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Abstract: The evolution of Industry 4.0 made it essential to adopt the Internet
of Things (IoT) and Cloud Computing (CC) technologies to perform activ-
ities in the new age of manufacturing. These technologies enable collecting,
storing, and retrieving essential information from the manufacturing stage.
Data collected at sites are shared with others where execution automatedly
occurs. The obtained information must be validated at manufacturing to
avoid undesirable data losses during the de-manufacturing process. However,
information sharing from the assembly level at the manufacturing stage to
disassembly at the product end-of-life state is a major concern. The current
research validates the information optimally to offer a minimum set of activ-
ities to complete the disassembly process. An optimal disassembly sequence
plan (DSP) can possess valid information to organize the necessary actions
in manufacturing. However, finding an optimal DSP is complex because of
its combinatorial nature. The genetic algorithm (GA) is a widely preferred
artificial intelligence (AI) algorithm to obtain a near-optimal solution for the
DSP problem. The converging nature at local optima is a limitation in the
traditional GA. This study improvised the GAworkability by integrating with
the proposed priori crossover operator. An optimality function is defined to
reduce disassembly effort by considering directional changes as parameters.
The enhanced GA method is tested on a real-time product to evaluate the
performance. The obtained results reveal that diversity control depends on
the operators employed in the disassembly attributes. The proposed method’s
solution can be stored in the cloud and shared through IoT devices for effective
resource allocation and disassembly for maximum recovery of the product.
The effectiveness of the proposed enhanced GA method is determined by
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making a comparative assessment with traditional GA and other AI methods
at different population sizes.

Keywords: Automation; internet of things; disassembly sequence planning;
priori cross over operator; enhanced GA; disassembly predicates

1 Introduction

Industries are experiencing a paradigmatic shift from global manufacturing to agile man-
ufacturing to achieve product variety in limited quantities according to customer desire [1].
Carlsonn et al. studied various manufacturing practices and opinioned that agile manufacturing
can fulfill customer desire completely, but could cause severe raw material scarcity in the short
term because of the practice of linear economy policies. It concentrated on production and the
distribution of products instead of its takeback and turning into raw material for production in
the future [2]. Industrial revolution 4.0 explored the possibility to perform manufacturing and
de-manufacturing activities by smartly sharing information from one machine to another [3].
Wang et al. opinioned that agile manufacturing can be extended to meet the circular economy
objectives by adopting cloud computing (CC) and Internet of Things (IoT) technologies because
cloud computing technologies can support the storage and retrieval of the necessary information
at manufacturing time, whereas IoT is essential for its use at de-manufacturing [4]. IoT can be
used to create a potential interacting machine network for supporting the specified disassembly
actions without human intervention at the manufacturing stage. It consists of a set of devices
connected to a database to extract information and data processing units to execute them in the
practical environment. The human–machine interaction can be avoided by supplying appropriate
information with extensive validation before supplying it databased. Essential information about
each activity in a production line must be collected and validated to avoid undesirable errors with
their execution at different production lines [5–7].

An optimal disassembly sequence plan (DSP) can contain essential information at the product
development stage because it has undergone extensive validation through various disassembly
predicates because of its significance over the overall manufacturing process [8]. Traditionally,
DSP is generated at the product development stage to organize various downstream activities in
manufacturing [9]. Sharing an optimal DSP can supply valid and essential information from one
production line to another. However, DSP is treated as a nondeterministic polynomial time (NP-
hard) combinatorial problem because of multiple constraints in evaluating optimality [10–12]. The
complexity of a DSP problem can be increased with an increase in the number of disassembly
constraints and the total number of parts in a product [13]. Researchers have explored various
methods for assembly/disassembly training, such as virtual reality [14–16].

AI methods are proven successful to solve the NP-hard and combinatorial optimization
problems. Methods, such as artificial neural networks, genetic algorithm (GA), ant colony opti-
mization (ACO), particle swarm optimization (PSO), and teaching and learning basic optimization
(TLBO) are commonly applied AI techniques to solve the DSP problem [17–20]. However, these
methods demand huge computational effort and space to generate high-quality solutions. Most
research approaches have not considered necessary disassembly predicates to avoid computational
complexities [21]. Disassembly predicates significantly affect presenting real-time conditions and
are essential to evaluate the physical applicability of generated solutions.

Bahubalendruni et al. [22] extensively studied predicate consideration and observed that non-
consideration of the predicate could reduce computational effort but adversely affect the quality
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of the solution. Abdullah et al. [23] observed that liaison and geometrical feasibility are preferred
disassembly predicates for initial solution generation and implementing different criteria, such as
time, directional changes, tool changes, and cost. Chakrabarty et al. [24] opinioned that as long
as geometrical feasibility testing is confined to test principal axis directions such as ±X, ±Y, and
±Z, the optimality of the solution is not guaranteed. This article presents the literature, followed
by identifying major research gaps in the AI-based DSP problem and considering end-of-life
(EoL) activities in formulating disassembly predicates. The research improves the performance of
an AI method that can solve a real-time DSP problem by considering the necessary disassembly
predicates.

The proposed research generates an optimal solution for representing essential information
in the manufacturing stage and the execution of the same for its management after the EoL.
The method should offer necessary qualifying criteria and require minimum computation effort
for solution generation. The article is organized as follows. Section 2 presents the reviewed liter-
ature, and Section 3 describes the necessary DSP attributes and their role in presenting real-time
disassembly conditions. Section 4 presents the fitness value evaluation of the given disassembly
sequence, and Section 5 explains the enriched GA and implementation on different case studies.
Section 6 consists of detailed discussions on the working of the proposed method, and Section 7
concludes the article by proposing the future scope of research.

2 Literature Review

GA is a prominent and widely used AI method to solve the DSP problem under different
objectives. Hui et al. originated the implementation of GA to solve the DSP problem by taking
it as a complex combinatorial problem. A chromosome was made by representing each part of
the product with a unique number, and a fitness function is developed to produce offspring after
its evaluation [25]. Methods such as roulette wheel, tournament, and elitism selections are used
to avoid the identified issue, and the roulette wheel selection was found effective [8]. Lazzerini
and Marcelloni used partially matched crossover (PMX) and mutation operators to assess the
generated disassembly plan [26]. Tian et al. applied GA to generate an optimal DSP based on
environmental and economic constraints. The precedence of disassembly tasks was identified from
the interference graphs [27]. The traditional GA was subjected to many limitations, such as prema-
ture convergence and heavy computational effort demand [28]. Researchers attempted to avoid the
premature convergence problem by improving the crossover and mutation operator performance.
Kongar and Gupta developed a priority preservative crossover (PPX) mechanism and stated that
their mechanism could generate near-optimal solutions with fewer computations [29]. Giudice and
Fargione used the PPX operator in GA and took the disassembly time, lifecycle cost parameters
into the fitness function. Kheder et al. adopted the PPX mechanism developed by Kongar and
Gupta to solve the DSP problem for maintenance [8]. Tseng et al. proposed a novel block-based
GA to solve the premature convergence problem by modifying the selection process using the
goal formula and score matrix [30]. Xing and Wang hybridized the GA with PSO to achieve
an optimal solution for the DSP problem. PSO is used to remember the previously visited best
position and record it for initial solution generation. Later, the formulated solution is optimized
using the crossover operator of GA [31]. Researchers also attempted GA hybridization with other
AI methods to overcome the limitations encountered with the traditional method [32–37]. Tab. 1
represents the summary of AI methods used to solve the DSP problem with different objectives.



2534 CMC, 2021, vol.69, no.2

Table 1: Summary of literature review

Ref. No Algorithm Operator Type of
represen-
tation

Attributes Objective
function

[8] Rule based
model

— Matrix Liaison,
Geometric
feasibility

Minimum
directional
changes

[26] GA Novel
Crossover
Operator

Matrix Geometric
feasibility,
Tool
feasibility

Minimum
tool travel

[28] GA Precedence
preservative
crossover

Matrix Geometric
feasibility

Minimum
Disassembly
time

[29] GA Block-based
crossover
mechanism

Graph Precedence
relations

—

[31] GA-PSO Three-part
fragment
reordering,
Precedence
preservative
crossover

Graph Precedence
relations

—

[32] GA-ACO Best-order
crossover
(BOX)

Graph Precedence
relations

Minimum
tool changes

[34] GA-SA Multi-point
crossover

Matrix Stability,
precedence
relations

Minimum
Disassembly
time

The following research gaps were observed from the cited literature.

• The information sharing from assembly level at manufacturing stage to disassembly at
product EoL stage is concerning, which is addressed in this article. The solution offered by
the proposed method can be stored in the cloud and further shared through IoT devices for
effective resource allocation and disassembly for maximum recovery of the product. Figs. 1
and 2 show the overall product cycle without and with cloud and IoT devices, respectively.

• A huge amount of computational effort is needed to produce a feasible solution for the
disassembly sequence-planning problem.

• The necessary product information is not supplied prior because of the complexities of
attribute representation.

• The generated solutions using existing methods lack optimality and practical feasibility in
the de-manufacturing environment.
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Figure 1: Product lifecycle without Cloud and IoT devices

Figure 2: Product life cycle with Cloud and IoT devices

3 Disassembly Attributes Representation and Conversion

Attributes are given importance in DSP formulation to represent conditions in an actual
disassembly environment to achieve a practical solution. This study considers the disassembly
direction of each part and subassembly stability during the disassembly process.

3.1 Geometrical Feasibility
Geometrical feasibility is an attribute used to represent the feasible directions of a part

regarding other parts to perform the necessary disassembly operations. The existing methods
considered only principal axis directions, such as ±X, ±Y, and ±Z to perform disassembly actions
and demanded human intervention to evaluate disassembly in other feasible directions. Fig. 3
represents the feasible directions other than the principal axis that required human intervention
to verify disassembly in the corresponding direction.

Bahubalendruni et al. proposed and developed a method to evaluate geometrical feasibility,
other than principal axis directions; however, the method is intended to solve the exploded view
generation problem in the computer-aided design (CAD) environment [38]. This research adopted
the similarity in problem formulation and performed the necessary modifications to improve the
encryption. An omnidirectional geometrical feasibility matrix is used to represent the conditions
in the actual disassembly environment. The product represented in Fig. 4 is taken to demonstrate
the concept of geometric feasibility and the corresponding representation in the matrix format.
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Figure 3: Feasible directions that need human intervention to test geometric feasibility

Figure 4: 8-part assembly

The geometric feasibility omni-direction (GFOD) matrix is an n× n matrix (1) in which each
cell consists of an encoded whole number and n represents the total number of parts in a product.
The value is computed by converting a bit string into a whole number. If Pi can be removed in
the presence of part Pj in direction Dk, a kth bit of a bit string of GFOD (Pi, Pj) is 1, or else
0. Tab. 2 represents the 11 feasible directions in which the parts of the assembly shown in Fig. 4
could be moved. Matrix (1) depicts the GFOD for assembly in Fig. 4 in whole number format.
For example, the value GFOD (8,1), 32 in binary representation 100000, shows that P8 can be
removed from P1 by moving part 8 in the +Z direction.
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 406 1430 406 1024 1024 4 4
313 0 128 1340 1854 1854 4 4
825 8 0 18 1854 1854 1982 1982
313 948 128 0 1854 1854 958 958
512 1973 1973 1973 0 1726 1982 1982
512 1973 1973 1973 1965 0 1982 1982
32 32 1981 1469 1981 1981 0 1726
32 32 1981 1469 1981 1981 1965 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)
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Table 2: Feasibility vectors and directions for 8-part assembly

X Y Z Direction

0 0 0 0
0 0 −1 1
−1 0 0 2
0 1 0 3
0 0 1 4
1 0 0 5
0 −1 0 6
−0.707 0 0.707 7
0.707 0 −0.707 8
0.707 0 0.707 9
−0.707 0 −0.707 10

In GFOD, 0 represents the infeasibility to disassemble the column part in the present part
given in the row, whereas 1 represents the feasibility to disassemble in the respective direction. For
the product shown in Fig. 4, 11 normal directions of all parts exist, so the binary format will be
width 11. Tab. 3 shows the GFOD matrix.

Table 3: GFOD matrix for 8-part assembly

1 2 3 4 5 6 7 8

1 0 1, 3, 5,
6, 9

10, 3,
6, 1, 5,
8

3, 6, 1,
5, 8

10 10 1 1

2 2, 3, 4,
7

0 5 10, 3,
6, 1, 2,
4, 7

10, 3,
6, 1, 2,
8, 9, 4,
7

10, 3,
6, 1, 2,
8, 9, 4,
7

1 1

3 2, 3, 4,
6, 7, 9

2 0 5 7, 8, 9,
10, 3,
6, 1, 5,
4

7, 8, 9,
10, 3,
6, 1, 5,
4

7, 8, 9,
10, 3,
6, 1, 2,
5, 4

7, 8, 9,
10, 3,
6, 1, 2,
5, 4

4 2, 3, 6,
7

1, 3, 4,
5, 6, 8,
9

5 0 7, 8, 9,
10, 3,
6, 1, 5,
4

7, 8, 9,
10, 3,
6, 1, 5,
4

1, 2, 3,
4, 5, 6,
8, 9, 7

1, 2, 3,
4, 5, 6,
8, 9, 7

5 9 1, 3, 4,
5, 6, 7,
8, 9,
10

1, 3, 4,
5, 6, 7,
8, 9,
10

1, 3, 4,
5, 6, 7,
8, 9,
10

0 1, 2, 3,
4, 5, 6,
7, 8, 9,
10

1, 2, 3,
4, 5, 6,
7, 8, 9,
10

1, 2, 3,
4, 5, 6,
7, 8, 9,
10

(Continued)
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Table 3: Continued

1 2 3 4 5 6 7 8

6 9 1, 3, 4,
5, 6, 7,
8, 9,
10

1, 3, 4,
5, 6, 7,
8, 9,
10

1, 3, 4,
5, 6, 7,
8, 9,
10

1, 2, 3,
4, 5, 6,
7, 8, 9,
10

0 1, 2, 3,
4, 5, 6,
7, 8, 9,
10

1, 2, 3,
4, 5, 6,
7, 8, 9,
10

7 4 4 1, 2, 3,
4, 5, 6,
7, 8, 9,
10

1, 2, 3,
4, 5, 6,
7, 8,
10

1, 2, 3,
4, 5, 6,
7, 8, 9,
10

1, 2, 3,
4, 5, 6,
7, 8, 9,
10

0 1, 2, 3,
4, 5, 6,
7, 8, 9,
10

8 4 4 1, 2, 3,
4, 5, 6,
7, 8, 9,
10

1, 2, 3,
4, 5, 6,
7, 8,
10

1, 2, 3,
4, 5, 6,
7, 8, 9,
10

1, 2, 3,
4, 5, 6,
7, 8, 9,
10

1, 2, 3,
4, 5, 6,
7, 8, 9,
10

0

3.2 Disassembly Stability
The stability between different parts of the product is referred to as the ability to maintain

its contact, irrespective of the orientation. Bahubalendruni et al. classified various stability, such
as partial, permanent, and enriched stability based on the contact, the relationship between the
assembly products [38]. It is critical to examine the existence of stability between the parts of a
product to avoid debacles in the disassembly environment. Fig. 5X represents the possibility of
occurring debacles because of the non-coincidence of the center of gravity of two parts. Fig. 5Y
represents the stability between two parts in which the bottom part should not be disassembled
before the upper part, and Fig. 5Z represents the stability between two parts because of external
connectors.

Figure 5: (X) Possibility of occurring debacles because of the non-coincidence of the center of
gravity of two parts (Y) Stability between two parts in which the bottom part should not be
disassembled before the upper part (Z) Stability between two parts because of external connectors

The stability matrix is an n× n-dimensioned matrix in which the values 0 is no stability, 1 is
partial stability, −1 is enriched stability, and 2 is permanent stability. The representation schema
is adopted from the Gulivindala et al. assembly sequence-planning method [39]. Fig. 6 represents
the stability matrix for the 8-part product represented in Fig. 2.
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1 2 3 4 5 6 7 8

1 0 1 0 0 2 2 2 2
2 0 0 2 0 0 0 1 1
3 0 2 0 2 0 0 0 0
4 0 0 2 0 0 0 0 0
5 2 0 0 0 0 0 0 0
6 2 0 0 0 0 0 0 0
7 2 0 0 0 0 0 0 0
8 2 0 0 0 0 0 0 0

Figure 6: Stability matrix

4 Disassembly Predicate Testing

Disassembly predicate testing is performed to verify whether the generated sequence is feasible
or not. The working scheme of the geometrical feasibility and stability predicates is explained in
4.1 and 4.2, respectively.

4.1 Geometrical Feasibility Predicate Testing
A non-blocking direction to remove the desired part in the presence of other parts can be

identified using the GFOD matrix. Binary AND operation is performed over GFOD values at
(Si, Sj), where i< j<= n over the GFOD matrix. It results in all possible directions in which part
Si can be removed. Algorithm 1 is used to evaluate the geometrical predicate testing.

Algorithm 1: Geometrical Feasibility Algorithm (Part (m+ 1) is the reaming part)
m+ 1 is the length of the remaining assembly subset (i.e., we are to evaluate the feasibility

of the mth part in sequence), D= the total number of directions, N = the total number of parts,
GFOD_Transpose= the GFOD matrix transpose, and S= the disassembly sequence.
Step 01: part_id = S[m]
Step 02: direction= int(“1”∗ d, 2)
Step 03: For k=m+ 1 to N
Step 04: next_part_id = S[k]
Step 05: direction=BINARY_AND (direction, GFOD_Transpose[next_part_id, part_id])
Step 06: if direction= 0
Step 07: return infeasible
Step 08: End if
Step 09: End for
Step 10: return feasible

The above procedure is to be repeated for all parts.

4.2 Stability Predicate Testing
For a part to be removed, it is verified from the stability matrix that any other existing part

has contact with it or not. Algorithm 2 is used to evaluate the stability predicate testing.
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Algorithm 2: Stability Feasibility Algorithm (Part (m+ 1) is the remaining part)

m+ 1 is the length of the remaining assembly subset (i.e., to evaluate the feasibility of the mth

part in the sequence), N = the total number of parts, temp_stability_matrix will be initialized to
the stability matrix before calling for the first time, and S= the disassembly sequence.
Step 01: part_id = S[m]
Step 02: temp_stability_matrix[part_id][ ]= 0
Step 03: temp_stability_matrix[ ][part_id]= 0
Step 04: For k=m+ 1 to N
Step 05: next_part_id = S[k]
Step 06: if temp_stability_matrix[ ][next_part_id]isallzeros
Step 07: return infeasible
Step 08: end if
Step 09: end for
Step 10: return feasible

The above procedure is to be repeated for all parts.

Figure 7: Fitness function flow chart
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4.3 Fitness Value
The fitness value of each sequence is computed from the geometric and stability checks. Fig. 7

depicts a flowchart in which the geometric feasibility of the sequence is first verified and promoted
to the next level evaluating with the stability predicate. If the sequence fails to qualify the stability
predicate, the process is initiated from the first step until the completion of all possible part
combinations. If the sequence is geometrically feasible and stable, fitness is equal to the sum of
the number of parts (N) and 1/(1+ r), where r is the number of rotations. Eq. (2) is used as
fitness

fitness=
⎧⎨
⎩
l if infeasible sequence

N+ 1
1+ r

if feasible sequence
. (2)

5 Enriched Genetic Algorithm

GA is an evolutionary method inspired by biological concepts to solve computationally com-
plex problems. The solution is represented as a chromosome whose fitness value is evaluated using
the feasibility and optimality criteria. The exchange of genetic information to produce a child is
achieved using a crossover operation. A mutation operation is used to produce new genes absent
in the parent chromosomes. For each iteration, crossover and mutation operations are applied
on the present chromosomes to produce new offspring. After a certain number of iterations, the
algorithm is prompted to converge and discover the best chromosome as an optimal solution.

5.1 Chromosome Representation and Process Initialization
For DSP, the chromosome is a sequence of numbers representing the order in which the

parts are to be disassembled. Fig. 8 consists of individual chromosomes representing the possible
solution for a selected 8-part assembly. The initial population is randomly initiated, and roulette
wheel selection is used for the selection process.

Figure 8: Chromosome representation
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5.2 Crossover and Mutation Operators
Crossover operation is also called a recombination operation. The objective is to combine

genetic information from parents to generate new offspring. The partially mapped crossover
(PMX), cycle crossover (CX), order crossover operator (OX1), order-based crossover operator
(OX2), position-based crossover operator, voting recombination crossover operator (VR), and
alternating-position crossover operator (AP) are widely preferred crossover operators for combi-
natorial optimization problems [40]. This study proposes a novel crossover operator to solve the
DSP problem.

Priori Operator

The proposed crossover operator has multiple parents, a master parent (M) and other parents
(Pi). The working of this operator is as follows:

Step 1: Select master (M) and other parents (Pi)

Step 2: For each parent, compute partial sequence from 0 to fitness value

Step 3: Copy master to the child

Step 4: For each parent, identify the parts in its partial sequence but not in the master parent
partial sequence. For each identified part, reposition it in the child chromosome, such that the
prior part in both child and parent is the same.

The process shown in Fig. 9 assumed the number of parents set to 3. The fitness values of
the master parent, parent A, and parent B are 3, 4, and 4, respectively.

Figure 9: Priori operator
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5.3 Solution Evaluation
For each iteration, a new population is generated based on the roulette wheel selection

mechanism, priori crossover, and swap mutation. The function discussed in Section 4.3 is used to
evaluate the feasibility and fitness of the sequence.

Termination

The evolutionary process of GA runs until the termination condition is satisfied. The
terminating conditions implemented are

(1) reach the maximum number of iterations
(2) obtain a predefined fitness value

The enhanced GA will terminate immediately if any previously mentioned condition is true.

6 Discussion

The developed algorithm is evaluated over different real-time product configurations by sup-
plying the necessary data about disassembly attributes, such as geometrical feasibility and stability.
It is implemented using Python programming language and tested on a Windows 10.0 operating
system, 4 GB RAM, 1 TB ROM. The performance of the developed program was compared with
other AI methods, such as traditional GA and PSO [24,29]. Parameters, such as computational
time, iteration count, and efficiency were considered to compare its performance. Tab. 4 presents
the performance of different AI methods and the proposed enriched GA method upon generating
a solution for the product shown in Fig. 4.

Table 4: Comparative study

Algorithm Population size No. of iterations Computational time (s) Efficiency

TLBO [19] 25 68 2.31 58
50 52 3.05 69
75 43 4.07 71

GA [24] 25 88 3.74 20
50 63 5.4 39
70 58 6.17 41

PSO [29] 25 70 2.63 46
50 53 4.1 63
70 46 5.07 68

Proposed enriched GA 25 64 1.67 60
50 52 2.16 70
70 37 2.32 72

Fig. 10 represents the comparison between the developed enriched GA and other algorithms
of efficiency regarding population size. The developed enriched GA has a higher efficiency than
other algorithms taken for the comparison. Generally, a product made with n number of parts
might have more than n! possible representations. However, among all possible representations,
only one solution can be optimal and practically feasible in the de-manufacturing environment.
The efficiency of an algorithm underlies generating the population and identification of such an
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optimal solution by eliminating the infeasible solutions. All algorithms improve their efficiency
with the increase in population size because of the elimination of such an infeasible solution
for each increment in the population. The selection criteria chosen for the enriched GA worked
efficiently to eliminate the infeasible solutions for further steps.

Figure 10: Efficiency % vs. Population size

Fig. 11 represents the comparison between the enriched GA and other methods for the no.
of iterations taken to arrive at the optimal solution. As the population size rises, the number
of iterations needed to arrive at optimal solutions gradually decreases because more possible
solutions are explored as the population size grows at each iteration. The iteration needed for the
enriched GA is lower than conventional GA and PSO because the proposed heuristic operator
can find a viable sequence faster.

Figure 11: No. of Iterations vs. Population Size

Fig. 12 represents the comparison between the enriched GA and other methods for the com-
putational time taken for the optimal solution generation. The traditional GA required a higher
computational time because of the lack of an effective operator for the fitness value evaluation.
PSO consumed less compared to the traditional GA because of recognition and remembrance of
the best positions at the initial stages and using those positions for further stages might reduce
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the consumption. However, the fitness evaluation at the intermediate stages for optimal solution
generation might demand more computation to arrive at the final solution. The proposed enriched
GA facilitates the storing and reuse of higher fitness part combinations for further generations
and significantly helped to reduce computational time.

Figure 12: Computational Time vs. Population Size

The limitation in the proposed operator is the overhead of setting the additional parameter,
i.e., the number of parents and the diversification of chromosomes depend on the mutation
operator similar to the traditional GA. Hence, the proposed algorithm could be converged at local
optima with improperly specified parameters.

7 Conclusion

This research proposed a traditional AI method to enhance its performance in producing
an optimal solution for validating information to be supplied for IoT and CC technologies. It
can be used to create a potential network among machines from the product assembly stage to
execute the disassembly actions at the de-manufacturing stage. The workability of the proposed
enriched GA method was evaluated by applying it to a real-time product and the obtained results
were compared with other methods. The following novelties were contributed and discussed in this
paper.

• A novel priori crossover operator is developed, integrated into the versatile algorithm, and
its efficiency was proven by applying it to a product.

• The developed operator can determine an operation path based on the fitness value of
parents.

• Deterministic fitness functions were developed to evaluate the feasibility of a generated
disassembly sequence.

The future scope of this research is to generalize the proposed method by inducing a heuristic
mutation operator and incorporate various technologies, such as cybersecurity and image-based
malware classification technologies for enhancing security in the developed system.
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