Cyclical learning rates for training neural networks,” in Proc. Workshop on Applications
of Computer Vision, Santa Rosa, California, pp. 464–472, 2017.

[34] L. Prechelt, “Early stopping—but when?,” in Lecture Notes in Computer Science. vol. 1524. Berlin,
Heidelberg: Springer, pp. 53–67, 2012.

[35] C. Ahn and R. Ramakrishna, “Elitism-based compact genetic algorithms,” IEEE Transactions on
Evolutionary Computation, vol. 7, no. 4, pp. 367–385, 2003.

[36] H. Du, Z. Wang, W. Zhan and J. Guo, “Elitism and distance strategy for selection of evolutionary
algorithms,” IEEE Access, vol. 6, pp. 44531–44541, 2018.

[37] P. Esfahanian and M. Akhavan, “GACNN: Training deep convolutional neural networks with genetic
algorithm,” arXiv: 1909.13354, pp. 1–17, 2019.

[38] A. Baldominos, Y. Saez and P. Isasi, “Evolutionary convolutional neural networks: An application to
handwriting recognition,” Neurocomputing, vol. 283, no. 3, pp. 38–52, 2018.

[39] J. Thorne, M. Chen, G. Myrianthous, J. Pu, X. Wang et al., “Fake news stance detection using stacked
ensemble of classifiers,” in Proc. EMNLP Workshop: Natural Language Processing Meets Journalism,
Copenhagen, Denmark, pp. 80–83, 2017.

[40] A. Santos, C. de Souza, C. Zanchettin, D. Macedo, A. L. Oliveira et al., “Reducing squeezenet storage
size with depthwise separable convolutions,” in Proc. Int. Joint Conf. on Neural Networks, Rio de Janeiro,
Brazil, pp. 1–6, 2018.

[41] R. Srivastava, K. Greff and J. Schmidhuber, “Highway networks,” arXiv: 1505.00387, pp. 1–6, 2015.
[42] A. Smith, B. Wyk and S. Du, “CNNs and transfer learning for lecture venue occupancy and student

attention monitoring,” in Proc. Int. Symp. on Visual Computing, Lake Tahoe, NV, USA, pp. 383–393,
2019.

[43] A. Orhan and X. Pitkow, “Skip connections eliminate singularities,” in Proc. Int. Conf. on Machine
Learning, Stockholm, Sweden, pp. 1–22, 2018.

[44] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, “Gradient based learning applied to document
recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[45] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny images, vol. 1, Toronto,
ON, Canada: University of Toronto, Technical Report, 2009.

[46] J. Deng, W. Dong, R. Socher, L. Li, K. Li et al., “Imagenet: A large-scale hierarchical image database,”
in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Miami, Florida, USA, pp. 248–255,
2009.

[47] A. Hassanat, K. Almohammadi, E. Alkafaween, E. Abunawas, A. Hammouri et al., “Choosing muta-
tion and crossover ratios for genetic algorithms—A review with a new dynamic approach,” Information,
vol. 10, no. 12, pp. 390, 2019.

[48] D. L. Tong and R. Mintram, “Genetic algorithm-neural network (GANN): A study of neural network
activation functions and depth of genetic algorithm search applied to feature selection,” International
Journal of Machine Learning and Cybernetics, vol. 1, no. 1, pp. 75–87, 2010.

[49] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Proc. Int. Conf. on Learning
Representations, San Diego, CA, USA, pp. 1–15, 2015.

[50] T. DeVries and G. W. Taylor, “Improved regularization of convolutional neural networks with cutout,”
arXiv: 1708.04552, pp. 1–8, 2017.

[51] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov and L. C. Chen, “Mobilenetv2: Inverted residuals
and linear bottlenecks,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Salt Lake City,
Utah, USA, pp. 4510–4520, 2018.

[52] X. Zhang, X. Zhou, M. Lin and J. Sun, “ShuffleNet: An extremely efficient convolutional neural
network for mobile devices,” in Proc. Int. Conf. on Computer Vision and Pattern Recognition, Salt Lake
City, Utah, USA, pp. 6848–6856, 2018.

[53] I. Freeman, L. Roese-Koerner and A. Kummert, “Effnet: An efficient structure for convolutional neural
networks,” in Proc. Int. Conf. on Image Processing, Athens, Greece, pp. 6–10, 2018.

3828 CMC, 2021, vol.69, no.3

[54] J. Esquivel, A. Vargas, P. Meyer and O. Tickoo, “Adaptive convolutional kernels,” in Proc. Int. Conf. on
Computer Vision, Seoul, Korea, pp. 1998–2005, 2019.

[55] H. Y. Chen and C. Y. Su, “An enhanced hybrid mobilenet,” in Proc. Int. Conf. on Awareness Science and
Technology, Fukuoka, Japan, pp. 308–312, 2018.

[56] O. Köpüklü, M. Babaee, S. Hörmann and G. Rigoll, “Convolutional neural networks with layer reuse,”
in Proc. Int. Conf. on Image Processing, Taipei, Taiwan, pp. 345–349, 2019.

[57] G. Huang, Z. Liu, L. V. D. Maaten and K. Q. Weinberger, “Densely connected convolutional net-
works,” in Proc. Int. Conf. on Computer Vision and Pattern Recognition, Hawaii, USA, pp. 4700–4708,
2017.

[58] F. Chollet, “Xception: Deep learning with depth-wise separable convolutions,” in Proc. Int. Conf. on
Computer Vision and Pattern Recognition, Hawaii, USA, pp. 1610–02357, 2017.

[59] X. Zhang, Z. Li, C. Loy and D. Lin, “Polynet: A pursuit of structural diversity in very deep networks,”
in Proc. Int. Conf. on Computer Vision and Pattern Recognition, pp. 3900–3908, 2017.

[60] J. Hu, L. Shen and G. Sun, “Squeeze-and-excitation networks,” in Proc. Int. Conf. on Computer Vision
and Pattern Recognition, Salt Lake City, Utah, USA, pp. 132–7141, 2018.

[61] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for convolutional neural networks,”
arXiv: 1905.11946, pp. 1–10, 2019.

[62] H. Liu, K. Simonyan and Y. Yang, “DARTS: Differentiable architecture search,” in Proc. Int. Conf. on
Learning Representations, New Orleans, USA, 2019.

[63] S. Xie, H. Zheng, C. Liu and L. Lin, “SNAS: Stochastic neural architecture search,” in Proc. Int. Conf.
on Learning Representations, Vancouver, Canada, 2018.

[64] J. Fang, Y. Chen, X. Zhang, Q. Zhang, C. Huang et al., “EAT-NAS: Elastic architecture transfer for
accelerating large-scale neural architecture search,” arXiv: 1901.05884, pp. 1–10, 2019.

