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Abstract: Energy harvesting (EH) technology in wireless communication is
a promising approach to extend the lifetime of future wireless networks.
A cross-layer optimal adaptation policy for a point-to-point energy harvesting
(EH) wireless communication system with finite buffer constraints over a
Rayleigh fading channel based on a Semi-Markov Decision Process (SMDP) is
investigated. Most adaptation strategies in the literature are based on channel-
dependent adaptation. However, besides considering the channel, the state of
the energy capacitor and the data buffer are also involved when proposing
a dynamic modulation policy for EH wireless networks. Unlike the channel-
dependent policy, which is a physical layer-based optimization, the proposed
cross-layer dynamic modulation policy is a guarantee to meet the overflow
requirements of the upper layer by maximizing the throughput while opti-
mizing the transmission power and minimizing the dropping packets. Based
on the states of the channel conditions, data buffer, and energy capacitor, the
scheduler selects a particular action corresponding to the selected modulation
constellation. Moreover, the packets are modulated into symbols according to
the selected modulation type to be ready for transmission over the Rayleigh
fading channel. Simulations are used to test the performance of the proposed
cross-layer policy scheme, which shows that it significantly outperforms the
physical layer channel-dependent policy scheme in terms of throughput only.

Keywords: Energy harvesting technology; cross-layer design; delay tolerant
network; fading channels; resource allocation; telecommunication power
management; telecommunication scheduling

1 Introduction

Recently, energy conservation has become increasingly attractive as a way to reduce the
world’s energy consumption due to the soaring demand and explosive growth of wireless com-
munications [1]. The main alternative to many problems related to energy wastage is green
communication due to wireless transmissions [2]. The definition of green communication can
be expressed as the practice of effectively utilizing the energy harvested from the surrounding
environment by selecting energy-efficient communication technologies. Conservation of ambient
energy and judicious utilization of available energy leads to improvement in overall network
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throughput [3]. By 2050, the number of wireless communication devices, i.e., wearable devices
and wireless sensor networks, will double or triple due to the emerging Internet-of-Things (IoT)
technology [4].

As a result, many research activities and considerable interest have been generated in the last
decade to explore and propose efficient and economical methods for allocating energy resources.
Also, green communication can reduce the emission of Carbon dioxide (CO;) and reduce the
threat caused by the enormous energy consumption in wireless networks. Therefore, many coun-
tries and organizations have agreed to reduce energy consumption [5,6]. In addition to saving
energy and eliminating CO; emissions, green communication can maximize the lifetime of wireless
communication tasks due to its renewability. The operation of traditional communication systems
cannot exceed the battery size or control the power supply constraints. On the other hand,
EH radio nodes in communication systems can harvest energy from renewable sources in their
environment and convert it into electrical energy that can be used to operate their functions. As
a result, green communication with the capability EH is an effective solution to overcome the
network link lifetime deficit discussed in [7,8].

Despite all the above properties of green communication represented in EH wireless networks,
certain difficulties should be investigated and perhaps a new design dimension should be added.
The main challenge of EH technology is the time-varying energy harvesting [9] and the scarcity of
energy amount [10], which lead to the conclusion that the communication performance guarantee
is difficult to fulfill. Therefore, considerable efforts have been made to improve the performance
of EH wireless communication [11,12]. It is highlighted that adjusting the randomness and low
rate of energy arrivals is quite crucial to develop efficient transmission policies and schemes for
EH wireless networks. Due to the time-varying energy arrivals in EH technology, the transmission
power needs to be adjusted even if the wireless fading channel remains unchanged, which is an
additional challenge and unique feature of EH wireless networks [13].

In contrast, due to the additional metric of data buffering characteristics, the buffering delay
must be considered in the queue, and resource allocation algorithms are proposed in [14,15].
Moreover, different types of delay constraints, including delay-tolerant and non-delay-tolerant
views, need to be explored along with guaranteeing QoS on delay properties while proposing
resource allocation schemes. A non-delay tolerant approach can be classified as a real-time appli-
cation, such as real-time streaming, online gaming, and intelligent and smart assisted systems [16],
which can be considered as a hard delay constraint. An example of delay-tolerant applications is
traditional Internet services such as file transfer, email exchange, and web browsing, which can
generally tolerate some delays in certain areas. However, a modern power-constrained wireless
communication system is constrained by wireless time-varying fading channels as well as ran-
dom arrival rate of traffic, which can lead to greater difficulties in ensuring the required QoS
characteristics for real-time applications. Also, further limitations arise for wireless nodes that
use energy harvesting technology and can therefore be referred to as Energy Harvesting Nodes
(EHNs). Although EHNs are suitable for remote operation in monitored areas without human
intervention, the random nature of energy harvesting technology introduces a new paradigm in
resource allocation, including power allocation and scheduling. Therefore, a cross-layer dynamic
modulation policy is a guarantee to meet the overflow requirements of the upper layer by
maximizing throughput while optimizing transmission power and minimizing packet loss.

In this paper, we investigate the cross-layer dynamic modulation policy for energy harvesting
(EH) communication system by dynamically adapting the variable power and variable rate with
finite buffer constraints, including states for each channel condition, data buffers, as well as energy
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capacity, to guarantee that the network throughput is maximized while minimizing both the energy
consumption and the number of dropped packets. Due to the natural instability of wireless time-
varying fading channels and the arrival rates of data and energy, the transmission power and
rate generally depend on the time-varying channel condition, the data buffer condition, and the
energy capacity.

In general, both the data buffer and the energy capacity are limited by finite memory in
practice. Consequently, in addition to optimizing the channel adaptive strategy, the buffers in the
system must also be considered. Moreover, statistical optimization techniques cannot lead to the
determination of an exact scheduling strategy due to the overlap and consideration of several
elements, such as varying channel gains, the randomness of data arrivals, and the randomness of
energy arrivals. Moreover, since the packet scheduling formulation is inherently dynamic, the for-
mulation is classified according to the criterion of stochastic dynamic programming, i.e., dynamic
optimization. The Markov decision process (MDP) is one of the formulas that use the criterion
of dynamic optimization, a mathematical framework that analyzes system dynamics in uncertain
environments. Since the decisions made using the MDP approach follow time-based characteristics,
the MDP approach is not suitable for the decision epochs that have random characteristics in
terms of energy and data arrival, resulting in different durations of the decision epochs.

Therefore, a wireless communication system with the EH capability is event-based in nature.
Therefore, the semi-Markov decision process (SMDP) is the more appropriate approach to propose
a wireless communication system with EH capability and finite buffer constraints over a wireless
fading channel. In this paper, the proposed system model is formulated using the SMDP scheme
to increase the throughput of the network while allocating less energy and minimizing packet
dropping. To the best of our knowledge, no recent work in the open literature has studied the
throughput maximization and resource allocation problem of point-to-point EH wireless com-
munication system with finite buffer constraints over a Rayleigh fading wireless channel as an
infinite horizon SMDP-based problem under data buffer and uncertainty constraints for wireless
fading channels.

The main contributions of this paper are summarized as follows:

—Formulation of a novel framework for a point-to-point EH wireless communication system
with finite buffer constraints on the source node over a fading channel based on an SMDP
approach to maximize the network throughput by optimally allocating the harvested energy while
maintaining minimum packet overflow.

—A dynamic programming technique based on SMDP is proposed to dynamically adapt
the change of channel and/or buffer states, which results in optimally satisfying the physical
layer requirements BER on the one hand and the data link layer overflow requirements on the
other hand.

This paper is organized as follows. Section 1 discusses the introduction of Energy Harvesting
(EH), Semi-Markov Decision Process (SMDP), the purpose of the work, and its importance.
Section 2 discussed the related work in the field of EH wireless communication systems based on
SMDP. Section 3 discusses the system model and description. The formulation of SMDP based
approach is discussed in Section 4. Section 5 discusses the Adaptation Policy of the Cross-Layer
Design. Results and analysis are discussed in Section 6, and the paper is concluded in Section 7.
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2 Related Work

In [17], the authors proposed a resource allocation framework for a point-to-point EH wireless
communication system based on the SMDP approach that maximizes the network throughput
by considering only channel adaptation. Since the transmission scheduling is only channel-based,
the proposed scheme provided the benchmark for the maximum performance of the physical
layer under the assumption that both the data buffer and the energy buffer are infinite and
the data buffer is full with stored data to be transmitted. For practical wireless networks, the
adaptation of packet transmission to channel conditions along with consideration of buffer state
is critical. The goal of adaptation is to stabilize system performance by providing maximum
throughput while reducing the drop probability and minimizing buffer delay. The design of a
wireless communication system with EH capability has generated many research activities in the
field of modern wireless technology. The throughput maximization problem for a point-to-point
EH wireless communication system over a fading channel was considered, while the authors in [1§]
attempted the same system model by proposing a low-complexity and optimal transmission policy
called recursive geometric water filling (RGWF). Two-hop wireless cooperative transmission with
EH capable nodes have been well studied recently.

In [19], an optimal transmission policy for the two-hop wireless communication system with
EH capability at the relay node was proposed. The throughput maximization problem for a two-
hop wireless communication system with EH capability at the source node was studied in [20] and
solved with a cumulative curve algorithm. In [17], the RGWEF algorithm was used to maximize
the throughput of the two-hop EH system. Moreover, in [21], the authors considered ultra-dense
small cell networks with EH capability on the base stations, where the resource allocation problem
is studied and the joint user allocation and optimal power allocation are modeled based on mixed-
integer programming. Moreover, in [22], the authors have tried to solve the problem of minimizing
the outage probability of a network with mesh topology with sources’ EH capabilities.

On the other hand, numerous system models have been formulated based on the SMDP
approach, such as mobile cloud computing networks, vehicular cloud computing networks, wireless
networks, and cognitive vehicular networks. The authors in [23] showed how to manage the cloud
resources, i.e., virtual machines, to support continuous cloud service across multiple cloud domains
based on SMDP. In [24], the authors proposed a framework for shared multi-resource allocation
for the same proposed system model in [23] using SMDP. The main objective of the proposed
framework is to achieve an optimal multi-resource allocation decision by maximizing the total
rewards while reducing the probability of service rejection and the time of service operation.
In [25], the authors propose an optimized resource allocation scheme to optimize the long-term
potential reward of the SMDP-based vehicular cloud computing system. The long-term expected
reward of the system is derived by considering both the return and cost of the proposed system
model and the changing characteristics of the resources. From the perspective of cognitive vehicle
networks, the authors in [26] captured the dynamic property of vehicle user mobility and the
change in availability in the cognitive band, where the shared resource allocation framework is
formulated using the SMDP approach.

In [27], the authors considered a Narrowband-Internet of Things (NB-IT) edge computing
system where Mobile Edge Computing (MEC) servers were deployed at NB-IoT enabled BSs.
As a result, the IoT sensors can single-hop their sensed data into the MEC servers and utilize
maximum computing and storage capacities. In general, the normal MDP model requires addi-
tional overhead because more information about the system states is needed to store information
about previous system association actions. Also, scheduling and offloading decisions need to be
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made at each time point of the slot. Therefore, the Continuous-Time Markov Decision Process
(CTMDP) model was used to formulate the NB-IoT system in [27] to reduce both the total
power consumption of the IoT sensors and the long-term average system delay. Similarly, in [28],
the authors used the CTMDP-based scheme to formulate the vehicle cloud resource allocation
problem for mobile video services. In particular, the authors investigated dynamic offloading,
which they claimed has a great impact on expanding the number of shareable resources, in
addition to reducing the cost of communication paths. Therefore, the goal of the model was to
improve the use of the iterative algorithms imposed in the SMDP scheme. Also, the authors in [29]
used the SMDP-based scheme to propose a service function allocation algorithm for mobile edge
cloud networks.

The problem was defined by considering a system reward and cost. The value iteration
algorithm was used to obtain the maximum reward and reduce the rate of rejected requests.
Also, many efforts have been made to utilize the promising technology Software-Defined Network
(SDN) in IoT applications. The authors in [30] used SMDP to formulate the radio resource
allocation problem to maximize the expected average reward of the proposed SDN-based IoT net-
works. The optimal solution was obtained by a relative value iteration algorithm in SMDP, while
simulation results showed that the proposed resource allocation scheme successfully improved the
long-term average system rewards compared to other similar resource allocation schemes in the
literature. Moreover, an optimal power allocation for wireless sensors powered by a dedicated
radio frequency energy source was formulated using the SMDP scheme for both time division
multiplexing and frequency division multiplexing [31]. Simulation results showed that the proposed
scheme outperformed the heuristic greedy method in the literature.

3 System Model

We consider an EH technology for a point-to-point wireless communication system over
fading channels with a single EH transmitter and a single receiver. The transmitter is equipped
with finite energy capacitor K, and finite data buffer D,,,, as shown in Fig. la. We assume
that the point-to-point transmission is represented as radio frames, where a radio frame divides
into multiple time-slots.

Let A, denote an average packet arrival rate at the transmitter data buffer assuming it follows
the Poisson distribution. Moreover, let A, denote an average EH arrival rate at the transmitter
energy capacitor. The protocol data unit (PDU) at the higher level is classified as packets, where
each packet consists of a bunch of information bits and they are cumulated at the transmitter
data buffer with finite size. In contrast, the PDU at the physical layer is classified as blocks, where
each block is made up of a group of symbols. According to the states of channel condition,
data buffer, and energy capacitor, the scheduler chooses a particular action u € U, which is
equivalent to the selected modulation constellation. Based on chosen modulation type, packets will
be modulated into symbols for being ready for transmission over the Rayleigh fading channel. On
the other hand, received symbols will be demodulated into the stream of bits, where bits’ streams
are cumulated as symbols and stored at the receiver data buffer. As the last step, the received
demodulated packets are delivered to the application layer through the network’s stack.

We assume that the discrete duration of time-slots represents by frames that contain N
channels, as shown in Fig. 1b. Depending on the scheduler’s decision, the number of transmitted
packets may be varied at each frame in the time-line.
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Figure 1: (a) A point-to-point EH wireless communication system with EH capability in addi-
tion to finite data and energy buffer on the source node, (b) SMDP representation of the
proposed problem

Assuming w" is the number of packets that are extracted from the data buffer for purpose of
transmission, R" is the adaptive modulation rate at each transmission in the unit of bits/symbol.
The relationship between the number of packets transmitted and the rate of modulation is
expressed as,

N,

W= (—S) R", (1)
Np

where N, is the size of packets in a unit of bits.

3.1 Channel Modeling

We consider Rayleigh fading channel that follows ergodic flat fading in our analyzed EH
technology system. The probability density function (pdf) of the fading power gain for the
Rayleigh channel follows exponential distribution [32].

1
)= §.exp<—§), for y >0, )

where ' is the average power gain of the received channel.

Rayleigh fading channel is modeled as a first-order Markov model and channel states in the
system are described as C = {c{, ¢2, ..., c¢c}. Probability transition matrix among states, on the
other hand, is constituted by P =[P, , 1 <i,j < C], in which C is the number of channel
states that are not overlapped, whereas P, ., is the transition probability between states, i.e.,
Pe o =Pcle), 1 <i,j<C. Let I' = {y, y1, ..., vc} describes the thresholds set of received
SNR in increasing sequence, where yp =0, y; < y;+1 and yc = oo. For example, to illustrate, the
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channel may consider in-state ¢; if y;,_1 <y <y;. In this paper, a C-state wireless channel model
is described our proposed point-to-point EH transmission model, where C-possible channel states
may illustrate as ce€{cy, 2, ..., ¢c}.

3.2 Energy and Battery Model

The transmitter is assumed to be equipped with a finite energy capacitor that can hold a
maximum of K EUs. Let IC={ko, k1, ..., kx} denote the space of capacitor state in term of EU
occupancy, where k; corresponds to j€ {0, 1,..., K} EUs in the capacitor. The number of EUs
in the buffer is determined dynamically based on capacitor status, energy consumption, and new
harvested energy. The dynamics of the capacitor occupancy is given by,

K" = min{max(ko, K" — 0" + g"), kx} ®)

where g € {0, 1, ..., G} denotes the EUs that are harvested, and o € {0, 1, ..., O} represents the
number of consumed energy at each time-slot for transmission purposes.

3.3 Queue Dynamics with Finite Buffer Constraint

The transmitter utilizes its data buffer to store the arrival packets. Let D = {dy, di, ..., dp}
represent the space of data buffer state in term of buffer occupancy and d;i € {0, 1, ..., D} denotes
the range of stored packets in the buffer. The number of stored packets in the buffer at each
decision-epoch is determined dynamically based on the current buffer state, transmitted packets,
and new incoming traffic, and it can be expressed as follows,

d"! = min{max(dy, d" — w" +f™), dp} (4)
where f € {0, 1, ..., F} corresponds to the number of received packets into the data buffer whereas
w e {0,2,..., W} denotes the packets that are extracted from the data buffer for purpose of

transmission. The constraints of the maximum number of a transmitted packet through the
wireless transmission are the number of packets that physically exist in the data buffer as well as
the instantaneous link capacity. The data buffer is assumed to be stable, and it is represented by
the buffer overflow constraint:

d" —w"+ " < dp. (5)

The equation implies that the data buffer size dp plays the main role in determining whether
a strict or loose buffer overflow constraint exists. In particular, it is noticeable that a small data
buffer size leads to a strict buffer overflow constraint, while a large data buffer size leads to a
loose buffer overflow constraint. Since the decisions made with the MDP approach follow time-
based characteristics, the MDP approach is not suitable for the decision epochs that have random
characteristics in terms of energy and data arrival, which leads to different duration of the deci-
sion epochs. Therefore, a wireless communication system with the capability of EH is inherently
event-based. Therefore, the semi-Markov decision process (SMDP) is a more suitable approach to
propose a wireless communication system with EH capability and finite buffer constraints over a
wireless fading channel.

4 SMDP Formulation of the Cross-Layer Scheduling

As discussed earlier, it is necessary to establish an approach that is suitable to account for
the variability in decision epoch duration due to the variation in energy arrival as well as the
arrival of data packets on the transmit capacitor or data buffer. Therefore, the time between
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successive control decisions varies because the decision epoch duration depends on the current
states of the system as well as the action selection of the epochs, which vary inherently. On the
other hand, the weight of the decision epoch cost is determined by the time it takes the system
to move from one state to another. Consequently, the problem considered above is constituted
as an SMDP process satisfying the dynamic nature and the required dynamic programming. The
objective of our work is to implement a cross-layer scheduler for a point-to-point EH wireless
network that optimally adjusts the energy allocation and transmission rate based on the physical
layer (channel state) and data link layer (energy capacitor and data buffer states) such that
the network throughput is maximized and packet overflow is minimized. The proposed problem
can be modeled based on a semi-Markov decision process that considers the following tuple
(S, A, W, T;, P}, corresponding to system states, actions, system reward, consumption time, and
transition probabilities, as explained below.

4.1 System States

To resolve the proposed dynamic programming problem, a composite system state space is
structured containing the change of the channel space, information buffer state space and vitality
capacitor state space. Let indicate combining elements by S =D x K x C = {sy, 52, ..., S5}, where
Sm=Id;, ki, c:];, m=1,2,...,8;i=0,1,2,...,D;j=0,1,2,...,K;and I=1,2, ..., C.

4.2 Set of Actions

Adaptive power allocation and modulation constellation scheme are proposed to verify an
action that dynamically adapts the power/rate transmission scheme, which has a two-to-one map-
ping between the energy allocation and the transmission rate from one hand, and the number
of transmitted packets from another hand. Depending on the instantaneous composite system
state s", the controller chooses an action u", where U = {uy, ..., uy} denotes a finite space of
actions. Generally, a policy 7 that is part of a policy system space m can be constructed by
7 = {1, u2, ...}, and an action u" = p'(s*) at decision-epoch n may be taken at each instant.
Moreover, considering the set of several allocated EUs & = {eg, ¢1, ..., eg} and the range of
available transmission rates W = {wg, wi, ..., wy}, two mapping functions ¢ and i can be
identified, where ¢ maps an action of several allocated EUs that is applied ¢: U — £ and ¥ maps
an action of selected transmission rate for transmission ¥ : U — W, respectively. Assuming P,(y)
is the instantaneous bit error rate (BER) with received SNR y, BER expression can be found for
M-QAM and it is expressed by [33];

i o
B g B 1 - vy Pr

where v = logo(M) is the number of modulated bits into 2"-QAM symbol and P denotes the
average transmitted signal power. The instantaneous received SNR for a constant transmit power
is given by y = hP/o2, where h is the power gain of the channel and o2 is the variance of channel
noise. Assuming the power of the transmission is denoting as Pr, the instantaneous received SNR
at interval n is determined by y P7/P. Two adaptation policies are considered to examine the
implementation of the proposed cross-layer wireless communication system with EH constraints:
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4.2.1 Channel-Dependent Static Policy

Adaptive modulation rate is selected based on the channel condition status only but it main-
tains a fixed specified BER. However, this adaptation is not implementable in practice because it
does not consider the finiteness of the data buffer and consequently the overflow equipment.

4.2.2 Dynamic Joint the Finiteness Buffer and Channel-Dependent Policy

The SMDP process is constituted to firmly formulate the dynamic Joint adaptation both
of finiteness buffer as well as the channel-dependent state. While the proposed policy considers
both buffer states and channel state, the scheduler/controller determines the optimum action for
cach state that maximizes the long-run system reward. The proposed policy satisfies the system
requirements in maximizing the system reward while ensuring minimum energy consumption and
packet overflow. The combination of energy allocation and transmission rate is set by X =
ExW ={xg, x1, ..., xy} = {(eg, wp), (eq, w1), ..., (ee, ww)}.

4.3 Transition Matrix

The probability of transition from a single state s =s, to another state s’ =s, for a particular
action is determined by transition probability, which is denoted by P(s"|s, u). At each particular
action u = u;, the transition matrix can be formulated using Kronecker product of channel
transition, energy buffer, and data buffer matrices, where all are independent.

P* (up) = P* (u;) ® P (u;) ® P* (uy)

Psq,sr(ui) Psq,sr(”i) ce Psq,sr(ui)
Psq,sr(ui) Psq,s,'(ui) te Psq,sr(ui)

= . . . (7)
Psq,sr(ui) Psq,sr(”i) te Psq,sr(ui)

System state transition probability from state s =s, = [d;, ¢, kj] to state s, =[dy, c), k-] for
action u=u; can be given by,

Psq,sr (u;) = de,decl,cyij,k; ®)

4.4 Reward Model

The choice for action in a state is selected by associated costs. the controller chooses the
action that results in the maximum reward. A cost function O(s;, u;) constitutes the relationship
between the state-action pair (s;, u;) and the system reward. System reward r(s, @) (also called
associated cost) at each pair of system state and corresponded action is given by,

r(s, a) =n(s, a) — g(s, a) 9)

n(s, a) denotes the instant income and cost of the system when a specified action is taken
a(s) at a particular state s. We describe these objective functions as follows.
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4.4.1 Adaptive Modulation Rate

It is equivalent to the immediate system reward for state-action pair (s, @) and is described
as modulation constellation set Qg (s, @) =[no transmission, QPSK, 16QAM 64QAM =0, 2, 4, 6]
bits/symbol, which is the number of packets that are token from the data buffer for transmission.

4.4.2 Buffer Overflow Cost

During the buffer is at full state, the probability of dropped packets is high. The immediate
overflow cost is the number of packets that are dropped from the buffer and it can be expressed
as Qo(s, a)=(d"—w"+f" —dp)*, where (z)* =max{0, z}.

The system expected cost g(s, @), on the other hand, can be described as follows:
g(s, a)=c(s, a)t (s, a), (10)
where t(s, @) denotes the service time, and c(s, @) indicates the power consumption cost that is
considered by choosing a certain action u; at a certain channel state ¢;, shown as;
c(s, a)=Pr. (11)

where the power cost ¢(s, a) = Pr can be found using (6) by replacing the instantaneously received
SNR y into average received SNR 7 on the given equation: y = % f;j’f 1 fry)dy.
< Sy

4.5 Sojourn Time

After choosing an action, the normal average estimated time t(s, @) is the length of the taken
time from the current event to other occurrences. Consequently, the normal average rate of an
occurring event y (s, @) Is the summation of the rates of all element processes from one state to
another after an action a(s) is selected. Computation of y (s, @) and 7(s, a) is expressed as:

y (s, a)=1(s,a)”"

)"C—J’_)"e: EE{F, G}a a:_la
= )\'C+)\'6+Ri,la ee {C]}, (12)
a=i ie{0,1,....1}.

where R;; is the modulation rate that is adapted by occupying i EU when the channel is at
state /. In case of harvesting new EUs (¢ € {F}) or arriving new packets at the transmitter’s data
buffer (e € {G}), no action is taken and no continuing processing service is on run. Once the
channel state is changed (e € {(}}), the scheduler determines the system state and then taken action
consequently. The expected instant reward r(s, @) for time period (s, @) is determined based on
the discounted reward model that is shown at [34], as below:

r(s,a)= Q07 (s,a) —c(s, a)E;Z {/Te_atdl}
0

=Q0r(s, a) —c(s, a)EY {[l_aﬂ}

c(s, a)

=Qr(s, a) — m,

(13)
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where O7(s, @) =[Qg(s, a) — Qp(s, a)] and « is a continuous-time discounting factor. Relying on
the transition probabilities at (7) and also the reward model at Eq. (13), we can formulate the
maximal discounted long-term reward of the state s based on Bellman equation which described
the discount reward model as follows:

v(s) = max [r(s, a) + A Z}gp(S’ |'s, a)V(S’)} , (14)
where A = M < 1.
a+y(s, a)

5 Adaptation Policy of the Cross-Layer Design

The policy of the cross-layer adaptation scheme takes into account the energy capacitor and
data buffer occupancies as well as the channel state to target the overflow cost. For example, the
transmitter requires different transmit powers at different channel states on time-varying channels.
However, the sender could also transmit at a higher rate to avoid packet congestion when the
data buffer is full, so to speak, or when the average data arrival rate is high and vice versa. In
this section, we show how to optimally adjust the modulation rate for cross-layer EH networks
using the SMDP approach. It is based on the iteration approach discussed in [35]. Can obtain an
optimal policy as described in Algorithm 1.

Algorithm 1: Adaptation policy of the cross-layer design based on SMDP approach

1. Set long-term incentive for each state s. and set iteration k=0, and ¢ > 0, respectively.
2. Compute the corresponding reward for each state s using (14).
Vet () = maxge [r(s, @) +A Y gcgp(s |, a)vk(s’)].

3. Based on the following condition, if [vT! — k| < %, Head to step 5.
4. Otherwise, return to Step 2, escalate k by k+ 1.
. Match the applicable intervention policy for v<*1(s),

Popi (5) € argmaxe 4 [1(s, @)+ 2 Y gegp(s | 5, ) 1(s))].
6. End

N

Initially, both v(s) and P, (s) are launched at zero for each state s. Also, , v(s) and Py(s)
are continuously determined till the rate of v(s) for each state s is equal to that of the associated
v(s') in the previous iteration, meaning that the process of converging is achieved. The overall
output performance P, (s) for all states is the system’s taking actions policy, which ends up in
acquiring the maximal discounted reward.

6 Numerical Results

In this section, we show the performance of two adaptation strategies. We set our parameter
values as follows: we assume that the energy extraction rate and the packet arrival rate follow
a Poisson distribution with an average rate (A, = 2) and (A, = 3), respectively. Moreover, we
assume that the finite energy capacitor Ky, = 20, finite data buffer D, =20, Ny/N, =1, and
the number of channel states and actions are C =4 and U = 4, respectively. An independent
and identically distributed Rayleigh fading channel with a mean value (77 = 1) is considered.
Moreover, average transmission power is set by (P =1 mW) and the corresponding normalized
average received signal to noise ratio (SNR) is valued by (y =1). Also, and average channel bit
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error rate (BER) and modulation constellation set are assumed as (P, = 10~%) and, w=|0, 2, 4, 6]
bits/symbol, respectively.

35 T T
— — —Physical layer channel-dependent policy
[0 Proposed scheme cross-layer policy
3r Benchmark sheme T

Throughput (packets)

0‘5 1 'l
1 1.5 2 25
Average Packet Arrival (packets/time-slot)
1 T T
09+ 4
0.8 - 1
=
B 07 4
[1]
=}
e 06t 1
o
@
= 05 1
1y
3 0.4 .
‘QEJ 0 3 - — i =
3 e =
G2F @ e -_——" )
o1F -
ol = =) = = = =]
1 1.5 2 25

Average Packet Arrival (packets/time-slot)

Figure 2: Relationships between the total throughputs and the overflow probability rates with the
change of packet arrival rate among different schemes

The total throughput and blocking probability of the static adaptation policy on the physical
layer and the dynamic adaptation policy on the other layer are compared in Fig. 2. It can be seen
that the throughput of our proposed cross-layer policy scheme achieves the same performance as
the benchmark scheme. However, the benchmark scheme does not track the state of the energy
capacitor in each time period, since it is assumed that the energy available in each interval is
infinite. Nevertheless, the average transmitted power is limited to the bounded A.. Hence, the
control action may not always be feasible. Therefore, although the benchmark scheme is charac-
terized by its low computational complexity, this scheme is not applicable in reality. Finally, the
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dashed curves reflect the actual average system throughput in the case of the channel-dependent
static adaptation strategy. The gap between the average throughput in the case of the cross-layer
dynamic strategy and the channel-dependent static strategy grows as the packet arrival rates grow.
Fig. 2 also shows how with the growth of packet arrival rates in the channel-dependent static
strategy, the blocking risk increases, while the blocking rate in the cross-layer dynamic strategy is
minimal and approaches zero even with the increase in data arrival rate. The reason is that in the
channel-dependent policy, the scheduler uses different modulation constellations based only on the
channel state without tracking the capacitor and buffer states. Consequently, the policy has no
guarantee of overflow requests. On the other hand, in the cross-layer policy, BER and the packet
overflow requirements are guaranteed for a high data arrival rate.

Fig. 3 shows the trade-off curve between maximum throughput and maximum buffer for
the cross-layer dynamic and static policies for a layer. It can be seen that the total throughput
increases with the growth of the finite buffer size for both policies. However, while the throughput
growth rate is high for smaller buffer sizes, the growth rate slows down as the data buffer size
increases. It is also seen that the proposed cross-layer strategy achieves the same overall optimal
throughput performance as the benchmark method. Moreover, it can be seen from the figures
that the proposed scheme outperforms the static approach and the performance difference between
them increases as the maximum data buffer size increases. It can be concluded that although the
complexity of the cross-layer dynamic scheme is higher, it is still worth implementing due to its
performance over the static method, especially as the data buffer size increases.
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Figure 3: Relationships between the total throughputs and various data buffer sizes among differ-
ent schemes

7 Conclusions

Energy harvesting (EH) technology in wireless communications is a promising approach to
extend the lifetime of future wireless networks. Unlike most adaptation strategies in the liter-
ature, which are based only on channel-dependent adaptation at the physical layer, this paper
investigates a cross-layer optimal adaptation strategy for a point-to-point energy harvesting (EH)
wireless communication system with finite buffer constraints over a Rayleigh fading channel based
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on a Semi-Markov Decision Process (SMDP). While the channel-based transmission scheduling
provides the benchmark for the maximum performance of the physical layer under the assumption
that the data buffer always has data to transmit and the size of the data buffer and the energy
buffer is infinite, the practical adaptation design needs to be invented to stabilize the system
performance by providing the maximum throughput while reducing the drop probabilities and
minimizing the buffer delay for a cross-layer design. Therefore, the SMDP framework has been
applied to determine the optimal policy of a cross-layer design for a single-hop network EH
based on channel-dependent static adaptation and cross-layer dynamic adaptation. In cross-layer
adaptation, throughput is maximized by tracking the state of the battery, data buffer, and channel
to optimally control the transmit power and rate over the transmit time intervals. Illustrating the
numerical results, it is noticed that the cross-layer adaptation policy outperforms the channel-
dependent policy by guaranteeing the overflow rate and hence the network throughput in a
network with green communication features and EH sources. Moreover, the proposed cross-layer
scheme was shown to be implementable compared to the benchmark scheme and still provides the
same throughput as the benchmark scheme for all packet arrival rates and maximum buffer size.
As a suggestion for future work, an optimal transmission policy based on the SMDP formulation
can be applied to a cooperative wireless communication where the source and relay have energy
harvesting capability, and the model is designed based on the SMDP formulation. Since the
proposed model is based on a single-hop connection between the source and the destination, relays
with the capability EH can help relay the information signal when there is a direct connection
between the sender and the receiver (cooperative communication), saving more energy and speed-
ing up the data transmission. Both cooperative communication and relay selection protocol can
be analyzed in terms of throughput, outage probability and energy efficiency.
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