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Abstract: This paper discusses scattered data interpolation using cubic
trigonometric Bézier triangular patches with C1 continuity everywhere. We
derive the C1 condition on each adjacent triangle. On each triangular patch,
we employ convex combination method between three local schemes. The
final interpolant with the rational corrected scheme is suitable for regular
and irregular scattered data sets. We tested the proposed scheme with 36,65,
and 100 data points for some well-known test functions. The scheme is also
applied to interpolate the data for the electric potential. We compared the
performance between our proposed method and existing scattered data inter-
polation schemes such as Powell–Sabin (PS) and Clough–Tocher (CT) by
measuring themaximumerror, rootmean square error (RMSE) and coefficient
of determination (R2). From the results obtained, our proposed method is
competent with cubic Bézier, cubic Ball, PS and CT triangles splitting schemes
to interpolate scattered data surface. This is very significant since PS and CT
requires that each triangle be splitting into several micro triangles.

Keywords: Cubic trigonometric; Bézier triangular patches; C1sufficient
condition; scattered data interpolation

1 Introduction

This paper investigates scattered data interpolation using trigonometric Bézier triangular patch
that has been proposed by Zhu et al. [1]. Scattered data interpolation is about the construction of
a smooth surface for non-uniform set of data. It can be prescribed by a given a set of scattered
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data V = {(
xi, yi

)
, i= 1, . . . , n

} ∈ R2 over a polygon domain and a corresponding set of real
numbers {Zi}ni=1. Besides that, scattered data interpolation is very vital in many areas such as
engineering fields, predicting rainfall and other data that needed to be measured or generated at
irregular positions.

In a previous study, Saaban et al. [2] performed scattered data interpolation by using min-
imized sum of squares of principal curvatures. In additions, this scheme also uses geometric
continuity which is G1 continuity between adjacent triangular patches to reconstruct surfaces.
They applied the proposed scheme to some functions and to some real data such as soil erosion.

Butt et al. [3] proposed a scheme which exhibits the shape preserving properties by positivity,
monotonicity and convexity 2D data by inserting more knots in the interval. The positivity
of regular data arranged over a rectangular grid was discussed. Hussain et al. [4] proposed
C1 continuity scattered data interpolation by preserving the positivity property. This scheme is
modified by adding weights to the functions if the Bézier ordinates do not satisfy the derived
positivity conditions.

Han [5] proposed cubic trigonometric polynomial curves with shape parameter where the
order of continuity is dependent upon the knot vector (uniform or non-uniform) and the value
of shape parameters. This scheme shows that the proposed scheme is closer to the control poly-
gon than the corresponding B-spline curves. Besides that, the degree of the cubic trigonometric
polynomial curves can be reduced to quadratic trigonometric polynomial curves which represent
the ellipse.

Butt [6] preserved the shape of positive data by deriving sufficient conditions for the first
partial derivatives and twist values by using a piecewise bi-cubic interpolant. Lamberti et al. [7]
also proposed a method for the construction of C2 interpolating function. This scheme preserved
the shape of curve via tension parameters. The calculation for approximation order and numerical
examples is shown.

Floater [8,9] proposed another shape preserving property which is the convexity where [8]
shows derivation of sufficient conditions convexity of tensor-product Bézier surfaces. The con-
ditions focused on C1 tensor product B-spline surfaces. Unfortunately, the sufficient conditions
in the form of inequalities which involved control points. Floater also defined convexity and
rational convexity preservation of systems of functions. It is proven that the total positivity and
rational convexity preservation are equivalent. Ali et al. [10] have constructed a new cubic Timmer
triangular patch and applied it for scattered data interpolation. Based on the numerical results,
their proposed scheme is better than the existing schemes in term of higher R2 and smaller
SMSE and maximum error, however, their scheme took longer computational time to generate
the results. Meanwhile Draman et al. [11] have constructed scattered data interpolation scheme
by using rational quartic spline with three parameters. Karim et al. [12] have constructed new
cubic Bézier-Like triangular patches with three parameters for scattered data interpolation. From
numerical results, their proposed scheme is better than Radial basis functions (RBFs) scheme such
as thin plate spline, gaussian etc.

The aim of this paper is to apply scattered data interpolation with trigonometric function
which is cubic trigonometric Bézier. To our knowledge, this is the first study that applies trigono-
metric Bézier triangular for scattered data interpolation. We summarize the main advantages of
the proposed scheme as follows:
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(a) The proposed scattered data interpolation uses cubic trigonometric Bézier with three
parameters meanwhile Ali et al. [10], Draman et al. [11] and Karim et al. [12] have used
different types of rational interpolants.

(b) Our scheme only needs to triangulate the data one time. Meanwhile, Powell–Sabin (PS)
and Clough–Tocher (CT) schemes needed to split the macro triangles into several micro
triangles for each triangle. This will increase computation time to construct the final
interpolating surface.

This paper is organized as follows: Section 2 discusses trigonometric Bézier triangular patches
with three shape parameters. Section 3 states the properties of cubic trigonometric Bézier. Section
4 discusses the scattered data interpolation. Section 5 presents the numerical results including
comparison with existing schemes. Conclusion and future work are given in Section 6.

2 Trigonometric Bézier Triangular Patch with Three Shape Parameters

Trigonometric Bézier triangular patches is constructed by Zhu et al. [1]. The trigonometric
Bézier triangular patches are defined as follows:

Definition 1. Let α, β, γ ∈ [2, +∞), given control points Pijk ∈R3 (i, j, k ∈N, i+ j+ k= 3), and a
domain triangle D= {(u, v, w) | u+ v+w= π/2, u≥ 0, v≥ 0, w≥ 0} in which (u, v, w) are barycentric
coordinates of the points in D. We call

R (u, v, w)=
∑

i+j+k=3

T3
i, j,k (u, v, w; α, β, γ ) Pi, j,k (u, v, w) ∈D (1)

the trigonometric Bézier-Like patch over triangular domain with three exponential shape parameters
α, β, γ .

Noted that, Ti, j,k is the basis function that stated in Definition 2

Definition 2. Let α, β, γ ∈ [2, +∞) for D = {(u, v, w) | u+ v+w= π/2, u≥ 0, v≥ 0, w≥ 0} the
following ten functions are defined as trigonometric Bézier Triangular patches.

T3
3, 0, 0 (u, v, w; α, β, γ )= (1+ cos u)α

T3
0, 3, 0 (u, v, w; α, β, γ )= (1+ cos v)β

T3
0, 0, 3 (u, v, w; α, β, γ )= (1+ cosw)γ

T3
2, 1, 0 (u, v, w; α, β, γ )= cosw sin v (1− cos u)

[
1+ cos u− (1− cos u)α−1

cos u

]

T3
2, 0, 1 (u, v, w; α, β, γ )= cos v sinw (1− cos u)

[
1+ cos u− (1− cos u)α−1

cos u

]

T3
1, 2, 0 (u, v, w; α, β, γ )= cosw sin u (1− cos v)

[
1+ cos v− (1− cos v)β−1

cos v

]

T3
0, 2, 1 (u, v, w; α, β, γ )= cos u sinw (1− cos v)

[
1+ cos v− (1− cos v)β−1

cos v

]
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T3
1, 0, 2 (u, v, w; α, β, γ )= cos v sin u (1− cosw)

[
1+ cosw− (1− cosw)γ−1

cosw

]
(2)

T3
0, 1, 2 (u, v, w; α, β, γ )= cos u sin v (1− cosw)

[
1+ cosw− (1− cosw)γ−1

cosw

]

T3
1, 1, 1 (u, v, w; α, β, γ )= 2 sin u sin v sinw

Properties of Cubic Trigonometric Bézier Triangular Patches

From the definition of the basis function of trigonometric triangular patches, the list below
is important properties of the basis [1].

(a) Affine invariance and convex hull. The basis function have the properties of partition of
unity and nonnegativity, so its simply corresponding that cubic trigonometric Bézier has

(b) Geometric property at the corner points. Direct computation such as
R(π/2, v, w)=P3, 0, 0R(u, π/2, w)=P0, 3, 0R(u, v, π/2)=P3, 0, 0 corner.

(c) Corner points tangent plane.
(d) Boundary property.
(e) Shape adjustable property.

3 Scattered Data Interpolation

In this section, we will discuss the constrution of a smooth surface for given a set of scattered
data V = (xi, yi, zi) , i = 1, 2, . . . , N with corresponding a set of real numbers zi = F (xi, yi) , i =
1, 2, . . . , N. We wish to reconstruct a surface which has C1 continuity everywhere. Throughout
this section, we have adopted the main ideas from [11–15].

Local scheme

This scheme comprises of the convex combination of three local schemes P1, P2 and P3 and
is defined as

R (u, v, w)= vwP1+ uwP2+ uvP3

vw+ uw+ uv
, u+ v+w= 1 (3)

R(u, v, w)= u2v2P1+ v2w2P2+ u2w2P3

u2v2+ v2w2+ u2w2 , u+ v+w= 1 (4)

or

where the local scheme P1, P2, P3 is derived and replaces the inner ordinates in the proposed
method as show in Fig. 1.

For inner ordinates, we have employed the cubic precision that was proposed by Foley
et al. [15] while Goodman et al. [14] methods are used to calculate the boundary ordinates for
each triangle. The vertices V1,V2 and V3 with barycentric coordinates (1, 0, 0), (0, 1, 0) and (0,
0, 1) respectively meanwhile e1, e2 and e3 are direction vectors which are (0, −1, 1), (1, 0, 1) and
(−1, 1, 0) respectively.
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Figure 1: Directional derivatives

Let the directional derivatives along e3 and e2 at V1 be

δR
δe2

(V1)=
(

δx
δv

− δx
δu

)
Fx (V1)+

(
δy
δv

− δy
δu

)
Fy (V1)= (x1 −x3)Fx (V1)+ (x1−x3)Fy (V1) (5)

δR
δe3

(V1)=
(

δx
δv

− δx
δu

)
Fx (V1)+

(
δy
δv

− δy
δu

)
Fy (V1)= (x2 −x1)Fx (V1)+ (x2−x1)Fy (V1) (6)

Then, applying directional derivative into (3), yields

δR
δe2

(V1)= (2+α) (P300−P201) (7)

δR
δe3

(V1)= (2+α) (P210−P300) (8)

From (5) until (8), we get

P201 =P300− 1
(2+α)

[
(x1−x3)Fx (V1)+ (y1− y3)Fy (V1)

]
(9)

P210 =P300+ 1
(2+α)

[
(x2−x1)Fx (V1)+ (y2− y1)Fy (V1)

]
(10)

Other directional derivatives along e1, e3 at V2 and e1, e2 at V3 are given as follows:

P120 = 1
(2+β)

[
(x2−x1)Fx (V2)+ (y2− y1)Fy (V2)

]−P030

P021 = 1
(2+β)

[
(x3−x2)Fx (V2)+ (y2− y1)Fy (V2)

]+P030

P012 =− 1
(2+ γ )

[
(x3−x2)Fx (V3)+ (y3− y2)Fy (V3)

]+P003
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P102 = 1
(2+ γ )

[
(x1 −x3)Fx (V3)+ (y1− y2)Fy (V3)

]+P003

Now, we need to calculate the inner ordinates for each triangle. In order to calculate inner
ordinates bk111, k= 1, 2, 3, we have adopted Foley et al. [15] to achieve cubic precision. Since the
proposed scheme is cubic degree, then cubic precision will produce surface up to degree three [15].

The inner ordinate b1111 is given as [11]

b1111 = 1
2r (s+ t)

(
c201+ c210− r2 (b210+ b201)− s2 (b030+ b021)

)
+ t2 (b012+ b003)

−2st (b021+ b012)− rsb120 − 2rtb102.

Meanwhile, inner ordinate c1111 is given by [6]

c1111 = 1
2u (v+w)

(
b201+ b210− u2 (c210+ c201)− v2 (c030+ c021)

)
+w2 (c012+ c003)

−2vw (c021+ c012)− uvc120− 2uwc102.

The remaining inner ordinates are obtained by symmetry [11].

Now, we establish the algorithm that can be used for surface reconstruction using the
proposed scheme.

Algorithm 1: Reconstruction of surface for scattered data interpolation
1) Input data points
2) Triangulate the data sites using Delaunay triangulation method.
3) Derivation C1 continuity for scattered data interpolation.
4) Generate the surfaces using cubic trigonometric triangular patches
5) Compute the error–maximum error, RMSE and R2

6) Compare the performances with two existing method–cubic Ball and cubic Bézier.
7) Repeat 1 until 6 using different test function.

4 Results and Discussion

In this subsection, we discuss the performance of our proposed method by measuring 36,65
and 100 data points. Besides that, we also compare the maximum error, root mean square
error (RMSE) and coefficient determination (R2). All numerical simulations are done by using
MATLAB version 2019 installed on Intel® CORE™ i5-2410M CPU@2.30 GHz. Four tested
functions are chosen by sampling the points to 36, 65 and 100.

• Franke’s exponential function.

H (x,y)=H1 (x,y)+H2 (x,y)

where

H1 (x,y)= 0.75e
−

(
(9x−2)2+(9y−2)2

4

)
+ 0.75e

−
(

(9x+1)2
49 + 9y+1

10

)
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H2 (x,y)= 0.5e
−

(
(9x−7)2+(9y−3)2

4

)
− 0.20e

−
(
(9x−4)2+(9y−7)2

)

• Saddle function

P (x,y)= 1.25+ cos (4.5y)

6+ 6 (3x− 1)2

• Cliff function

R (x,y)= tanh (9y− 9x)+ 1
9

(a) (b)

(c)

Figure 2: Delaunay triangulations. (a) Delaunay triangulation: 36 data points. (b) Delaunay trian-
gulation: 65 data points. (c) Delaunay triangulation: 100 data points
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• Gentle function

F (x,y)=
exp

(
−

(
81
16

)(
(x− 0.5)2 + (y− 0.5)2

))
3

Fig. 2 shows Delaunay Triangulation of 36, 65 and 100 data points with domain of [0, 1]×
[0, 1]. Fig. 3 until Fig. 4 shows surface interpolation for 36 and 65 data points.

(a) (b)

(c) (d)

Figure 3: Surface interpolation for 36 data points. (a) H (x,y) (b) P(x,y) (c) R(x,y) (d) F(x,y)

Tabs. 1–3 shows numerical result for error measurement for 36, 65 and 100 data points.
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(a) (b)

(c) (d)

Figure 4: Surface interpolation for 65 data points. (a) H(x,y) (b) P(x,y) (c) R(x,y) (d) F(x,y)

Tabs. 1–3 show numerical results for 36, 65 and 100 data points. We can see in Tabs. 1–3,
the proposed scheme is on par with two established schemes i.e., Goodman et al. [14] and Karim
et al. [16].

Now, we compare the performance between the proposed scattered data interpolation scheme
against two well-known scattered data interpolation methods i.e., C1 Cubic Clough–Tocher (CT)
and C1 quadratic Powell–Sabin (PS) schemes (Schumaker [17,18]). Tabs. 4 and 5 summarize all
results. Overall, the proposed scheme is also on par with PS and CT schemes. However, in term
of RMSE, both PS and CT are better than the proposed scheme. This is understandable since,
both PS and CT have refining the macro triangles into many macro triangles. This will reduce
the interpolation error but at a cost, CPU time will be increased. All schemes are equivalent
good in term of R2. Figs. 5, 6 show the PS and CT splitting schemes. PS schemes tend to
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produce not smooth surfaces around the corner compared with the proposed scattered data
interpolation scheme.

Algorithm 2: (Two Stage Method [17]) Reconstruction of surface for scattered data interpolation
using C1 quadratic Powell–Sabin interpolant and C1 cubic Clough–Tocher interpolant

• Input data points
• Data are triangulated using Delaunay triangulation method.
• Estimate the gradients at the vertices of the triangulation from the scattered data for PS

and CT Schemes.
• Compute the interpolants and generate the surfaces
• Calculate the error–maximum error, RMSE and R2

• Repeat 1 until 6 using different test function.

Table 1: Error measurement for 36 data points

Test function Method Shape parameter Max error RMSE R2

α β γ

H (x, y) Cubic ball 0.1122 0.0264 0.9915
Cubic Bézier 0.1051 0.0263 0.9916
Cubic trigonometric Bézier 4 3 4 0.0975 0.0275 0.9908

5 3 4.5 0.0930 0.0278 0.9906
6 5 4.5 0.0984 0.0288 0.9899

P (x, y) Cubic ball 0.0265 0.0060 0.9936
Cubic Bézier 0.0262 0.0061 0.9934
Cubic trigonometric Bézier 3 3 4 0.0262 0.0062 0.9944

3 4 5 0.0263 0.0068 0.9928
2 4 5 0.0262 0.0068 0.9930

R (x, y) Cubic ball 0.0491 0.0130 0.9829
Cubic Bézier 0.0483 0.0129 0.9832
Cubic trigonometric Bézier 2 2.5 4 0.0531 0.0132 0.9825

3 2 4 0.0526 0.0131 0.9826
3 2 5 0.0535 0.0131 0.9837

F (x, y) Cubic ball 0.0127 0.0041 0.9973
Cubic Bézier 0.0103 0.0037 0.9978
Cubic trigonometric Bézier 2 2 2 0.0119 0.0042 0.9973

3 2 2 0.0123 0.0040 0.9982
2 2 3 0.0132 0.0042 0.9972
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Our final example in this study is to apply the proposed scheme to visualize real scattered data
obtained from Ali et al. [19] and Gilat [20]. The electric potential V around a charged particle is
given by:

V = 1
4πε0

q
r

where ε0 = 8.8541878× 10−12 C
Nm2 is the permittivity constant, r is the distance from the particle

in meters and q is the magnitude of the charge in Coulombs. The electric potential at a point due
to two particles is given as

V = 1
4πεo

(
q1
r1

+ q2
r2

)

where q1, q2, r1 and r2 are the charges of the particles and the distance form the points to the
corresponding particles, respectively. Two particles with a charge is q1 = 2 × 10−10C and q1 =
3× 10−10C. Noted that r1 =

√
(x+ 0.25)2+ y2 and r2 =

√
(x− 0.25)2+ y2.

Fig. 7 shows the Delaunay triangulation for electric potential, and Fig. 8 shows surface
interpolant using the proposed scheme.

Table 2: Error measurement for 65 data points

Test function Method Shape parameter Max error RMSE R2

α β γ

H (x,y) Cubic ball 0.0611 0.0154 0.9971
Cubic Bézier 0.0643 0.0152 0.9972
Cubic trigonometric Bézier 2 4.5 4 0.0625 0.0153 0.9977

2 4 5 0.0627 0.0157 0.9970
3 6 5 0.0631 0.0162 0.9968

P (x,y) Cubic ball 0.0130 0.0031 0.9983
Cubic Bézier 0.0153 0.0033 0.9981
Cubic trigonometric Bézier 4 3 4 0.0178 0.0039 0.9973

3 2 3 0.0164 0.0037 0.9987
3 3 3 0.0181 0.0037 0.9976

R (x,y) Cubic ball 0.0309 0.0049 0.9976
Cubic Bézier 0.0312 0.0049 0.9975
Cubic trigonometric Bézier 2 2 2 0.0327 0.0054 0.9971

2 2 3 0.0318 0.0050 0.9978
3 2 2 0.0327 0.0054 0.9970

F (x,y) Cubic ball 0.0072 0.0020 0.9994
Cubic Bézier 0.0060 0.0018 0.9995
Cubic trigonometric Bézier 2 2 2 0.0075 0.0020 0.9995

2 3 3 0.0087 0.0023 0.9991
2 2 3 0.0082 0.0023 0.9992
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Table 3: Error measurement for 100 data points

Testfunction Method Shape parameter Maxerror RMSE R2

α β γ

H (x, y) Cubic ball 0.0336 0.0067 0.9995
Cubic Bézier 0.0342 0.0070 0.9994
Cubic trigonometric Bézier 3 3 3 0.0362 0.0082 0.9992

2 3 2 0.0352 0.0080 0.9992
3 3 2 0.0351 0.0080 0.9995

P (x, y) Cubic ball 0.0057 0.0013 0.9997
Cubic Bézier 0.0046 0.0011 0.9998
Cubic trigonometric Bézier 4 3 3 0.0057 0.0015 0.9996

4 3.5 4 0.0067 0.0012 0.9997
5 3 3 0.0064 0.0017 0.9995

R (x, y) Cubic ball 0.0226 0.0035 0.9988
Cubic Bézier 0.0238 0.0035 0.9988
Cubic trigonometric Bézier 2 2 2 0.0280 0.0038 0.9985

3 2 2 0.0275 0.0038 0.9985
4 3 2 0.0271 0.0039 0.9985

F (x, y) Cubic ball 0.0054 0.0010 0.9998
Cubic Bézier 0.0034 0.0007 0.9999
Cubic trigonometric Bézier 2 2 2 0.0039 0.0011 0.9998

2 2 3 0.0038 0.0011 0.9998
2 3 2 0.0041 0.0012 0.9998

Table 4: Errors using PS and CT schemes

Num. of data
points

Function Maximum error (MaxE) RMSE

PS interpolant CT interpolant PS interpolant CT interpolant

100 1 3.40e−02 3.41e−02 7.12e−03 6.48e−03
2 3.89e−03 3.62e−03 6.55e−04 6.15e−04
3 2.02e−02 2.08e−02 3.84e−03 3.75e−03
4 7.63e−03 6.66e−03 1.51e−03 1.38e−03

65 1 9.43e−02 1.01e−01 1.96e−02 1.83e−02
2 1.91e−02 1.82e−02 3.27e−03 3.23e−03
3 2.97e−02 2.89e−02 6.44e−03 5.90e−03
4 1.37e−02 1.22e−02 3.04e−03 2.82e−03

36 1 1.47e−01 1.44e−01 4.01e−02 3.90e−02
2 3.76e−02 3.08e−02 7.74e−03 7.87e−03
3 6.45e−02 5.24e−02 1.49e−02 1.47e−02
4 6.10e−02 5.34e−02 1.26e−02 1.20e−02
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Table 5: R2 values for PS and CT

Num. of data points Function PS Interpolant CT Interpolant

100 1 0.9994 0.9995
2 0.9999 1.0000
3 0.9985 0.9986
4 0.9997 0.9997

65 1 0.9953 0.9960
2 0.9987 0.9987
3 0.9958 0.9965
4 0.9987 0.9989

36 1 0.9805 0.9822
2 0.9927 0.9930
3 0.9775 0.9782
4 0.9773 0.9797

Figure 5: Powell–Sabin split
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Figure 6: Clough–Tocher split

Figure 7: Delaunay triangulation
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Figure 8: Surface interpolation

5 Conclusion

This paper discusses scattered data interpolation by using cubic trigonometric Bézier trian-
gular patches initiated by Zhu et al. [1]. Sufficient condition for C1 continuity on each adjacent
triangle is developed by using cubic precision method. An efficient algorithm is presented. We
test the proposed scheme by using four well-known tested functions. We compare the perfor-
mance against some established schemes such as Goodman et al. [14], Karim et al. [16] and
Powell–Sabin (PS) and Clough–Tocher (CT) split schemes. From error analysis, we found that the
proposed scheme is on par and for all data sets, we achieve higher R2 values. Finally, we test
the proposed scheme to interpolate real scattered data set. For future research, we can apply the
proposed scheme for shape preserving interpolation such as positivity and convexity. The proposed
scheme also can be applied for constrained surface modeling above, below or between two planes
as discussed in Karim et al. [21].

Funding Statement: This research was fully supported by Universiti Teknologi PETRONAS (UTP)
and Ministry of Education, Malaysia through research grant FRGS/ 1/2018/STG06/UTP/03/1/015
MA0-020 (New rational quartic spline interpolation for image refinement) and UTP through a research
grant YUTP: 0153AA-H24 (Spline Triangulation for Spatial Interpolation of Geophysical Data).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

References
[1] Y. Zhu and X. Han, “New trigonometric basis possessing exponential shape parameters,” Journal of

Computational Mathematics, vol. 33, no. 6, pp. 642–684, 2015.
[2] A. Saaban, A. R. M. Piah, A. A. Majid and L. H. T. Chang, “G1scattered data interpolation with

minimized sum of squares of principal curvatures,” in Int. Conf. on Computer Graphics, Imaging and
Visualization, Beijing, China, pp. 385–390, 2005.



236 CMC, 2021, vol.69, no.1

[3] S. Butt and K. W. Brodlie, “Preserving positivity using piecewise cubic interpolation,” Computers &
Graphics, vol. 17, no. 1, pp. 55–64, 1993.

[4] M. Z. Hussain and M. Hussain, “C1 positivity preserving scattered data interpolation using rational
Bernstein–Bézier triangular patch,” Journal of Applied Mathematics and Computing, vol. 35, no. 1–2,
pp. 281–293, 2011.

[5] X. Han, “Cubic trigonometric polynomial curves with a shape parameter,” Computer Aided Geometric
Design, vol. 21, no. 6, pp. 535–548, 2004.

[6] S. Butt, “Shape preserving curves and surfaces for Computer Graphics,” Ph.D. Thesis. School of
Computer Studies, The University of Leeds, UK, 1991.

[7] P. Lamberti and C. Manni, “Shape-preserving C2 functional interpolation via parametric cubics,”
Numerical Algorithms, vol. 28, no. 1–4, pp. 229–254, 2001.

[8] M. S. Floater, “A weak condition for the convexity of tensor-product Bézier and B-spline surfaces,”
Advances in ComputationalMathematics, vol. 2, no. 1, pp. 67–80, 1994.

[9] M. S. Floater, “Total positivity and convexity preservation,” Journal of Approximation Theory, vol. 96,
no. 1, pp. 46–66, 1999.

[10] F. A. M. Ali, S. A. A. Karim, A. Saaban, M. K. Hasan, A. Ghaffar et al., “Construction of cubic
Timmer triangular patches and its application in scattered data interpolation,” Mathematics, vol. 8,
no. 2, pp. 159, 2020.

[11] C. N. N. Draman, S. A. A. Karim and I. Hashim, “Scattered data interpolation using rational quartic
triangular patches with three parameters,” IEEE Access, vol. 8, pp. 44239–44262, 2020.

[12] S. A. A. Karim, A. Saaban, V. Skala, A. Ghaffar, K. S. Nisar et al., “Construction of new cubic
Bézier-like triangular patches with application in scattered data interpolation,” Advances in Difference
Equations, vol. 2020, Article no. 151, 2020.

[13] S. A. A. Karim, A. Saaban, M. K. Hasan, J. Sulaiman and I. Hashim, “Interpolation using cubic
Bèzier triangular patches,” International Journal on Advanced Science, Engineering and Information Tech-
nology, vol. 8, no. 4–2, pp. 1746–1752, 2018.

[14] T. N. T. Goodman and H. B. A. Said, “C1 triangular interpolant suitable for scattered data interpola-
tion,” Communications in Applied Numerical Methods, vol. 7, no. 6, pp. 479–485, 1991.

[15] T. A. Foley and K. Opitz, “Hybrid cubic Bézier triangle patches,” in Mathematical Methods in Com-
puter Aided Geometric Design II. Cambridge, Massachusetts, United States: Academic Press, pp. 275–
286, 1992.

[16] S. A. B. A. Karim and A. Saaban, “Visualization terrain data using cubic ball triangular patches,” in
MATEC Web of Conferences, vol. 225, pp. 06023, 2018.

[17] L. L. Schumaker, Spline Functions: Computational Methods. Philadelphia, USA: SIAM, 2015.
[18] M. J. Lai and L. L. Schumaker, Spline Functions on Triangulations. Cambridge: Cambridge University

Press, 2007.
[19] F. A. M. Ali, S. A. A. Karim, S. C. Dass, V. Skala, M. K. Hasan et al., “Efficient visualization of

scattered energy distribution data by using cubic trimmer triangular patches,” in Energy Efficiency in
Mobility Systems. Singapore: Springer, pp. 145–180, 2020.

[20] A. Gilat, MATLAB : An Introduction with Applications, 4th ed., USA: John Wiley & Sons, 2013.
[21] S. A. A. Karim, A. Saaban and V. Skala, “Range-restricted surface interpolation using rational bi-cubic

spline functions with 12 parameters,” IEEE Access, vol. 7, pp. 104992– 105007, 2019.


