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Abstract: The recent COVID-19 pandemic caused by the novel coronavirus,
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has had a
significant impact on human life and the economy around the world. A reverse
transcription polymerase chain reaction (RT-PCR) test is used to screen for
this disease, but its low sensitivity means that it is not sufficient for early
detection and treatment. As RT-PCR is a time-consuming procedure, there
is interest in the introduction of automated techniques for diagnosis. Deep
learning has a key role to play in the field of medical imaging. The most
important issue in this area is the choice of key features. Here, we propose a
set of deep learning features based on a system for automated classification
of computed tomography (CT) images to identify COVID-19. Initially, this
method was used to prepare a database of three classes: Pneumonia, COVID-
19, and Healthy. The dataset consisted of 6000 CT images refined by a hybrid
contrast stretching approach. In the next step, two advanced deep learning
models (ResNet50 andDarkNet53)were fine-tuned and trained through trans-
fer learning. The features were extracted from the second last feature layer of
bothmodels and further optimized using a hybrid optimization approach. For
each deep model, the Rao-1 algorithm and the PSO algorithm were combined
in the hybrid approach. Later, the selected features were merged using the new
minimum parallel distance non-redundant (PMDNR) approach. The final
fused vector was finally classified using the extreme machine classifier. The
experimental process was carried out on a set of prepared data with an overall
accuracy of 95.6%. Comparing the different classification algorithms at the
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different levels of the features demonstrated the reliability of the proposed
framework.

Keywords: COVID19; preprocessing; deep learning; information fusion;
firefly algorithm; extreme learning machine

1 Introduction

Coronavirus Disease 2019 (COVID-19) is a contagious disease caused by the novel coro-
navirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [1], which was first
recognized in Wuhan, China, at the end of 2019 [2]. The COVID-19 pandemic has had a major
effect on public health around the world. The symptoms of COVID-19 include fever, headache,
shortness of breath, muscle pain, fatigue, and sore throat [3]. Severe outcomes of this disease
include organ failure, severe respiratory problems, and death. Approximately 20% of COVID-19
cases become severe, and it has an estimated mortality rate of 3% [4]. This disease is detected
by a reverse transcription polymerase chain reaction (RT-PCR) test, but as the RT-PCR test
has low sensitivity it is not sufficient for early detection and treatment [5]. As RT-PCR is a
time-consuming procedure, the application of artificial intelligence (AI) and deep learning-based
systems would save a great deal of time for physicians [6]. As of February 2021, the total number
of recorded COVID-19 cases worldwide is 106,440,335, with 2,322,351 deaths. These statistics
show that approximately 3.4% of deaths around the entire world are due to COVID-19.

Deep learning has been successfully applied in medical imaging [7–9]. The major areas where
medical imaging is applied are in the detection of skin cancer [10], brain tumors [11], stomach
cancer [12], lung cancer [13], breast cancer [14], blood cancer [15], and COVID-19 [16,17]. Sev-
eral techniques have been introduced by computer vision (CV) researchers for early coronavirus
recognition using chest X-ray [18] and computed tomography (CT) [19] images, and AI and deep
learning models have been applied for accurate classification [20,21]. A system has been designed
for prediction and detection of COVID-19 on chest X-rays using deep learning [22]. This method
is based on AI and uses the features of a convolution neural network (CNN). In the detection
phase, three algorithms are used, i.e., the Autoregressive Integrated Moving Average (ARIMA)
method, the Prophet Algorithm (PA), and the Long Short-Term Memory (LSTM) neural network.
Many other methods are also discussed in the Related Work section.

Several issues remain that are related to the classification of COVID-19 using CT images. The
first is the availability of high-dimensional datasets, as an extensive dataset is always needed to
train a deep learning model. The second is the selection of a deep model for feature extraction.
Several deep models are available for classification purposes and, therefore, the most useful model
must be chosen. The third and most important issue is the existence of redundant and irrelevant
features that increase the computational time and affect the accuracy of classification. However,
some relevant features that are important for improving accuracy are sometimes discarded during
the selection of important features.

Here, we propose a new method based on a set of deep learning models. The main purpose
of this work was to allow the selection of optimal features from two pre-trained deep learning
models and then combine their information. As mentioned above, important features may also be
lost in the selection stage. Therefore, optimal information from the two models is used to fill the
gap, which improves the accuracy of classification. In this work, we prepared a database of three
classes: Pneumonia, COVID-19, and Healthy. The prepared dataset consisted of a total of 6000
CT images adjusted with two pre-trained deep learning models (ResNet50 and DarkNet53) and
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trained by transfer learning. Later, the features were extracted from the second last layer called
the feature layer. A hybrid optimization method is proposed based on the hybrid Rao-1 algorithm
and the PSO algorithm. The features of both deep models were optimized by this hybrid method
for the next step. Optimal features were merged using a new approach called Parallel Minimum
Distance Non-Redundant (PMDNR).

The rest of the article is organized as follows. Related work is discussed in Section 2. Section
3 presents the proposed methodology with the detailed mathematical formulation. The results and
discussion are presented in Section 4. Section 5 presents the conclusion.

2 Related Work

In 2020, image processing and CV researchers worked to develop systems for diagnosing
and recognizing COVID-19 on CT and X-ray images. These detection systems focused mainly on
deep learning to improve efficiency and performance. Apostolopoulos et al. [23] introduced a deep
learning-based approach for recognizing COVID-19 on X-ray images. In this method, transfer
learning was performed using state-of-the-art CNN models, including VGG-19, Inception ResNet
v2, Inception, Xception, and MobileNet v2. The best results were obtained with MobileNet v2,
with specificity, accuracy, and sensitivity of 96.46%, 96.78%, and 98.66%, respectively. Ozturk
et al. [24] developed a CNN-based automated system for recognizing coronavirus in chest X-ray
images, which implemented You Only Look Once (YOLO) and used the DarkNet network for
classification to achieve a binary class recognition rate of 98.08%. Ismael et al. [25] presented
a CNN approach to recognizing COVID-19 in chest X-ray images. In this approach, different
deep learning models were used for feature extraction. The extracted features were then passed
to a disease-recognition support vector machine (SVM). The maximum accuracy achieved by this
method was 94.7%. Panwar et al. [26] developed a CNN-based technique for the rapid detection
of COVID-19 on chest CT and X-ray images. The transfer learning approach was implemented
on three different datasets. This technique detected COVID-19 in less than 2 min and produced
more accurate results from CT images than the X-ray dataset. A new CNN framework called
CoroDet [27] was introduced to recognize COVID-19 on chest X-ray and CT images. The network
consisted of 22 layers, and had a recognition rate of 99.1% for binary class classification, 94.2%
for three classes, and 91.2% for four classes. Islam et al. [28] presented a CNN-based method for
the detection of COVID-19. In this method, the CNN extracted features that were then used to
classify the dataset into normal and COVID-19 images using LSTM. This technique achieved an
area under the receiver operating characteristic (ROC) curve (AUC) of 99.9%, accuracy of 99.4%,
sensitivity of 99.3%, specificity of 99.2%, and F1 score of 98.9%.

A new artificial neural network (ANN), CapsNet [29], was introduced to detect COVID-
19 in a chest X-ray image dataset. The network showed recognition accuracies for binary and
multi-class classification of 97.24% and 84.22%, respectively. A dual-branch combination network
(DCN) [30] was established to detect and diagnose COVID-19 on chest CT. The lesion area was
first segmented to obtain more accurate results in the classification phase, and the DCN model
achieved an accuracy of 96.74%. Horry et al. [31] used the transfer learning approach to diagnose
COVID-19 in ultrasound, X-ray, and CT images. They selected the VGG-19 network to perform
transfer learning and made appropriate changes to the parameters to fine-tune the model. The
technique showed accuracies of 100%, 86%, and 84% for ultrasound, X-ray, and CT images,
respectively. A number of other methods using statistical modeling [32], a cloud-based framework
model [33], and machine learning [34] have also been reported, all of which focused on pre-trained
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models for COVID-19 image classification. However, they focused only on classification accuracy
rather than computational time, which is a vital functionality of any computerized method.

3 Proposed Framework

The proposed automated set of deep learning methods is presented in this section with the
detailed mathematical formulation and visible results. The main flow of the proposed method
is shown in Fig. 1. As shown in this figure, the initially collected dataset is processed and
the contrast is improved using a hybrid method. Then, two pre-trained models are fine-tuned
and trained by transfer learning. Both fine-tuned models are trained in a dataset consisting of
three classes: Pneumonia, COVID-19, and Healthy. Features are extracted from these two fine-
tuned models and optimized using a hybrid Rao-1 and PSO algorithm. The selected optimum
features are blended using a novel approach called Parallel Minimum Distance Non-Redundant
(PMDNR). The final fused vector features are classified using an extreme learning machine (ELM)
classifier. The details of each step are presented below.

Figure 1: Proposed diagram for COVID19 classification using CT Images based on ensembles of
deep learning models

3.1 Dataset Preparation
In this work, we collected a dataset from the Radiopaedia Website (https://radiopaedia.org).

This website has CT images of more than 100 COVID-19-positive patients. We used the data
from the first 80 patients, which included a total of 4000 CT images. Later, we collected 3000 CT
images of healthy individuals and 2500 CT images of patients with pneumonia from the same

https://radiopaedia.org
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website. Due to the imbalance in numbers between the classes, we performed data augmentation
with horizontal flip and vertical flip operations. Mathematically, these flip operations are defined
as follows:

OH = Ii(n+ 1− j) (1)

OV = I(m+1−i)j (2)

where OH represents a horizontal flip operation, OV denotes a vertical flip operation, and I(i, j)
denotes the original image of dimensions n× m. Based on these operations, all classes were in
the range of 4000. Then, we randomly split the entire dataset at a 50:50 ratio for training and
testing. A few sample images are shown in Fig. 2. This figure illustrates that the COVID-19 and
Pneumonia classes have very high degrees of similarity with each other and, therefore, the chances
of misclassification were also very high. To handle these similarity issues, we first implemented a
hybrid contrast enhancement approach, as described below.

Figure 2: Sample CT images of COVID19, Pneumonia, and Healthy
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3.2 Contrast Enhancement
Contrast enhancement improves the quality of input images for useful feature extraction in

the pattern recognition step [35]. Here, we implemented a hybrid approach for CT image contrast
enhancement. The main purpose of this step was to show a difference between COVID-19 and
Pneumonia images. The hybrid approach is based on a new threshold function defined using
closing and opening operations, which are applied on original images with a constant parameter.
The constant parameter controls the image pixel values and far from zero.

Consider � as a database, � ∈ INk (i, j), one image I(i, j) ∈ R, where the size of the image is
n×m, and n=m= 256. The opening operation is applied on image I(i, j) as follows:

IOp(i, j)= (I(i, j)− I(i, j)) ◦C+ r (3)

Icl(i, j)= (I(i, j).C)− I(i, j)+ r (4)

If (i, j)= (IOp(i, j)+ Icl(i, j))− I(i, j)+ r (5)

μ1 =
∑m

i=0
∑n

j=0
(
IOp (i, j)

)
MN

, μ2 =
∑m

i=0
∑n

j=0 (Icl (i, j))

MN
, μ̃= μ1+μ2

2
(6)

Thresh=
{
Update(If (i, j)), for If (i, j)≥ μ̃

If (i, j), Elsewhere
(7)

where IOp(i, j) denotes the modified opening function formulation, Icl(i, j) denotes the modified
closing operation formulation, If (i, j) is the combined pixel information formulation, and μ̃ is the
overall mean value. The threshold function Thresh is described as follows: if If (i, j) image pixels
are greater than or equal or μ̃, then update the pixels’ values with the mean value; otherwise, the
original pixel is considered. This process is completed for all pixel values, and a new enhanced
image is obtained. These steps are illustrated in Fig. 3.

3.3 Deep Learning Features Extraction
Deep learning has been an important area of machine learning research for the last 5

years [36]. Many deep learning methods have been introduced for classification purposes, such as
object classification [37], medical infections, etc. CNN is a type of deep learning, and consists of
many intermediate layers, such as the convolutional layer, pooling layers (max pooling and average
pooling), ReLu layer for activation, fully connected layer, and Softmax. The convolutional layer
extracts the features of input images based on the filter size. The parameters of this layer are filter
size, number of channels, and stride. The pooling layers, such as the max pooling layer, can be
useful to handle the issue of overfitting. In this layer, the main parameters are filter size and stride.
Usually, the filter size is 3× 3 and stride is 1. Some of the feature values of the convolutional
layers are negative, and it is therefore essential to convert them to positive values. For this purpose,
the features are converted into positives through the ReLu activation layer. This layer converted
features into zero. The fully connected layer, also called the feature layer, is useful for extracting
the features of input images that are transformed through convolutional layers, pooling layers, etc.
The final layer is Softmax, used for classification. Here, we used two pre-trained models for deep
feature extraction. The details of each model are described below.
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Figure 3: Hybrid contrast enhancement approach results

3.3.1 The Modified Darknet53 Model
The CNN-based model DarkNet53 [38] is utilized to extract deep features. Two deep networks

named YOLOv2 DarkNet19 [39] and the deep Residual Network [40] were combined to develop
this model. The deep structure of DarkNet53 consists of 53 layers. The convolution layer utilized
in this network is 1×1, and the size of the consecutive residual is 3×3. The input of this network
is always 224 × 224 × 3. The minimal component of DarkNet53 consists of three elements:
convolution, Batch Normalization (BN), and LeakyReLU layers. The mathematical modeling of
the convolutional layer can be described as:

xkn =
∑
l∈Vn

xk−1
l ∗Hk

ln+ bkn (8)

where the number of generated feature maps is n by convoluting the input image using n different
convolution kernels, and xkn are the n generated feature maps in layer k. A feature vector is

represented as Vn, Hk
ln represents the lth element of the nth number of convolution kernels in layer

k. bkn is the nth bias of the layer k, and the convolutional operator is *. The output is normalized
using the BN layer. After applying convolution, the BN layer can increase the convergence rate of
the network and resolve the problems of overfitting. The mathematical model of the BN layer is:

xout = ψ(xconv−μ)√
σ 2+ ε

+ γ (9)

The result of the BN layer is xout. The scaling factor is represented as ψ , the mean value of
inputs is μ, the input variance value is denoted by σ , the offset value is γ , ε represents a constant,
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and xconv denotes the result of the convolution process. LeakyReLU increases the nonlinearity of
the network. This is the activation function and can be defined as:

gn=
{
xn, if xn ≥ 0
xn
yn
, if xn < 0 (10)

where gn is the activation function, the input value is xn, and yn represents a constant parameter
with values between (1, +∞).

Here, we fine-tuned this model and removed the last classification layer. A new classification
layer was added, which included three instead of 1000 classes. The same weights were used for the
fine-tuned model. Later, transfer learning was applied to train this model. The transfer learning
process is shown in Fig. 4. As shown in the figure, the feature weights of the original model were
transferred to the fine-tuned model. The last features were extracted from the convolutional 53
layers of dimension N × 1024.

Figure 4: Transfer learning based features extraction

3.3.2 Modified ResNet50 Model
ResNet50 [40] is a 50-layer deep neural network based on residual learning that consists of

16 bottleneck residual blocks. The convolution size for each residual block is 1× 1, 3× 3, and
1×1. In the first three residual blocks, the feature map sizes are 64 and 256. The next four blocks
have a feature map size of 128 and 512. After this, six residual blocks contain feature maps with
sizes of 256 and 1024. The last three blocks have feature map sizes of 512 and 2048. The image
input size for ResNet50 is 224× 224, and the feature output size is 2048. This model was trained
on the ImageNet database, a large dataset of millions of images [41]. The output of this original
model is 1000 classes, as shown in Fig. 4. We fine-tuned the model and removed the last FC and
Softmax layers. A new layer consisting of three classes was added, as shown in Fig. 4. This figure
shows that the features weights of the original model were transferred to the fine-tuned model.
In the last, features are extracted from the global average pool layer, where the size of extracted
features is N × 2048.
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3.4 Features Selection
Selection of the best features always helps to achieve faster execution in supervised learning

methods. The irrelevant and redundant features mislead the classification accuracy and increase
the overall system time [42]. Here, we must deal with both issues of feature redundancy and irrel-
evant features. Therefore, we proposed a hybrid algorithm based on Rao-1 [43] and PSO [44] to
select the most important features. We initially implemented both algorithms separately, identified
the correlations among features of both techniques, and selected the most positively correlated
features. Finally, the features selected by both approaches were fused using the new PMDNR
approach.

Particle Swarm Optimization: This algorithm finds the best possible solution from the given
solutions. A swarm is referred to as possible solutions, and each solution is considered a particle.
In the search space, each particle set its set and accelerates with some velocity. After each iteration,
PSO selected the best solution and changed its position. The new position of the particle is based
on previous learning. The evaluation of each particle is measured according to the defined fitness
function [45]. At the end of the iterations, PSO produces an optimal solution. Let the search space
be N-dimensional with n number of particles or solutions; the N-dimensional vector is denoted
by Xi = (xi1, xi2, . . . , xiN) for the ith particle of the swarm. ai = (ai1, ai2, . . . , aiN) is the prior
best position of the ith particle, which results in the best fitness value. Mg denotes the particle
with the lowest function value. The velocity is represented as Vi = (vi1, vi2, . . . , viN) for the ith
particle. The particles are manipulated according to the following equations:

vy+1
ib =ω× vyib+ c1 × rand()× (ayib−xyib)+ c2 ×Rand()× (aygb−xygb) (11)

xib = xib+ vib (12)

where b= {1, 2, 3, . . . , N}, ω is the inertia weight, and random functions are represented by rand()
and Rand(), which generate random values from the range [0, 1]. c1 and c2 are the constant
positive integer cognitive, and social parameters, respectively. In the first equation, velocity is
calculated at each iteration for the ith particle. c1 × rand() × (ayib−xyib) computes the distance

between the personal best location and the ith particle. c2×Rand()× (aygb−xygb) gives the distance

between the global best location and the ith particle. The second equation calculates the new
position of the ith particle. The functions rand() and Rand() provide randomness and make
the algorithm more flexible. Through this algorithm, a best-selected feature vector is obtained
of dimension N × 820 for feature vector 2 (ResNet features) and N × 410 for feature vector 1
(DarkNet 53 features). This dimension shows that almost 60% of features are removed from the
original list.

Rao-1 Algorithm: This algorithm is computationally complex, easy to implement, and to the
point. This algorithm solves the optimization problem more efficiently than other metaheuristic
algorithms. The search process for finding an optimal solution is based on the best and worst
candidate solutions within a random and entire population.

This algorithm first initializes the parameters, such as the number of solutions, design
variables, lower and upper bounds, and maximum iterations. Then, the candidate solutions are
generated and a fitness function is applied for evaluation. Initially, the fitness function counter
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and interactions are zero. Based on the fitness values, the best and worst feature values are then
identified. In the later stage, the solutions are updated through the following equation:

S′u,v,w = Su,v,w+ rand1 u,v,w(Sbest,v,w−Sworst,v,w) (13)

where the original candidates are denoted by Su,v,w, updated candidate solutions are denoted by
S′u,v,w, best candidate solutions are represented by Sbest,v,w, and worst candidate solutions are
represented by Sworst,v,w. Then, a check is performed to determine if the new solution is better
than the older solution and it replaces the old candidate solutions; otherwise, old candidate
solutions are considered. This process is continued until the termination criteria are not met.
The selected features are again evaluated through the fitness function and replace with the older
features. Here, we obtained a feature vector of dimension N × 1104 for feature vector 2 (ResNet
features) and N× 522 for feature vector 1 (DarkNet features).

Hybridization: Consider, Fk1 denoting the selected optimal feature vector for ResNet101
through PSO of dimension N× 820 and Fk2 is the optimal feature vector for ResNet101 selected
through the Rao-1 algorithm. Then, we find the correlation between features of Fk1 and Fk2. The
features that have a strong correlation were selected. The Pearson correlation was used here to
determine the correlation. The final vector for ResNet101 is denoted by Fk̃ of dimension N×926.
Similarly, this process was performed on DarkNet53 features and obtained a feature vector of
dimension N × 476 denoted by Fk̃1. Finally, both vectors were fused using the new PMDNR
approach, which initially computes the standard deviation of the minimum length feature vector
and performs padding according to the higher dimensional feature vector. Then, the Euclidean
Distance (ED) between both vectors was calculated, and only those features with the minimum
distance were considered. The ED is defined as follows:

D(i, j)=
√
(Fk̃i−Fk̃1j)

2 (14)

This formula was applied to all features, and we finally obtained a fused vector of dimension
N × 1042. However, we noted that this vector contained few redundant features and, therefore,
compared all features through the Union method and considered the same value features only
once in the final fused vector. Through this process, the final feature vector of dimension N×840
was obtained. These features were finally classified using an ELM classifier [46]. The predicted
labeled results of ELM are illustrated in Fig. 5.

4 Experimental Results and Analysis

This section presents the experimental process. The classification results were computed for
several classifiers using a 50:50 approach of training and testing. All classification results were
computed using 10-fold validation. In the training process, we used Stochastic Gradient Descent
for the learning of fine-tuned models. Moreover, the learning rate was 0.00001, the mini-batch size
was 64, and 100 epochs were used. The selected classifiers were ELM, Fine Tree, SVM, fine-KNN,
and ensemble trees. The main classifier was ELM, which was used in this work for prediction,
while the rest of the classifiers were considered for classification comparison. Each classifier’s
performance was calculated according to the following measures: sensitivity rate, precision rate,
F1-score, accuracy, FNR, and testing time. Time was the most important measure in this work
due to the optimization algorithms. All experiments are performed in MATLAB 2020b on a PC
with 512 SSD storage, 16 GB RAM, and an 8 GB graphics card.
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Figure 5: Proposed prediction results in terms of labeled data

4.1 Numerical Results: Experiment 1
The numerical results with accompanying evidence are presented in this section. The results

were computed for each step. Tab. 1 presents the classification results after applying a hybrid opti-
mization algorithm on fine-tuned ResNet50 model features. The results shown in this table were
calculated for several classifiers using the selected performance measures. The greatest accuracy
of this experiment was 92.7% for the ELM classifier. The computed accuracies for the remaining
classifiers, i.e., Fine Tree to Softmax, were 86.2%, 84.7%, 83.2%, 90.8%, 90.7%, 91.2%, 91.4%,
and 92.1%, respectively. These results indicated that the ELM classifier had the best performance.
A number of other measures were also computed to support the performance of ELM; ELM
showed sensitivity of 92.67%, precision of 93%, F1-Score of 92.83%, and FNR of 7.33%. To
verify the sensitivity of ELM, a confusion matrix was added as shown in Fig. 6. This figure shows
that the COVID-19 class correct prediction rate was 94%, and the correct prediction rates for
Pneumonia and Normal classes were 96% and 88%, respectively. Thus, the prediction accuracy was
best for the Pneumonia class followed by the COVID-19 class. The best time for this experiment
was 25.706 s, which was noted during the testing process of all 50% of images, indicating that
the hybrid optimization algorithm minimized computational time in real-time testing.

4.2 Numerical Results: Experiment 2
Tab. 2 presents the classification results after applying the hybrid optimization algorithm on

fine-tuned DarkNet53 model features. The results shown in this table were calculated for several
classifiers using selected performance measures. The ELM classifier showed the highest accuracy
of 92.40% in this experiment, which was 0.3% lower than in the experiment shown in Tab. 1. The
computed accuracies for the remaining classifiers, i.e., Fine Tree to Softmax, were 87.4%, 88.2%,
90.2%, 90.6%, 91.0%, 90.4%, 91.9%, and 91.6%, respectively. These results indicated that the ELM
classifier had the best performance, and that the performance in this experiment was better than
that in Tab. 1. A number of other measures were also computed to support the performance of
ELM; ELM showed sensitivity of 92.40%, precision of 92.7%, F1-Score of 92.55%, and FNR
of 7.66%. To verify the sensitivity of ELM, a confusion matrix was added as shown in Fig. 7.
The time was also noted, and the best time for this experiment was 23.927 s showing that the



330 CMC, 2021, vol.69, no.1

accuracy of the ELM classifier using a hybrid optimized approach for DarkNet features executed
faster than ResNet50 features. The performance of optimized DarkNet53 features was also better
in comparison to Tab. 1.

Table 1: Proposed classification results after employing a hybrid optimization algorithm on fine-
tuned ResNet50 deep feature vector

Classifier Evaluation Protocols

Sensitivity (%) Precision (%) F1-Score (%) Accuracy (%) FNR (%) Time (Sec)

Fine Tree 86.33 86.0 86.16 86.2 13.67 30.314
GN Bayes 84.66 85.3 84.98 84.7 15.34 49.532
L-SVM 83.33 83.3 83.31 83.2 16.67 22.965
MG-SVM 91.00 91.0 91.00 90.8 9.00 31.912
C- KNN 90.67 91.0 90.83 90.7 9.33 47.091
W-KNN 91.33 91.0 91.16 91.2 8.67 25.706
EBT 91.30 91.3 91.30 91.4 8.70 37.103
Softmax 92.00 92.0 92.00 92.1 8.00 24.014
ELM 92.67 93.0 92.83 92.7 7.33 30.775

Figure 6: Confusion matrix of ELM for optimal ResNet50 deep learning features
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Table 2: Proposed classification results after employing a hybrid optimization algorithm on fine-
tuned Darknet53 deep feature vector

Classifier Evaluation Protocols

Sensitivity (%) Precision (%) F1-Score (%) Accuracy (%) FNR (%) Time (Sec)

Fine Tree 87.47 87.5 87.48 87.4 12.53 36.652
GN Bayes 88.27 88.3 88.28 88.2 11.73 29.232
L-SVM 90.27 90.3 90.28 90.2 9.73 31.183
MG-SVM 90.60 90.6 90.60 90.6 9.40 35.348
C- KNN 91.07 91.3 91.18 91.0 8.93 34.172
W-KNN 90.40 90.5 90.45 90.4 9.60 32.772
EBT 92.00 92.0 92.00 91.9 8.0 43.216
Softmax 91.33 92.0 91.66 91.6 8.67 23.927
ELM 92.40 92.7 92.55 92.4 7.60 36.454

Figure 7: Confusion matrix of ELM for optimal DarkNet53 deep learning features



332 CMC, 2021, vol.69, no.1

Table 3: Proposed classification results after ensembles of deep learning models information fusion

Classifier Evaluation Protocols

Sensitivity (%) Precision (%) F1-Score (%) Accuracy (%) FNR (%) Time (Sec)

Fine Tree 89.67 90.00 89.83 89.8 10.33 25.336
GN Bayes 94.13 94.33 94.23 94.5 5.87 21.325
L-SVM 93.13 93.67 93.40 93.6 6.87 15.609
MG-SVM 94.10 94.33 94.21 94.4 5.90 19.859
C- KNN 94.00 94.00 94.00 94.1 6.00 26.194
W-KNN 93.03 93.33 93.18 93.4 6.97 17.312
EBT 93.00 93.33 93.16 93.0 7.00 23.010
Softmax 94.33 94.60 94.46 94.7 5.67 22.699
ELM 95.33 95.67 95.50 95.6 4.67 20.003

Figure 8: Confusion matrix of ELM after ensembles of deep learning models information fusion
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4.3 Numerical Results: Experiment 3
The optimal features of both models were fused using the proposed PMDNR approach, and

the results are presented in Tab. 3. The results shown in this table indicated that the highest accu-
racy achieved was 95.6% for the ELM classifier. The other measures were sensitivity of 95.33%,
precision of 95.67%, F1-Score of 95.50%, and FNR of 4.67%. The noted computational time of
ELM was 20.003 s, which was less than in Tabs. 1 and 2. In addition, the accuracy of ELM
after fusion was improved compared to Tabs. 1 and 2. Fig. 8 shows a confusion matrix, which
can be used to verify the sensitivity of ELM. As shown in this figure, the correct prediction rates
for Pneumonia and COVID-19 images were 99% and 96%, respectively, representing significant
improvements compared to Figs. 6 and 7.

Finally, we discuss the overall experimental process of our proposed framework. Fig. 9 shows
the proposed framework accuracy with individual steps. Initially, the results were computed using
original ResNet50 (O_Res_F) features and achieved an accuracy of 87.86%. For the original
DarkNet53 (O_Drk_F) features, the results accuracy was 85.62%. The results of optimal ResNet50
features were 92.7%, which were improved compared to O_Res_F. Similarly, the results were
improved after employing optimal DarkNet53 (Op_Drk_F) and reached 92.4%. The results are
illustrated for a proposed framework of accuracy of 95.6%. The proposed framework results
demonstrated the significance for classification of COVID-19 on CT images. Similarly, the F1-
Score-based comparison was also conducted as shown in Fig. 10. This figure shows that the
proposed framework achieved better results on the ELM classifier. A time-based comparison was
also conducted shown in Fig. 11, which indicated that the ensembles of deep features executed
faster, compared to the ResNet and DarkNet features.

Figure 9: Proposed ensemble method accuracy comparison with individual steps
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Figure 10: F1-Score based comparison among each step for the selected classifiers

Figure 11: Time plot to compare the performance of each step

5 Conclusion

To classify COVID-19 CT images, a set of optimal deep learning features based on a com-
puterized framework was presented. This work allowed the selection of the most optimal features
using a hybrid algorithm and the fusion of features through the proposed PMDNR approach.
Finally, the fused features were classified using an ELM classifier. The results were computed
on the prepared database and showed 95.6% accuracy. The results indicated that the proposed
method works better with the ELM classifier. Pre-processing of the original images improved
the visibility of infected and curative CT images from the results. Use of improved contrast
images often allowed the extraction of more useful deep learning features. In addition, optimizing
features improved the accuracy of the system and minimized the number of predictors required.
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With fewer predictors, the procedure was completed quickly, which is helpful for improving the
performance of the real-time system. We also concluded that the fusion of features using the
proposed approach further impaired accuracy. In future, the features will be extracted through
two or three stream networks and fused for more accurate classification accuracy.

Funding Statement: This research was supported by X-mind Corps program of National Research
Foundation of Korea (NRF) funded by the Ministry of Science, ICT (No. 2019H1D8A1105622)
and the Soonchunhyang University Research Fund.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

References
[1] S. B. Stoecklin, P. Rolland, Y. Silue, A. Mailles, C. Campese et al. “First cases of coronavirus dis-

ease 2019 (COVID-19) in France: Surveillance, investigations and control measures,” Eurosurveillance,
vol. 25, no. 3, pp. 2000094, 2020.

[2] N. Zhu, D. Zhang, W. Wang, X. Li, B. Yang et al. “A novel coronavirus from patients with pneumonia
in China,” New England Journal of Medicine, vol. 4, no. 7, pp. 1–4, 2020.

[3] T. Singhal, “A review of coronavirus disease-2019 (COVID-19),” Indian Journal of Pediatrics, vol. 6,
no. 2, pp. 1–6, 2020.

[4] C. Wang, P. W. Horby, F. G. Hayden and G. F. Gao, “A novel coronavirus outbreak of global health
concern,” Lancet, vol. 395, no. 2, pp. 470–473, 2020.

[5] T. Ai, Z. Yang, H. Hou, C. Zhan, C. Chen et al. “Correlation of chest CT and RT-pCR testing in
coronavirus disease 2019 (COVID-19) in China: A report of 1014 cases,” Radiology, vol. 7, no. 11,
pp. 200642, 2020.

[6] F. M. Salman, S. S. Abu-Naser, E. Alajrami, B. S. Abu-Nasser and B. A. Alashqar, “Covid-19 detection
using artificial intelligence,” International Journal of Academic Engineering Research, vol. 4, no. 3, pp. 18–
25, 2020.

[7] A. Mittal, D. Kumar, M. Mittal, T. Saba, I. Abunadi et al. “Detecting pneumonia using convolutions
and dynamic capsule routing for chest X-ray images,” Sensors, vol. 20, no. 1, pp. 1068, 2020.

[8] M. A. Khan, M. S. Sarfraz, M. Alhaisoni, A. A. Albesher, S. Wang et al. “Stomachnet: Optimal
deep learning features fusion for stomach abnormalities classification,” IEEE Access, vol. 8, no. 11,
pp. 197969–197981, 2020.

[9] A. Rehman, M. Khan, T. Saba, Z. Mehmood, U. Tariq et al. “Microscopic brain tumor detection and
classification using 3D CNN and feature selection architecture,” Microscopy Research and Technique,
vol. 5, no. 3, pp. 1–21, 2020.

[10] S. A. C. Bukhari and R. S. Nayak, “Developed newton-raphson based deep features selection
framework for skin lesion recognition,” Pattern Recognition Letters, vol. 129, no. 2, pp. 293–303, 2020.
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