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Abstract: The Tor dark web network has been reported to provide a breeding
ground for criminals and fraudsters who are exploiting the vulnerabilities in
the network to carry out illicit and unethical activities. The network has unfor-
tunately become a means to perpetuate crimes like illegal drugs and firearm
trafficking, violence and terrorist activities among others. The government and
law enforcement agencies are working relentlessly to control the misuse of
Tor network. This is a study in the similar league, with an attempt to suggest
a link-based ranking technique to rank and identify the influential hidden
services in the Tor dark web. The proposed method considers the extent of
connectivity to the surface web services and values of the centrality metrics
of a hidden service in the web graph for ranking. The modified PageRank
algorithm is used to obtain the overall rankings of the hidden services in
the dataset. Several graph metrics were used to evaluate the effectiveness of
the proposed technique with other commonly known ranking procedures in
literature. The proposed ranking technique is shown to produce good results
in identifying the influential domains in the tor network.
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1 Introduction

The rapid growth of Internet technology and its outreach to the general public has made it
easier to conduct a range of services. Along with this, the ever-growing technology has also been
used to perform illegal and criminal activities. The dark web is a prime example of the abuse of
Internet technology where unethical and illegal acts are predominantly present. The sale of forged
documents, counterfeits, illegal drugs and firearm trafficking are some of the grey activities that
are carried out on the dark web [1]. The Onion Router (Tor), Freenet and I2P are the methods
to access the dark web with the Tor being the most commonly used method [2]. These methods
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ensure the anonymity of the users while surfing the dark web. The websites or the web services
on the Tor dark web network are commonly referred to as the hidden services.

The profound level of privacy and anonymity provided by the Tor dark web has increased
the illegal activities on these anonymous platforms. The law enforcement agencies have been
continuously monitoring the hidden services to track the criminals. Among all the hidden services
in the Tor network, some of the influential or key hidden services that exclusively offer illegal
products and services usually have a significant user base. Such hidden services need immediate
and dedicated efforts by the law enforcement agencies to track them down. The identification of
such hidden services could prove beneficial and to the initiatives being undertaken by the law
enforcement agencies in monitoring the illegal activities over the Tor dark web network.

Most of the studies on the Tor dark web network explore the attributes and working of the
hidden services by scraping the data using a web crawler followed by its analysis to get insight into
the hidden services and possible conclusions. However, the data collected could also be used to
identify the prominent hidden services among others by using the graph theory and link analysis
algorithms. The influential domain in a Tor network is the one on which the users end after
surfing the network moving from one hidden service to the other. In this paper, we present a
hyperlink based algorithm for ranking the Tor hidden services to identify the influential services
in the Tor network.

The government and law enforcement agencies could focus their efforts on the top-ranked
hidden services for further surveillance and monitoring. Though the top-ranked websites identified
by the proposed ranking algorithm represent the key hidden services, the other hidden services
should not be left off, instead, the concerned authorities should devise strategies to appropriately
divide their efforts in targeting the illicit content on the Tor dark web. The proposed ranking
algorithm is shown to be performing better than the other link analysis algorithm for the dark
web. The performance of the proposed ranking algorithm is evaluated on the metrics like the
graph density, clustering coefficient, average shortest path length, giant component and diameter
of the equivalent graph representing the Tor network. The dataset for the experiment was collected
with the help of the customized Python crawler.

The rest of the paper is divided as follows: Section 2 reviews the existing work on the link
analysis algorithms. Section 3 describes the proposed ranking methodology. Section 4 provides
the experimental setup followed by results and discussion in Section 5. Section 6 provides the
conclusion of the work.

2 Materials and Methods

2.1 Pertinent Related Work
The Tor dark web has experienced a considerable increase in the number of hidden services

after the rise of the Silk Road marketplace that has reported the business of more than USD
150 million [3]. Many of the studies on the Tor network have focused on the characteristics and
working of the hidden services offering illicit products [4–7]. One of the preliminary studies on
the hidden services was conducted on the Silk Road marketplace [8]. The author of the study
meticulously collected the data over a period followed by its analysis. The data showed that
drugs and psychoactive substances were the most popular choices among the users. Other studies
have tried to find the operational style of the product vendors, the geographical distribution of
customers and vendors, business environment on the Tor network, quality of product and services
and advertising strategies [9–11]. Additionally, the dark web forums have also been studied to
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get customers’ feedback and reviews about the products and services based on their shopping
experience [12].

Al-Nabki et al. [13] leveraged the data collected by their customized crawler from the Tor
domains to propose a novel hyperlink analysis algorithm called ToRank for ranking the Tor
hidden services. The authors presented the dataset of Tor domains called DUTA-10K and
implemented the ToRank algorithm on the dataset to evaluate the effectiveness of the proposed
ranking algorithm. The performance of the ToRank algorithm was compared with the benchmark
link analysis algorithm: PageRank, HITS, and Katz. The ToRank outperformed the benchmark
algorithm with a significant margin on several graph robustness metrics like the graph density,
clustering coefficient, etc. The rankings of the hidden services generated by the ToRank algorithm
could be utilized to detect the influential domains.

In another study, a content-based approach was proposed for ranking the Tor hidden ser-
vices [14]. However, the proposed approach specifically targeted illegal drug trafficking on the dark
web cryptomarkets. The commonly available drugs on the Tor hidden services were assigned a
harm score based on several criteria. A metric was proposed to calculate the overall harm score of
a hidden service using the individual score of the drug substance present on that hidden service.
The overall harm score reflects the amount of threat posed by the hidden service. The hidden
services were then ranked based on their harm score to detect the most dangerous service among
others. The efficacy of the proposed ranking approach was evaluated on the ground truth data by
using the well-known ranking metrics. The content-based approach could easily detect even the
isolated nodes (hidden services with no incoming or outgoing hyperlinks) that would otherwise have
been skipped by the link-based approach.

While only limited work has been performed to rank the Tor content for identifying key
services, plenty of work has been done on the same ranking task for the surface web content.
Both the link-based and content-based approaches were adopted including the hybrid approach for
ranking the surface web services [15,16]. Many studies in this context have proposed approaches
for detecting influential users on social network platforms. A study has analyzed the distribution
of followers of the users on the micro-blogging platform Twitter to identify the most influential
user. The influence of the user was estimated by constructing the graph representing the follower’s
network and then applying the PageRank algorithm [15]. In another study, an algorithm was
proposed for identifying the influence of nodes in the micro-blogging network. The algorithm
considers the out-degree of the nodes and their neighbors to calculate the influence of the node.
The identification of the influential nodes in the network could help in appropriately putting the
advertisement in the network [16]. A model was proposed to estimate the variation in the user’s
influence by using the continuous-time Markov process. The nodes in the model represent the user,
while the edges join the users having an interest in common topics [17].

In yet another study, several graph metrics like degree centrality, betweenness and closeness
centrality were employed to track money laundering crimes [18]. A modified PageRank algorithm
called the User Rank algorithm was proposed to detect influential users in a network through
the analysis of the message content and user’s attentiveness [19]. The combination of content and
link-based approaches could be employed to obtain a hybrid approach for identifying influential
nodes in a network. A hybrid approach was proposed to identify radical users in the dark web
discussion forums [20]. The authors developed a metric to calculate the radical nature of a user
in the forum. The radical score was incorporated into a modified PageRank algorithm to obtain
a ranked list of radical users.
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The ToRank algorithm only considers the hyperlinks between the hidden services to rank
them and to detect the influential domains. However, it has been found that most of the Tor
hidden services also have connectivity to the surface web [21]. The rise in the number of hyperlinks
to the surface websites increases the chance of data theft and information leakage through the
malicious hidden services [21]. Therefore, the out-going links to the surface websites may indicate
the influential nature of the hidden services in the Tor network. Therefore, identifying such hidden
services could lead to a disruption in the network by law enforcement agencies. Hence, in our
approach of ranking, we have also considered the significance of the out-going links with the
surface web.

2.2 Methodology
The proposed ranking approach requires the generation of a web graph corresponding to the

Tor hidden services in the dataset. The ranking algorithm is then applied on the graph to obtain
a list of the hidden services in a ranking order.

2.2.1 Construction of Web Graph
The web graph is created by representing each of the hidden services in the dataset as the

nodes or vertices of the dataset. The hyperlinks between the two hidden services are represented
by a directed edge between their corresponding nodes in the graph. All the self-loops and parallel
edges were removed from the graph. The out-going hyperlinks to the surface websites were
recorded for each of the nodes. In case of several hyperlinks from a node to the different web
pages of a surface website, only one hyperlink was considered for that node. A hyperlink is
discarded if it points to a hidden service that does not exist in the dataset. The web graph thus
obtained is used by the algorithm for ranking.

2.2.2 Ranking Procedure
The proposed ranking approach consists of three different components to measure the

influence of nodes in the graph. The definition of the various symbols is given in Tab. 1.

Table 1: Definition of the symbols used

Symbol Definition

V = {v1, v2, v3, . . . . . . vn} Set of nodes in the Tor web graph
E = {e1, e2, e3, . . . . . . em} Set of edges in the Tor web graph
surf (vi) Number of surface web hyperlinks of a node vi
deg (vi) Degree centrality of a node vi
btw (vi) Betweenness centrality of a node vi
cls (vi) Closeness centrality of a node vi
r (vi) The overall influence of the node vi

2.2.3 Influence of Surface Web Hyperlinks
In this paper, we have considered the significance of the out-going surface web links to the

importance of a hidden service in the network. The hyperlinks to surface websites may indicate
that the hidden service is willing to advertise its product and services over the open web where
a relatively large number of users are present. The influence of the surface web hyperlinks of a
node v_i is τ (v_i) which is defined as the ratio of the number of surface web hyperlinks to the
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degree centrality of v_i. τ (v_i) is given by Eq. (1), note that one is added in the denominator to
avoid the indeterminate form. In the case of isolated nodes, the τ (v_i) will be the total number
of out-going hyperlinks to the surface web.

τ (vi)= surf (vi)
deg (vi)+ 1

(1)

2.2.4 Influence of Node Connectivity
The influence of the node connectivity is defined by the significance of the location of the

node in the Tor web graph. A user arriving at a node with a good location in the network would
have a better probability of moving to other regions of the network through the neighboring
nodes, a neighbor of the neighboring nodes and so on until the user reaches the desired node.
Therefore, such nodes hold an influential position in the Tor ecosystem and identification of the
same may be fruitful in terms of law enforcement perspective.

The centrality metrics used in the graph theory indicates the relative significance of a node
in the graph. The different centrality measures reflect the importance of the node’s location in
the graph. The centrality value can indicate the ability of the node to bypass a large number of
users because it has several paths passing through them [22]. Closeness, degree and betweenness
centrality are three metrics for obtaining the centrality of the node.

In the Tor web graph, a node with a high degree centrality would facilitate the movement of
a higher number of users through it than the node with a low degree centrality. If the node has a
greater closeness centrality value, it would better control the movement of the user and allows the
rapid dispersal of the users. The greater value of the betweenness centrality of the node would
enable a quicker movement of the users to the entire web graph through a few intermediate nodes.
The influence of the connectivity of the node v_i in the network is represented by μ(v_i) and is
defined by Eq. (2).

μ(vi)= deg (vi)+ cls (vi)+ btw (vi) (2)

2.2.5 Calculating Overall Influence
The ranking metric presented here is used to assign an influence score to a node based on the

influence value of the node’s surface web links and its connectivity in the graph. The influence
metric that measures the overall influence of the node differs from the centrality metrics in the
sense that it considers the ability of the node in facilitating the movement of the users through
the entire Tor network. Each of the nodes in the graph has a different ability to propagate the
users and hence have a different influence score. The influence score of the node v_(i) is given by
δ(v_i) and is defined by Eq. (3).

δ (vi)= τ (vi)+μ(vi) (3)

In the Tor network, each of the hidden services has a different influence and significance
as compared to the other services. Thus the procedure of identifying the key hidden services is
equivalent to the ranking problem where the top-ranked service would be the most influential one
among others. The influential nature of a hidden service is governed by other hidden services to
which the former has out-going hyperlinks along with its characteristics. If a hidden service has
outgoing connections with the highly influential hidden services, then it would positively contribute
to its influence. The PageRank algorithm is appropriate in such scenarios for incorporating the
influence of the neighboring nodes [23].
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The proposed ranking algorithm is based on a modified PageRank algorithm to detect the
influential hidden services from the Tor web graph. Each of the nodes in the Tor web graph is
assigned an initial value reflecting the influence score and is updated iteratively according to the
Eq. (4) until the convergence is achieved.

r (vi)= (1− a)+ a
∑

vj∈Qi

log{r (
vj

) ∗ δ (vi)+ 1} (4)

In Eq. (4), a ∈ [0, 1] is the damping factor and is set to 0.85 [24], Q_i is the set of all nodes
having an incoming hyperlink from the node v_(i). The logarithm of the product of r(v_j) and
δ(v_i) is used to obtain the cumulative influence of v_(i) and its immediate neighbors. Moreover,
one is added to the product to avoid getting zero in the argument (when δ(v_i) is zero) for which
the log function is undefined.

The final rank of the node v_i is governed by two factors: A.) the influence score δ(v_i), and
B.) r(v_j) which represents the effect of connections to other nodes. If Q_i = {∅} for a node v_i,
then r (v_i) will be equal to 0.15. Thus the node v_i is influential only if it provides the gateway
for the users to move to other nodes in the network through it. The removal of a node with
no outgoing connectivity would not cause much disruption in the Tor network, also the removal
of only a single hidden service has proved to be a costly and time-consuming operation [25].
Therefore, the proposed ranking approach would identify the influential nodes whose elimination
would cause much disruption in the Tor network.

2.3 Experimental Setup
2.3.1 Dataset

The dataset for the study was created using a customized Python web crawler for scraping
the Tor hidden services. The web crawler was designed to connect to the hidden services using
the SOCKS proxy [25]. Initially, the web crawler was provided with a small list of onion domains
called seeds from the publicly available Tor directories [26,27]. The crawler connects with each
of the seeds, upon successful connection the crawler scrapes the hidden service and searches for
the new onion domains. Once all the seeds have been explored by the crawler, the newly found
domains from the initial seeds were saved for subsequent operations. The above procedure is
repeated on the newly discovered links. Finally, the crawler was able to found 4041 active hidden
services, the content of the home page of each of the active hidden services including the HTML
tags was stored in the individual files.

For our ranking procedure, the content of each of the hidden services needs to be parsed to
extract only the hyperlinks and discard other textual content. A parser based on regular expres-
sions was utilized to extract the hyperlinks to the surface web and Tor dark web. The hyperlinks
to other dark web networks, internet relay chat addresses and sub-domains were eliminated.

2.3.2 Evaluation Metrics
The performance of the proposed ranking algorithm is compared with that of the PageR-

ank [28] and ToRank [13] algorithm. In line with the earlier studies [28–31], several graph metrics
that evaluate the graph structure shall be used to test the effectiveness of our proposed ranking
algorithm. Graph density indicates the connectedness of the graph, a high graph density value
refers to the strong connectivity of the graph. The graph density is given by Eq. (5).

GD= e
n (n− 1)

(5)
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The graph density curve could be used to measure the robustness of the graph [29]. The
top-ranked nodes and the associated edges are eliminated from the graph one by one and the
graph density is calculated at every removal. The removal process is terminated when the density
becomes zero. Following the method of Al-Nabki et al. [13], the ranking algorithm that covers the
smallest area under the graph density curve shall be the most effective in identifying the influential
nodes in the Tor network graph. If the ranking algorithm has correctly ranked the influential
nodes, the removal of the top-ranked nodes would result in a dramatic reduction in the graph
density. This is because the influential nodes hold the key location in the network with good
connectivity and their removal should disintegrate the graph.

The clustering coefficient [29] and the average shortest path length [30] could also be used
to measure the robustness of the graph structure. A decrease in the clustering coefficient after
removing the top-ranked nodes indicates a significant breakdown in the graph structure [31]. On
the other hand, an increase in the average shortest path upon removal of the top-ranked nodes
reflects the good ranking of the nodes [29]. The removal of top-ranked nodes one by one is a
costly affair due to the high computation complexity of the clustering coefficient at every step,
hence the clustering coefficient is calculated only at the removal of the top 1st, 5th, 10th and 20th
percentile as in earlier study [13].

2.3.3 Parameter Settings
The Python NetworkX library was used to construct the graph from the corresponding hidden

services in the dataset. The proposed ranking algorithm iteratively computes the score of each
of the nodes until convergence is achieved. The algorithm is supposed to achieve convergence
when the error between the score of a node in the current iteration and the preceding iteration is
less than 0.0001. The parameter value of the PageRank and ToRank were set according to as in
previous work [13]. All the experiments were performed on a machine running on Intel i5 CPU
with 4 GB of RAM and Windows 8.1 operating system.

3 Data Interpretations and Results

The Tor web graph generated from the dataset consists of 4041 nodes representing the
corresponding hidden services and 14059 edges. The influential score returned by the ranking
algorithm is used to rank the nodes in descending order. The top-ranked nodes were repeatedly
removed and the graph density was calculated at every iteration. The graph density curve of
the PageRank, ToRank and the proposed ranking algorithm are shown in Fig. 1. The proposed
ranking algorithm obtains the smallest area under the graph density curve which is 0.013. The
ToRank algorithm achieves the second smallest area of 0.015 which is very close to the proposed
algorithm. On the other hand, the PageRank algorithm covers a relatively large area under the
curve and is the largest among the three approaches.

The performance of the proposed ranking algorithm on the other graphs’ robustness is shown
in Tab. 2. The values of the metrics are shown after the removal of top-ranked nodes at different
percentiles and the value of metrics for the full web graph with all the nodes and edges intact is
shown. The proposed algorithm produces a significant decrease in the clustering coefficient of the
graph. The average shortest path also experienced an increase in its length after the removal of
the top-ranked nodes. Moreover, the diameter of the graph has increased to 26 after the removal
of the top 20% influential nodes. The results indicate the better performance of the proposed
algorithm over the other two algorithms.
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Figure 1: Graph density curves of the three algorithms

Table 2: Comparison of the proposed ranking technique with the other algorithms

Algorithms Nodes removal (%) Clustering coefficient Average shortest path Giant component Diameter

Full graph 0.199 4.37 4761 12
PageRank Top 1 0.288 4.42 4689 12

Top 5 0.248 4.49 4521 12
Top 10 0.221 4.53 3873 13
Top 20 0.07 4.55 3325 13

ToRank Top 1 0.041 4.85 2997 17
Top 5 0.02 5.43 2030 20
Top 10 0.011 6.07 752 23
Top 20 0.006 7.12 131 25

Proposed Top 1 0.051 4.83 3160 19
Top 5 0.018 5.78 1606 23
Top 10 0.007 6.24 537 25
Top 20 0.0 7.69 10 26

The proposed ranking algorithm is based on an iterative calculation of the influence score
depending on the connectivity of the node with its immediate neighbors. Initially, a small influence
score is assigned to each of the nodes, once the algorithm achieves convergence, the node that
has connections to the other influential nodes in the network will have a much better score than
the other. However, being a link analysis algorithm, it cannot evaluate the influence of isolated
nodes with zero outgoing and incoming hyperlinks.

4 Conclusions

An iterative algorithm is proposed in this work to calculate the influence of a hidden service
in the Tor network. The influence of a hidden service depends upon its location and connectivity
in the Tor network as well as its connectivity to the surface web. Moreover, the influential nature
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of the hidden service is also determined by its connection to the other services in the network.
All these factors are incorporated into an algorithm to determine the overall influence of a
hidden service. The proposed algorithm is implemented on a dataset of Tor hidden services and is
compared with other link analysis algorithm from the existing literature. The proposed algorithm
achieves better performance than the other algorithms measured in terms of various graphs’
robustness metrics.
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