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Abstract: Graph filtering is an important part of graph signal processing
and a useful tool for image denoising. Existing graph filtering methods, such
as adaptive weighted graph filtering (AWGF), focus on coefficient shrinkage
strategies in a graph-frequency domain. However, they seldom consider the
image attributes in their graph-filtering procedure. Consequently, the denois-
ing performance of graph filtering is barely comparable with that of other
state-of-the-art denoising methods. To fully exploit the image attributes, we
propose a guided intra-patch smoothing AWGF (AWGF-GPS) method for
single-image denoising. Unlike AWGF, which employs graph topology on
patches, AWGF-GPS learns the topology of superpixels by introducing the
pixel smoothing attribute of a patch. This operation forces the restored pixels
to smoothly evolve in local areas, where both intra- and inter-patch rela-
tionships of the image are utilized during patch restoration. Meanwhile, a
guided-patch regularizer is incorporated into AWGF-GPS. The guided patch
is obtained in advance using a maximum-a-posteriori probability estimator.
Because the guided patch is considered as a sketch of a denoised patch,
AWGF-GPS can effectively supervise patch restoration during graph filtering
to increase the reliability of the denoised patch. Experiments demonstrate that
the AWGF-GPS method suitably rebuilds denoising images. It outperforms
most state-of-the-art single-image denoising methods and is competitive with
certain deep-learning methods. In particular, it has the advantage of managing
images with significant noise.
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1 Introduction

Image denoising aims to remove noise from images, thereby benefitting the subsequent anal-
ysis and processing of images and videos. Current image denoising methods are divided into
two categories: Model- and deep-learning-based methods. Prior to the success of deep learning
methods, model-based methods have been used for decades to exploit the intrinsic attributes of
images [1–3]. Most of them resolve the denoising problem using the internal prior of the target
noisy image without considering other images. Therefore, they are often considered as single-image
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denoising methods. In contrast, deep-learning-based methods employ the external prior from other
image databases to recover denoised images. Thus, they can be considered as data-driven methods
that require numerous image data [4–6]. Flexible feature learning strategies are adopted in these
methods via various deep networks. Because of the feature analysis of external images instead
of the target image, deep-learning-based methods have a higher denoising performance than the
model-based methods. However, in this study, we focus on the model-based denoising method
assuming that only a single noisy image is provided.

In general, model-based denoising methods involve a filtering process, where the input and
output data are noisy and denoised images, respectively. Thus, various filtering methods are
used in different domains such as spatial, transform, and learned domains. In earlier studies,
spatial-domain methods, such as bilateral filtering [7] and non-local means filtering [8], were used
for the direct operation on pixels or patches. A spatial smoothing filter was used to remove
noise-like components from the target image. However, since this smoothing procedure is only
performed in local areas or patch groups, spatial filtering has a limited ability to exploit the
statistical information of the entire image. To overcome this problem, transform-domain filters are
presented by considering the directional structures in the images. Wavelet and Curvelet filters have
been successfully employed for their adequate structural description of basis [9–11]. A popular
denoising method, named block matching and three-dimensional (BM3D) filtering, was proposed
using a collaborative spatial-wavelet filter [12,13]. It adopts a spatial filtering result to guide
sequential wavelet filtering on similar patches. Unfortunately, none of the aforementioned filters
are contented-based due to their fixed filter coefficients. Therefore, more advanced models, such
as sparse representation and low-rank representation models [3,14–16], have been deployed in
different learned domains in recent years. For example, a trilateral weighted sparse coding (TWSC)
method is used to estimate data fidelity based on the sparse representation theory [17]. A low-rank
approximation approach with adaptive regularizer learning (ARLLR) [18] is presented to shrink
the eigenvalues of patches and is highly successful in image denoising. However, it is not yet
considered as a filter-based model. The current study proves that the low-rank model is equivalent
to a subspace graph filter [19]. The filtering procedure takes place in a graph subspace supported
by the eigenvectors of the patch group.

Graph filtering is an essential component of graph signal processing. Its basic idea is to
filter the input signal on the network nodes [20]. Once pixels or patches are chosen according to
the nodes, graph filtering can adequately fit image denoising. Certain graph polynomial filtering
methods are presented to employ various Laplacian matrix regularizers in the existing denoising
model [21–23]. Several adaptive graph filtering methods are also proposed, by applying differ-
ent coefficient shrinkage strategies in the graph-frequency domain. In a pioneer work, an idea
lowpass graph filter was designed using a full shrinkage approach in the high graph-frequency
band, achieving denoising performance comparable with that of BM3D [24–26]. Given a patch
group, the study proves that the eigenvectors of the Laplacian matrix are a set of graph Fourier
bases [27]. Recently, an adaptive weighted graph filtering (AWGF) method introduced an effec-
tive shrinkage approach in the entire band [19]. Although it theoretically builds a bridge from
the existing low-rank model to graph filtering, its denoising performance is barely comparable
with that of low-rank denoising methods. In the traditional AWGF method, the graph filter is
prioritized, whereas patch attributes are seldom considered for image denoising.

Motivated by the recent progress, we propose a guided intra-patch smoothing AWGF (AWGF-
GPS) method for single-image denoising. Our contributions are twofold. (1) Unlike AWGF that
uses graph topology on patches, AWGF-GPS learns the superpixel graph to exploit the pixel
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smoothing attribute in patches. This operation forces the restored pixels to smoothly evolve in the
local area, where both intra- and inter-patch relationships are utilized during patch restoration.
(2) A guided-patch regularizer is incorporated into AWGF-GPS. The guided patch is obtained in
advance using a maximum-a-posteriori (MAP) probability estimator. By considering the guided
patch as a sketch of a denoised patch, AWGF-GPS effectively supervises the patch restoration
procedure. Consequently, the reliability of the denoised patch is increased. Experiments demon-
strate that our AWGF-GPS method suitably rebuilds denoising images. It outperforms most
state-of-the-art model-based methods and is competitive with certain deep-learning methods.

2 Related Work

We briefly review the existing AWGF model [19]. Given a noisy patch group, Y, with
vectorized patches

{
yi

}
in its column, the AWGF model is expressed as

{
σ̃g,i

}= arg min{σg,i}
1
2τ

∥∥∥Y −YUg�gUT
g

∥∥∥2
F
+

N∑
i=1

g
(
σg,i

)
, (1)

where τ is a weighted coefficient, Ug is a graph Fourier basis matrix of the graph filter, N is the
patch number, and �g is a diagonal matrix with the shrinkage coefficients

{
σg,i

}
as its diagonal

entries. Moreover, g
(
σg,i

)
is a prior regularizer, where different regularizers can be adopted to

generate various shrinkage strategies on σg,i [28,29]. Sequentially, the denoised patch group, X, is
obtained as

X =YUg�̃gUT
g , (2)

where �̃g is a diagonal matrix with the optimal shrinkage coefficients
{
σ̃g,i

}
as its diagonal entries.

Note that the noisy patch group, Y, in Eq. (2) is right-multiplied by the filtering operation of
Ug�̃gUT

g . Because the graph filter is built on the graph topology constructed among patch nodes,
the AWGF model is an intrinsic patch-based graph filtering model. It focuses on the relationship
between patches, where the similarity attribute of the pixels is not considered.

3 Proposed Method

We propose the AWGF-GPS method to employ both the self-similarity of patches and the
local similarity of intra-patch pixels. Fig. 1 depicts the filtering flowchart. The superpixel is defined
as a pixel set sharing the same location on the patches. A graph is learned using these superpixels
to strengthen the smooth attributes of the neighboring pixels. Sequentially, the corresponding
graph Fourier bases are obtained from the Laplacian matrix during the graph analysis. The
guided patches are evaluated based on their corresponding noisy patches via a MAP estimator.
Combined with the graph Fourier bases and the guided patches, the AWGF-GPS model is finally
implemented to restore the denoised patches.

3.1 Graph Learning on Superpixels
We obtain the superpixels from the noisy patch group, Y, where each row vector of Y

represents a superpixel node. Graph learning is then performed on these nodes. Various graph
learning methods have been proposed to form graphs with different strategies. However, we prefer
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a log-model graph learning approach [30], which builds a connected graph without any isolated
nodes. This graph learning model is described as

W̃ = argmin
W

‖Z ◦W‖1−α1T logW1+β ‖W‖2F , (3)

where W is an adjacent matrix to measure the weighted edges among the superpixel nodes, Z is
a pairwise distance matrix for the superpixels, α and β are two weighted coefficients, 1 represents
a vector of ones, and symbol ◦ denotes the Hadamard product.

Figure 1: Flowchart of AWGF-GPS denoising

The optimization problem in Eq. (3) can be conveniently solved using the GSP Toolbox [31].
Then, the graph Laplacian matrix is given as L=D−W , where the diagonal entry of the degree
matrix, D, is the corresponding row sum of W . Finally, the graph Fourier bases, Ug, are obtained
from the eigenvectors of L.

3.2 Guided Patch Estimation
We employ the guided patches as a regularizer in our AWGF-GPS model. Here, a MAP

estimator is used to generate the guided patch group, X̂, that is viewed as a sketch of the denoised
patch group, X. For convenience, we interpret the MAP estimator at the pixel level [32] and then
extend it to the patch operation level. Given a noisy pixel, y = x + n, with clean pixel x and
noise n, where n follows a Gaussian distribution, N (

0,σ 2
n
)
, with a zero mean value and standard

deviation σn, the conditional probability of x can be expressed as

p (x | y)= 1√
2πσ̂ 2

x

exp

{
−

(
x− μ̂

)2
2σ̂ 2

x

}
. (4)

In Eq. (4), symbols μ̂ and σ̂ 2
x are respectively defined as

μ̂= σ 2
n x̄+ σ 2

x y
σ 2
n + σ 2

x
, (5)

σ̂ 2
x = σ 2

n σ 2
x

σ 2
n + σ 2

x
, (6)
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where x̄ and σx are the mean value and standard deviation of x, respectively. Hence, we define
the guided pixel, x̂, as the conditional expected value of x with

x̂=
∫ ∞

−∞
x · p (x | y) dx

= x̄
1+S

+ y
1+ 1/S

, (7)

where S = σ 2
x/σ 2

n is the signal-to-noise ratio (SNR). Inspired by the pixel estimation of x̂, the

guided group, X̂, can be written as

X̂ = X̄
1+S

+ Y
1+ 1/S

, (8)

where X̄ is the mean patch group composed of the corresponding guided pixels. In Eq. (8), we
assume that each pixel in the patch group shares the same SNR.

Unfortunately, the guided group, X̂, in Eq. (8) is impractical because there is no exquisite
formulation for X̄ and S. As a result, we generate these two parameters by an alternative
approach. To estimate the SNR, we approximate S as

S≈ var (Y)− σ 2
n

σ 2
n

, (9)

where var (Y) is the mean deviation of pixel for patch group Y.

We estimate the mean patch group, X̄, using an ideal lowpass graph filter as

X̄ ≈Ug�̃g,MUT
g Y, (10)

where the diagonal matrix, �̃g,M , contains only the first M nonzero diagonal entries. These entries
are described as

σg,i =
{
1 i≤M
0 otherwise

. (11)

The optimal value of M is further achieved under the noise control of σ 2
n as

M̃ = argmin
M

∣∣∣var(
Ug�g,MUT

g Y
)
+ σ 2

n − var (Y)

∣∣∣ . (12)

3.3 AWGF-GPS Model
Using graph Fourier bases and guided patches, we define the AWGF-GPS model as

{
σ̃g,i

}= arg min{σg,i}
1
2τ

∥∥∥Y −Ug�gUg
TY

∥∥∥2
F
+

N ′∑
i=1

g
(
σg,i

)+ γ

∥∥∥X̂ −Ug�gUg
TY

∥∥∥2
F
, (13)

where γ is a weighted coefficient and N′ is the superpixel number. Then the denoised patch group,
X, is obtained as

X =Ug�̃gUT
g Y . (14)
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We should mention some aspects of the filtering procedure from Eqs. (13) to (14). Unlike
the definition in Eq. (2), the noisy patch group, Y, in Eq. (14) is left-multiplied by the filtering
operation of Ug�̃gUT

g . In this case, the row combination process is employed for Y. Since each
row vector of Y represents a superpixel, it conducts a superpixel-based filtering model. Moreover,
we aim for the denoising patches described in Eq. (13) to be centralized with X̂, because the
guided patch group, X̂, is another denoised result for clean patches. These guide patches provide
an optimal direction for denoising.

To simplify Eq. (13), we transform the model by merging its first and third terms as

{
σ̃g,i

}= arg min{σg,i}
(1+ 2λτ)

∥∥∥∥Ug�gUg
TY − 1

1+ 2λτ

(
Y + 2λτ X̂

)∥∥∥∥
2

F
+ 2τ

N ′∑
i=1

g
(
σg,i

)
. (15)

Subsequently, we cast Eq. (15) in the trace form as

{
σ̃g,i

}= arg min{σg,i}
(1+ 2λτ) trace

(
�2
gUg

TYYTUg− 2�gUg
TYETUg

)
+ 2λτ

N ′∑
i=1

g
(
σg,i

)
, (16)

where E = (1+ 2λτ)−1
(
Y + 2λτ X̂

)
.

Then, we provide the setting of the prior regularizer, g
(
σg,i

)
. According to the AWGF

approach [19], regularizer g
(
σg,i

)
is expressed as

g
(
σg,i

) = log
∣∣ηiσg,i+ ε

∣∣ , (17)

where ε is a small positive constant and ηi is a weighted coefficient. By defining the projection
matrix, P=YTUg, with its vectors

{
pi

}
, we set ηi as the projected energy with η2i = pTi pi.

Because the shrinkage coefficient matrix, �g, is diagonal, the optimization problem in Eq. (16)
can be decomposed into a set of subproblems by the given g

(
σg,i

)
of Eq. (17). For each shrinkage

coefficient, σg,i, the corresponding subproblem is written as

σ̃g,i = argmin
σg,i

(1+ 2λτ)

(
ηiσg,i− fi

ηi

)2

+ 2λτ log
∣∣ηiσg,i+ ε

∣∣ , (18)

where fi is the i-th diagonal entry of Ug
TYETUg. Considering the shrinkage coefficient solution

in AWGF as a reference, Eq. (18) also provides a closed-form solution as

σ̃g,i = 1
ηi

max

⎛
⎜⎜⎜⎜⎝
fi
ηi

− ε−
2

(
1+ 2λτ

λτ
− ε

fi
ηi

)
√(

fi
ηi

− ε

)2

− 4
(
1+ 2λτ

λτ
− ε

fi
ηi

) , 0

⎞
⎟⎟⎟⎟⎠ . (19)

Thus, the AWGF-GPS method completes its coefficient shrinkage procedure.
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3.4 AWGF-GPS Denoising Framework
We present the iterative AWGF-GPS denoising framework in Algorithm 1. Given an inter-

mediate noisy image, Y(k), in the k-th iteration, we deal with its j-th noisy patch group, Y j, in
four steps.

Algorithm 1: Image denoising by AWGF-GPS
Input: Noisy image Y, noise standard variance σn.
1: Initialize intermediate noisy and denoised images with Y(0) =X(0) =Y.
2: For k= 1: K do
3: Set intermediate noisy image Y(k) = αX(k−1) + (1−α)Y.
4: For each patch yj of Y(k) do
5: Find similar patches of yj to form patch group Y j.
6: Learn the graph from superpixels using Eq. (3).
7: Calculate eigenvectors Ug from adjacent matrix W .
8: Define noise standard variance σn,j using Eq. (20).
9: Achieve guided patches X̂ j using Eq. (8) with its SNR Sj and mean patch group X̄ j.
10: Obtain shrinkage coefficients

{
σ̃g,i

}
using Eq. (19).

11: Obtain restored patch group X j using Eq. (14).
12: end for
13: Aggregate all

{
X j

}
to form intermediate denoised image X(k).

14: end for
Output: Optimal denoised image X̃=X(K).

First, we obtain the Laplacian matrix, L, from the learned superpixel-based graph, W , in
Eq. (3) and obtain its graph Fourier bases, Ug. Second, the j-th guided patch group, X̂ j, is

estimated using Eq. (8), where the corresponding SNR, Sj, and the mean patch group, X̄ j, are
defined by Eqs. (9) and (10), respectively. Here, the noise standard variance, σn,j, of Y j is given
by

σn,j =
√
max

(
σ 2
n − var

(
Y j −Y ′

j

)
, 0

)
, (20)

where Y ′
j is the patch group of noisy image Y sharing the same patch index of Y j. Third, the

AWGF-GPS model is applied to the patch group, Y j, to achieve its shrinkage coefficients
{
σ̃g,i

}
using Eq. (19) and the intermediate denoised patches, X j, using Eq. (14). Finally, we assemble all

denoised patches
{
X j

}
into the k-th iterative denoised image, X(k). The optimal denoised image,

X̃, is obtained after the K-th iteration.

4 Experimental Results

We compare the AWGF-GPS method with several state-of-the-art model-based denoising
methods, including BM3D [12], TWSC [17], ARLLR [18], and AWGF [19]. A deep-learning
image denoising method, named the fast and flexible denoising convolutional neural network
(FFDNET) [5], is adopted to show the gap between the model-and deep-learning-based denoising
methods. Moreover, because our method is derived from AWGF, the denoising parameters are
also inherited from those in AWGF. However, for the weighted coefficients in Eq. (13), parameters
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τ and γ are set as τ = √
N′σ 2

n,j and γ = 0.1τ−1, respectively. A few clean images are shown in

Fig. 2 as test materials. The noisy images are generated by adding Gaussian noise.

Figure 2: Clean images. From left to right, the images on the top line are named C. Man, House,
Peppers, Starfish, Man, Monarch, and Lena, and those on the bottom line are named Airplane,
Boats, Parrot, Barbara, Couple, Montage, and Hills

A denoised image comparison of the noise standard deviation of σn= 40 is shown in Fig. 3.
As a benchmark, BM3D achieves an acceptable denoising performance through collaborative
spatial-wavelet filtering. TWSC is better than BM3D with its efficiently learned features of noisy
images via sparse representation. ARLLR outperforms the other methods. This indicates that the
eigenvalue shrinkage approach is powerful for managing noise. The noise is sufficiently removed
in the high “rank-bands” corresponding to the small eigenvalues of the patch group. AWGF
emphasizes graph filtering but has less consideration for the image attributes. This leads to a
denoising performance that is barely comparable with that of ARLLR. Our method is proven
to be the best. The denoised images derived from AWG-GPS are smoothed with a few artificial
textures by employing the intra-patch smoothing attribute among the superpixels and the supervi-
sion from guided patches. However, FFDNET achieves an outstanding performance in restoring
images more naturally. Unlike model-based methods, it benefits from learning the prior from the
external images.

The denoised image comparison of the noise standard deviation of σn = 70 is shown in
Fig. 4. BM3D obtains good results. TWSC and ARLLR are better than BM3D due to their
self-learned features from noisy images. We observe that ARLLR suffers from stronger artificial
textures (House). ARLLR is an eigenvalue shrinkage method that uses the statistical information
of patch groups via singular value decomposition (SVD). However, it seldom focuses on the
pixel smoothing attribute in local areas. AWGF outperforms the aforementioned methods. This
proves that graph filtering on the learned graph is useful to alleviate the artificial textures, since
the restored patches are required to smoothly evolve on the graph. The proposed AWGF-GPS
further smoothens the denoised images, which is owing to the superpixel-based graph, where
the similarities between the patches and intra-patch pixels are fully exploited. The shrinkage
approach is also efficiently conducted using guided patches. Note that the denoising performance
of FFDNET is unsatisfactory. For example, the eaves area of the house is not sufficiently restored.
This phenomenon is caused by feature mismatch. In this case, the external prior from the image
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databases cannot precisely guide the patch reconstruction for denoised images because the features
of clean images are significantly contaminated by noise and are difficult to recognize.

Figure 3: Denoised image comparison of the noise deviation of σn= 40. (a) House (b) Monarch
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Figure 4: Denoised image comparison of the noise deviation of σn= 70. (a) House (b) Monarch
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Table 1: PSNR (dB) results of different denoising methods

C. Man House Pepper Starfish Man Monarch Lena Airplane Boats Parrot Barbara Couple Montage Hills Average

σn = 20
BM3D 30.49 33.77 31.29 29.67 30.59 30.35 33.05 29.55 30.88 29.96 31.78 30.76 33.34 30.72 31.16
TWSC 30.57 33.89 31.43 30.13 30.72 30.88 33.19 29.66 30.97 30.11 32.32 30.82 33.44 30.77 31.35
ARLLR 30.74 34.03 31.55 30.29 30.74 31.11 33.12 29.90 30.98 30.20 32.20 30.80 33.66 30.78 31.44
AWGF-GPS 30.80 34.05 31.65 30.31 30.81 31.13 33.12 30.00 30.96 30.23 32.13 30.84 33.72 30.82 31.47
FFDNET 31.13 34.15 32.00 30.51 31.10 31.22 33.51 30.16 31.22 30.44 31.21 31.24 33.60 30.95 31.60

σn = 30
BM3D 28.64 32.09 29.28 27.65 28.86 28.36 31.26 27.56 29.12 28.12 29.81 28.87 31.21 29.16 29.28
TWSC 28.69 32.40 29.41 28.03 28.92 28.78 31.41 27.67 29.19 28.27 30.35 28.93 31.31 29.18 29.47
ARLLR 28.78 32.55 29.49 28.07 28.98 28.91 31.43 27.82 29.23 28.32 30.31 28.97 31.44 29.23 29.54
AWGF-GPS 28.86 32.63 29.61 28.14 29.03 29.00 31.44 27.93 29.25 28.38 30.24 28.99 31.57 29.25 29.59
FFDNET 29.33 32.68 30.08 28.40 29.34 29.24 31.83 28.21 29.52 28.67 29.24 29.44 31.65 29.43 29.79

σn = 40
BM3D 27.18 30.65 27.70 26.06 27.65 26.72 29.86 26.08 27.74 26.69 27.99 27.48 29.36 27.99 27.80
TWSC 27.42 31.24 27.97 26.55 27.72 27.37 30.11 26.35 27.89 27.05 28.82 27.58 29.69 28.05 28.13
ARLLR 27.47 31.35 28.06 26.59 27.78 27.46 30.11 26.49 27.94 27.09 28.75 27.61 29.78 28.11 28.18
AWGF-GPS 27.56 31.41 28.14 26.64 27.83 27.55 30.13 26.58 27.96 27.15 28.68 27.63 29.92 28.13 28.24
FFDNET 28.06 31.49 28.65 26.91 28.19 27.89 30.62 26.90 28.31 27.50 27.83 28.14 30.20 28.39 28.51

σn = 50
BM3D 26.13 29.69 26.68 25.04 26.81 25.82 29.05 25.01 26.78 25.90 27.23 26.46 27.86 27.19 26.83
TWSC 26.46 30.17 26.88 25.41 26.81 26.27 29.08 25.38 26.88 26.11 27.54 26.48 28.35 27.19 27.07
ARLLR 26.42 30.33 26.91 25.43 26.94 26.32 29.25 25.42 26.97 26.09 27.79 26.64 28.15 27.33 27.14
AWGF-GPS 26.53 30.45 27.06 25.51 27.00 26.45 29.28 25.55 27.00 26.19 27.69 26.68 28.40 27.36 27.23
FFDNET 27.12 30.45 27.54 25.76 27.32 26.85 29.67 25.94 27.37 26.60 26.71 27.14 29.02 27.60 27.51

σn = 70
BM3D 24.62 27.91 25.07 23.56 25.56 24.24 27.57 23.75 24.40 24.49 25.47 25.00 25.85 25.93 25.24
TWSC 24.94 28.28 25.23 23.72 25.48 24.60 27.44 23.94 25.31 24.69 25.64 24.79 26.33 25.81 25.44
ARLLR 24.86 28.59 25.25 23.78 25.68 24.62 27.85 24.00 25.58 24.64 26.17 25.18 26.03 26.14 25.60
AWGF-GPS 25.01 28.84 25.51 23.92 25.73 24.86 27.90 24.17 25.63 24.80 26.10 25.22 26.30 26.18 25.73
FFDNET 25.68 28.73 25.90 24.13 26.02 25.27 28.24 24.53 25.96 25.23 24.99 25.63 27.15 26.40 25.99

σn = 100
BM3D 23.08 25.87 23.59 22.10 24.22 22.52 25.95 22.11 23.97 22.96 23.62 23.51 23.89 24.58 23.71
TWSC 23.22 25.87 23.24 21.98 24.03 22.66 25.74 22.22 23.67 23.05 23.63 23.07 24.14 24.29 23.63
ARLLR 23.35 26.66 23.45 22.23 24.36 22.95 26.21 22.55 24.11 23.19 24.37 23.56 24.12 24.76 23.99
AWGF-GPS 23.50 26.79 23.64 22.30 24.43 23.14 26.27 22.71 24.16 23.30 24.31 23.59 24.27 24.80 24.09
FFDNET 22.61 24.21 22.47 21.30 22.93 22.01 24.09 21.82 22.86 22.41 21.90 22.52 23.24 23.22 22.67

Notes: ∗For each test image, the corresponding denoised images with the best PSNR are marked in blue, and those with the second highest
PSNR values are marked in red.

The statistical results of the PSNR and SSIM are listed in Tabs. 1 and 2. We use BM3D as
a baseline, for it achieves an acceptable performance for all the images and noise levels. TWSC
outperforms BM3D because it is a learned domain method. In the sparse representation model,
dictionary learning aims to catch patch features as atoms, whereas sparse coding focuses on patch
restoration. However, as the noise level increases, the performance of the TWSC degenerates
significantly. In this case, the atoms are distorted by direct feature learning from the noisy image.
ARLLR is better than the former methods. The shrinkage approach on the patch group is effective
in dealing with noise because the relationship among patches is exploited. Our AWGF-GPS
method performs the best among these model-based denoising methods. As previously indicated,
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its coefficient shrinkage strategy is presented on the superpixel graph, where both attributes,
within and among the patches, are considered. The guided patch regularizer further enhances
the denoising performance. We also note that our method may suffer from an over-smoothing
problem. It is inappropriate to deal with images (e.g., Barbara) that contain strong textures. The
AWGF-GPS model attempts to design a lowpass graph filter. Because the components of the
texture are centralized in high graph-frequency bands, the AWGF-GPS filter is unsatisfactory.
FFDNET is best in terms of the noise standard deviation of σn ≤ 70 but the worst for σn= 100.
The use of an external prior is effective in improving denoising performance. However, once the
feature mismatch phenomenon occurs, the denoised result significantly deteriorates and becomes
inferior to the results of the model-based methods. Compared with FFDNET, our method has
the advantage in coping with large noise.

Table 2: SSIM results of different denoising methods

C. Man House Pepper Starfish Man Monarch Lena Airplane Boats Parrot Barbara Couple Montage Hills Average

σn = 20
BM3D 0.8755 0.8726 0.8868 0.8748 0.8333 0.9179 0.8772 0.8762 0.8259 0.8696 0.9054 0.8476 0.9400 0.8040 0.8719
TWSC 0.8789 0.8716 0.8899 0.8805 0.8369 0.9249 0.8817 0.8803 0.8264 0.8726 0.9139 0.8464 0.9447 0.8044 0.8752
ARLLR 0.8785 0.8716 0.8910 0.8822 0.8350 0.9245 0.8787 0.8815 0.8250 0.8719 0.9107 0.8437 0.9432 0.8031 0.8743
AWGF-GPS 0.8799 0.8703 0.8913 0.8819 0.8382 0.9243 0.8782 0.8836 0.8264 0.8733 0.9093 0.8440 0.9419 0.8058 0.8749
FFDNET 0.8939 0.8731 0.9040 0.8938 0.8549 0.9336 0.8902 0.8898 0.8412 0.8871 0.9041 0.8644 0.9484 0.8214 0.8857

σn = 30
BM3D 0.8373 0.8480 0.8505 0.8289 0.7802 0.8822 0.8449 0.8372 0.7795 0.8318 0.8687 0.7947 0.9113 0.7504 0.8318
TWSC 0.8375 0.8507 0.8558 0.8352 0.7797 0.8935 0.8510 0.8436 0.7778 0.8347 0.8835 0.7934 0.9207 0.7465 0.8360
ARLLR 0.8399 0.8523 0.8567 0.8357 0.7818 0.8924 0.8502 0.8438 0.7792 0.8346 0.8811 0.7945 0.9187 0.7498 0.8365
AWGF-GPS 0.8420 0.8529 0.8582 0.8382 0.7849 0.8939 0.8506 0.8457 0.7802 0.8344 0.8794 0.7936 0.9191 0.7498 0.8374
FFDNET 0.8594 0.8541 0.8734 0.8506 0.8017 0.9048 0.8627 0.8572 0.7959 0.8520 0.8657 0.8189 0.9279 0.7658 0.8493

σn = 40
BM3D 0.8057 0.8256 0.8158 0.7828 0.7374 0.8446 0.8152 0.7985 0.7387 0.7992 0.8225 0.7469 0.8806 0.7069 0.7943
TWSC 0.8059 0.8360 0.8259 0.7949 0.7366 0.8628 0.8247 0.8116 0.7367 0.8056 0.8489 0.7465 0.8975 0.7018 0.8025
ARLLR 0.8058 0.8348 0.8263 0.7953 0.7387 0.8597 0.8220 0.8106 0.7394 0.8043 0.8445 0.7475 0.8929 0.7064 0.8020
AWGF-GPS 0.8094 0.8371 0.8290 0.7975 0.7421 0.8614 0.8236 0.8127 0.7399 0.8083 0.8427 0.7466 0.8938 0.7070 0.8037
FFDNET 0.8302 0.8391 0.8440 0.8125 0.7603 0.8773 0.8397 0.8292 0.7582 0.8253 0.8275 0.7772 0.9077 0.7241 0.8180

σn = 50
BM3D 0.7828 0.8122 0.7936 0.7433 0.7056 0.8200 0.7994 0.7722 0.7053 0.7809 0.7946 0.7068 0.8612 0.6747 0.7680
TWSC 0.7822 0.8212 0.8001 0.7570 0.7024 0.8331 0.8019 0.7837 0.7013 0.7819 0.8091 0.7029 0.8745 0.6671 0.7727
ARLLR 0.7848 0.8231 0.8008 0.7596 0.7091 0.8350 0.8059 0.7850 0.7083 0.7847 0.8199 0.7135 0.8742 0.6764 0.7772
AWGF-GPS 0.7889 0.8262 0.8058 0.7622 0.7120 0.8383 0.8073 0.7888 0.7088 0.7865 0.8160 0.7132 0.8745 0.6769 0.7790
FFDNET 0.8066 0.8244 0.8164 0.7772 0.7248 0.8509 0.8192 0.8042 0.7257 0.8031 0.7906 0.7402 0.8881 0.6910 0.7902

σn = 70
BM3D 0.7427 0.7747 0.7477 0.6804 0.6548 0.7674 0.7603 0.7252 0.6526 0.7410 0.7261 0.6406 0.8120 0.6226 0.7177
TWSC 0.7421 0.7873 0.7559 0.6872 0.6498 0.7817 0.7592 0.7329 0.6420 0.7407 0.7347 0.6267 0.8337 0.6118 0.7204
ARLLR 0.7443 0.7955 0.7520 0.6943 0.6607 0.7862 0.7741 0.7399 0.6579 0.7488 0.7636 0.6524 0.8294 0.6300 0.7307
AWGF-GPS 0.7499 0.8030 0.7666 0.7001 0.6648 0.7929 0.7772 0.7470 0.6588 0.7547 0.7598 0.6527 0.8401 0.6310 0.7356
FFDNET 0.7691 0.7924 0.7693 0.7152 0.6676 0.8025 0.7835 0.7589 0.6707 0.7667 0.7211 0.6748 0.8490 0.6383 0.7414

σn = 100
BM3D 0.6928 0.7203 0.6881 0.6053 0.5978 0.7021 0.7090 0.6713 0.5936 0.6898 0.6430 0.5665 0.7475 0.5650 0.6566
TWSC 0.6868 0.7280 0.6972 0.6032 0.5909 0.7151 0.7094 0.6702 0.5776 0.6904 0.6517 0.5404 0.7773 0.5490 0.6562
ARLLR 0.6966 0.7536 0.6978 0.6171 0.6048 0.7257 0.7256 0.6837 0.5981 0.7045 0.6862 0.5702 0.7767 0.5720 0.6723
AWGF-GPS 0.7038 0.7612 0.7131 0.6233 0.6110 0.7341 0.7314 0.6926 0.6011 0.7096 0.6850 0.5722 0.7840 0.5754 0.6784
FFDNET 0.4530 0.4485 0.4960 0.5046 0.4112 0.5575 0.4490 0.4642 0.4223 0.4920 0.4434 0.4264 0.4975 0.4007 0.4619

Notes: ∗For each test image, the corresponding denoised images with the best SSIM are marked in blue, and those with the second highest
SSIM values are marked in red.



CMC, 2021, vol.69, no.1 79

5 Conclusion

We have proposed a guided intra-patch smoothing graph filtering method for single-image
denoising. Unlike the traditional AWGF, which only focuses on coefficient shrinkage, the proposed
AWGF-GPS method considers more image attributes for denoising. The similarities between
patches and intra-patch pixels are exploited by introducing the superpixel operation. Moreover,
the guided patches from the MAP estimator provide a reliable optimal direction for the AWGF-
GPS model. This provides an additional way to supervise patch restoration during graph filtering.
Experiments have demonstrated that the AWGF-GPS method outperforms several state-of-the-art
model-based denoising methods and is comparable with certain deep-learning methods.
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