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Abstract: Ef�cient cache management plays a vital role in in-memory data-
parallel systems, such as Spark, Tez, Storm and HANA. Recent research,
notably research on the Least Reference Count (LRC) and Most Reference
Distance (MRD) policies, has shown that dependency-aware caching manage-
ment practices that consider the application’s directed acyclic graph (DAG)
perform well in Spark. However, these practices ignore the further relationship
between RDDs and cached some redundant RDDs with the same child RDDs,
which degrades the memory performance. Hence, in memory-constrained sit-
uations, systems may encounter a performance bottleneck due to frequent
data block replacement. In addition, the prefetch mechanisms in some cache
management policies, such as MRD, are hard to trigger. In this paper, we
propose a new cache management method called RDE (Redundant Data
Eviction) that can fully utilize applications’ DAG information to optimize
the management result. By considering both RDDs’ dependencies and the
reference sequence, we effectively evict RDDs with redundant features and
perfect the memory for incoming data blocks. Experiments show that RDE
improves performance by an average of 55% compared to LRU and by up
to 48% and 20% compared to LRC and MRD, respectively. RDE also shows
less sensitivity to memory bottlenecks, which means better availability in
memory-constrained environments.
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1 Introduction

With the increasing demand for data analytics, in-memory data-parallel systems, such as
Spark [1], Tez [2], HANA, and Storm [3], have shown advantages in iterative data processing
with lower latency [4–7]. These in-memory frameworks lead to great performance improvements
compared with disk-based frameworks and have become popular in industry. However, even with
the lower prices of RAM, memory remains a constrained resource as the amount of data grows in
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big data analytics [6,8]. Therefore, cache management has a crucial in�uence on the performance
of in-memory data-parallel systems.

Cache optimization has been widely studied, and many ef�cient algorithms have been pro-
posed to satisfy various systems [9]. Traditional cache management focuses on improving the hit
ratio using certain prediction methods. However, traditional cache management is oblivious to
data dependencies and shows poor performance in in-memory data-parallel systems [5]. In typical
data-parallel systems, data dependency can be concluded before the execution of jobs by analyzing
the structure of directed acyclic graphs (DAGs) [10]. Tasks in these parallel systems are executed
in a determined work�ow according to the DAGs, which can be exploited for scheduling and data
caching [11,12].

Recent studies show that a cache policy considering data dependencies in data-parallel systems
has a better performance than traditional history-based methods. Several dependency-aware cache
policies for Spark, such as LRC [13], LCRC [14] and MRD [15], have been proposed. All of these
policies have led to progress in improving the cache hit ratio compared to the default LRU cache
policy in Spark [16]. LRC traverses the DAG and sets each Resilient Distributed Dataset (RDD)
with different caching priorities according to its reference count, and RDDs with low reference
counts tend to be evicted when memory is full. LCRC and MRD further exploit the DAGs of jobs
and consider the reference gap, which makes the cached RDD more time-sensitive and achieves
a better hit ratio than LRC. However, all these cache policies neglect the fact that RDDs with
certain dependencies always share similar priorities in these algorithms. These RDDs tend to be
cached together but play the same role in computing, which results in performance degradation
when memory is a constrained resource.

In this paper, we discuss how the DAG can be further exploited to optimize cache manage-
ment. The solution should traverse the DAGs of applications and implement DAG-based cache
management with an ef�cient redundant block eviction strategy. Moreover, the policy should have
low overhead and be applicable to DAG-based in-memory data-parallel computing systems.

We propose a novel cache management policy, Redundant Data Eviction (RDE), that can
release more available memory space with low overhead. RDE can �nd the deeper relationships
between data blocks and evict redundant blocks as a function. Furthermore, with the memory
space freed by evicting redundant data, we launch a prefetching mechanism in cache management
for further performance improvement. RDE has the following advantages:

First, RDE can minimize the caching blocks by evicting target redundant data blocks. We
analyze mass DAGs of typical applications to exploit the features of redundant data blocks. As
a result, we can precisely target redundant data using RDDs’ dependencies and the schedule
sequence in the work�ow of applications. By evicting these redundant data, systems will have more
memory space for computing and data caching, which will surely improve the performance.

Second, a cache management policy with redundant data eviction is more likely to attach
a prefetching policy to achieve a better hit ratio in future work�ows. As mentioned above,
memory is always a constrained resource in data-parallel systems. RDE has less memory sensitivity
and could have a better performance in resource-strict situations compared to previous cache
management policies.

We implement RDE as a pluggable memory manager in Spark 2.4. To verify the ef�-
ciency of RDE, we conduct extensive evaluations on a six-node cluster with ten different data
analysis workloads. For all the benchmarks, RDE shows high performance and large advan-
tages in memory-constrained situations. According to our experimental results, RDE reduces the
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application runtime by 41% on average compared with the default LRU caching policy in Spark
and generally improves the performance of the system by 35% and 20% compared to LRC and
MRD, respectively.

The structure of the remainder of this paper is organized as follows. Section 2 presents the
background and describes the inef�ciency of existing cache strategies based on DAGs derived from
system schedulers. The design of RDE and its implementation details are proposed in Section 3.
The evaluation results are reported in Section 4. Finally, we conclude the paper in Section 5.

2 Background and Motivation

In this section, we discuss the background of data access in Spark jobs and provide the
motivation for introducing a novel cache management policy. We limit our discussion to the
context of Spark in this paper. However, the discussion is also applicable in other in-memory
computing frameworks.

2.1 RDD and Data Dependency
Spark is a distributed, in-memory computing framework for big data that provides the

Resilient Distributed Dataset (RDD) as its primary abstraction in computing. RDDs are dis-
tributed datasets stored in memory. Spark can only transform an RDD into a new RDD
using a transformation operation. The work�ows of data on parallel computing frameworks
are determined by DAGs consisting of RDDs. These DAGs contain rich information on data
dependencies, which is crucial for data caching and has not been fully explored in default cache
management policies.

For example, as a key abstraction in Spark, an RDD is a collection of objects partitioned
across nodes in a Spark cluster [17], and all the partitions can be computed in parallel. In
Spark, operations are divided into transformations and actions, and all the operations are based
on RDDs. As shown in Fig. 1, the scheduler of Spark is composed of RDD objects, a DAG
scheduler, task scheduling and task operations. During the construction of the RDD objects, the
scheduler will analyze the RDDs of upcoming tasks and submit them to the DAG scheduler
while the action operation is triggered. Then, the DAG scheduler forms a DAG by implying a
task execution sequence that is divided into several stages. During the execution, the dragging or
failing tasks are recomputed. Therefore, cache replacement strategies have signi�cant in�uences on
recomputing costs.

RDD1RDD1 RDD2RDD2

RDDObjects DAGScheduler

Cluster Manager

TaskScheduler

Task threads

Block Manager

Worker

DAG TaskSet Task

Figure 1: Schedule in spark
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2.2 Memory Management in Spark
In Spark, memory is divided into three parts: System memory (other and system reserved),

execution memory and storage memory, as shown in Fig. 2 [18]. RDDs are cached in storage
memory. A uniform memory management mechanism was implemented in Spark after version
1.6 was updated. The execution memory and storage memory share the same memory pool, and
their space can be dynamically changed to satisfy different memory requirements. This mechanism
reduces the dif�culty of managing the memory. This means that the utilization of storage memory
will also have an in�uence on the available execution memory, which is responsible for the
computing ef�ciency of applications [19,20].

Storage

Execution

Other

System Reserved(300M)

Storage Memory
(Cache data)

Execution Memory
(shuffle in computing)

Dynamic occupation
Unified 
Memory

Data structure defined 
by user

Figure 2: Memory management model of spark

We apply SparkBench [21] with different workloads on our cluster and analyze the logs of
the system to explore the relationship between the storage memory and execution memory. The
system logs show that when the storage memory is full and the execution memory drops to the
minimum percentage, the system experiences degraded performance because of the frequent block
replacement in computing RDDs. In some memory-constrained situations with heavy workloads,
the RDD in computing even evicts its own blocks from the execution memory due to their low
priority in existing DAG-based cache polices.

2.3 History-Based and DAG-Based Cache Management
History-based cache management is widely used in various systems. LRU is a classic history-

based cache management method and is used as the cache replacement algorithm in Spark. LRU
keeps tracking the data in memory and evicts the blocks that have not been accessed for the
longest periods of time. However, LRU is oblivious to the lineage of Spark jobs, resulting in poor
ef�ciency of the eviction of RDDs.

To fully utilize the DAGs and achieve a more signi�cant performance improvement, several
DAG-based cache management policies have been proposed. LRC and MRD are both represen-
tative DAG-based cache policies and have been proven to have high performance on common
benchmarks. LRC traverses the lineage and keeps tracking the dependency count of each RDD.
This count is updated continuously as a priority for evicting RDD blocks from memory as the
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Spark jobs run. An RDD with a higher reference count is more likely to be used in future
computations and should be cached in memory. To save the maximum amount of memory space,
the RDD with the lowest dependency count should be evicted from memory. Compared with
the default LRU policy, LRC improves the cache hit ratio and presents a better comprehensive
application work�ow. MRD analyzes the shortness of LRC and aims at improving the time
sensitivity for caching. MRD always evicts data blocks whose reference distances are the largest
and prefetches the data blocks with the lowest reference distances if possible. MRD performs
better than LRC in systems with ef�cient memory.

However, when it is dif�cult to conduct prefetching and memory is constrained, frequent data
block replacement will result in a signi�cant performance degradation in MRD, while LRC can
still obtain a better performance improvement on the system. Existing cache policies neglect the
waste of memory resulting from redundant RDDs.

For example, in the lineage of the Connected Component (CC) shown in Fig. 3, RDD12
and RDD16 always appear in the same stage, and RDD16 is a child of RDD12 according to
the dependency. This means that in most situations, RDD12 is redundant when RDD16 has
been cached. However, in existing cache policies, including LRC and MRD, RDDs with the
features mentioned above generally share similar cache priorities. These RDDs usually have high
priority and are hard to evict throughout the work�ow, which will reduce the space for the
storage memory and prevent the allocation of more space to the execution memory because of the
dynamic memory management in Spark. With an ef�cient redundant RDD eviction strategy, more
memory space will be released for data caching and RDD prefetching. We further examine the
CC’s lineage. According to the reference distance �rst policy de�ned by the MRD policy, RDD9,
RDD12 and RDD16 have the same high caching priority in the work�ow and are hard to replace
with other RDDs. RDD3, RDD14 and RDD22, which are also crucial RDDs in the work�ow,
are hard to cache due to the constrained memory.

RDD7 RDD8 RDD9 RDD12 RDD16

RDD29

RDD30 RDD32

RDD7 RDD8 RDD9 RDD12

RDD16

RDD29 RDD30 RDD33 RDD35 RDD37
Stage10

Stage5

Figure 3: Partial lineage of a connected component (CC)
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3 System Design

In this section, we propose a new cache management method, RDE (Redundant Data Evic-
tion), which can make cache decisions based on the DAGs of applications with an ef�cient
redundant RDD eviction policy. We also describe our implementation in Spark.

3.1 Eviction Policy in RDE
De�nition 1 (Candidate RDDs): RDDs in a stage with the same computing sequence are

de�ned as candidate RDDs.

The computing sequence of RDDi represents the stage sequence including RDDi in the
work�ow, and it is denoted as CS (RDDi). CS (RDDi) is described as the distance between the
present stage and the next stage, including RDDi. If the present stage is the last stage including
RDDi, then CS (RDDi) is considered to reach in�nity.

De�nition 2 (Redundant RDD): An RDD is called a redundant RDD in a candidate RDD
set if and only if the RDD is not the leaf RDD after implementing a depth-�rst search in the
candidate RDD work�ow, which is derived from the DAG of the application.

The two de�nitions compose the criterion for locating redundant RDDs in a DAG derived
from the Spark scheduler. RDE is a DAG-based cache management policy with an ef�cient
redundant RDD eviction strategy. Each RDD in a DAG has two parameters: The basic cache
priority and the CS. We �rst traverse the DAG and compute each RDD’s CS according to the
stage distance, which is utilized to represent the RDD computing sequence. In each stage, we
perform a depth-�rst search among candidate RDDs with the same CS, only preserve the leaf
RDD as the cache candidate, and view the remaining RDDs as redundant RDDs according to
De�nition 2. Then, we set the redundant RDDs with the lowest cache priority and recreate a
new DAG to provide other RDDs with new cache priority. To coordinate with the prefetching
algorithm, we use the stage distance to measure the basic cache priority of each RDD. For
example, in Stage 6 of the PageRank lineage (Fig. 4), RDD9, RDD14, RDD16, RDD26, RDD35,
RDD36 and RDD38 have the same CS, which is 9, and can be seen as candidate RDDs in Stage
6. After performing a depth-�rst search among candidate RDDs according to the dependency
derived from the DAG, RDD16 is reserved as a candidate caching RDD. The others will be seen
as redundant RDDs, and their cache priority will be set as the lowest. Stage 3, Stage 4 and Stage
15 share similar processes in the lineage of PageRank. This cache policy is oblivious to redundant
RDDs, which is surely bene�cial for future caching and prefetching. RDE shows advantages in
memory utilization.

RDD7 RDD8

RDD13

RDD9

RDD14 RDD16

RDD35

RDD26

RDD36 RDD38 RDD40 RDD42

Figure 4: Lineage of stage 6 in pagerank
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RDE can locate redundant RDDs quickly and avoid unnecessary overhead in memory. RDE
provides systems with higher performance in memory-constrained situations. Moreover, the sys-
tems log of various workloads shows that the memory occupation remains at a high level due
to Spark’s ef�cient memory management in all stages, which means that the prefetching process
in existing cache management policies may lead to frequent block replacement and degrade the
performance in Spark. RDE is less memory sensitive and can cache more essential RDDs. RDE
will decrease the frequency of prefetching and reduce the overhead introduced by the prefetching
mechanism in Spark. The eviction method can be described using the following algorithm.

Algorithm 1: Eviction in RDE
1: Input: DAG of application
2: RDD_CS_table:a table with CS of RDDs in DAG
3: RDD_disk_CS:a table with CS of RDDs in disk
4: //locate redundant RDDs
5: for each RDDi of DAG do
6: RDDi.CS← stage distance from DAG
7: end for
8: for each stage m of DAG do
9: sort RDDs based on RDD.CS

10: CandidateRDDs m←RDD with same CS
11: do depth-�rst search in CandidateRDDs m
12: if RDDi in CandiateRDDs m is not leaf RDD
13: RedundantRDDs←RDDi
14: end if
15: end for
16: for each RDDi in DAG removed Redundant RDDs
17: update(RDD_CS_table) //update CS of RDDs
18: end for
19: //Block Eviction
20: if data block size of (RDDi) > free memory do
21: RDDj← highest(RDD_CS_table)
22: if(RDDj ·CS>RDDi ·CS)
23: If(RDDj ·CS is not in�nity)
24: evict(RDDj)
25: write RDDj to Disk
26: update(RDD_disk_CS)
27: else
28: evict(RDDj)
29: end if
30: end if
31: end if

3.2 Prefetching Mechanism
As mentioned above, we choose the computing sequence to measure the cache priority for

each RDD. Computation in Spark occurs when a new stage is established. The RDD computing
sequence can be represented by the stage computing sequence. Each RDD has various stage
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distances that represent the different schedule orders in the entire work�ow. An RDD with a
nonin�nite CS implies that this RDD will be used in future computations in current applications,
and we consider this RDD to be a prefetchable RDD. However, prefetchable RDDs with lower
cache priority need to be written to a disk to make room for higher priority RDDs. We keep
a computing sequence table for prefetchable RDDs written to a disk. When the cache priority
of prefetchable RDDs increases as a job runs and becomes higher than that of cached RDDs,
the prefetching mechanism begins to work and cache prefetchable RDDs from the disk. RDE
shows less memory sensitivity in computing, and the frequency of prefetching is lower than
that of existing cache policies. RDDs with high priorities have less opportunity to be evicted
by a prefetching mechanism, which will surely reduce the overhead caused by introducing a
prefetch mechanism. The RDE cache management policy with prefetching can be described by
the following algorithm.

Algorithm 2: RDE with prefetching
1: Input: free_memory
2: //prefetch RDD
3: for each stage i in computing
4: do Eviction in RDE
5: update(RDD_CS_table)
6: update(free_memory)
7: RDDi← lowest(RDD_disk_CS)

8: RDDj← highest(RDD_CS_table)in Cache
9: for(RDDi · size> free_memory)
10: if(RDDi ·CS<RDDj ·CS)
11: evict(RDDj)
12: RDDj← highest(RDD_CS_table)in Cache
13: update(free_memory)
14: end if
15: end for
16: prefetch(RDDi)
17: end for

We observe that to achieve basic cache priority, we need to traverse the entire application’s
DAG. However, in systems such as Spark, applications usually consist of several jobs, and we can
only obtain the DAG of the present job from the Spark scheduler. Therefore, it is a challenge to
achieve the entire DAG of applications. To solve this problem, we reconsider our cache policy in
two situations.

Mostly, applications that run on in-memory data-parallel systems are recurring and usually
repeat certain jobs with the same DAG to process different data sets. Therefore, it is feasi-
ble to learn the entire DAG from previous jobs so that our cache policy performs better in
these applications.

For nonrecurring applications with jobs that have different DAGs, in each single job, RDE
works in the same way as in recurring applications, but the redundant RDDs and the cache
priority should be recomputed when a new job is coming. The hit ratio will drop by a certain
percentage compared with recurring applications.
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3.3 Spark Implementation
Architectural overview. Fig. 5 shows the architectural overview and the interaction between

the modules of the cache manager. Our implementation is composed of 3 pluggable modules:
DAGAnalyzer and REManager are deployed on the master node and CacheMonitor is deployed
on each slave node. The other modules, such as DAGScheduler, BlockManager EndpointMaster
and BlockManager SlaveEndpoint, are original components of Spark. The details of the main
APIs for our implementation are given in Tab. 1.

DAGScheduler DAGAnalyzer

REManager
BlockManager 

EndpointMaster

BlockManager
SlaveEndpoint

CacheMonitor

Cache

BlockManager
SlaveEndpoint

CacheMonitor

Cache

JobDAG

Degree of dependency similarity

RDD to 

prefetch

Cache stats 

and Stage 

ID

RDD to evict RDD to evict

Master

Executor Executor

Redundant RDDs’ ID

Figure 5: Overall system architecture of spark with RDE cache management. Our modules are
highlighted as shaded boxes

DAGAnalyzer. DAGAnalyzer derives a job’s DAG from the Spark DAGScheduler to prepare
the essential information for REManager. In recurring applications, DAGAnalyzer creates the
entire DAG of the application by analyzing the previous job’s DAG. Then, it analyzes the DAG
and calculates the CS for each RDD. Finally, DAGAnalyzer sends the application’s DAG together
with the RDDs’ computing sequence to REManager.

REManager. REManager is the key component of this architecture. REManager reconstructs
the application’s DAG according to the information received from DAGAnalyzer. After updating
the DAG by re-evaluating redundant RDDs, REManager recomputes the cache priority for other
RDDs according to their stage distance in the new DAG. Moreover, with the information collected
by CacheMonitor deployed on the slave nodes, REManager is also responsible for RDDs’ eviction
and prefetching algorithm at runtime.

CacheMonitor. CacheMonitors are deployed on the slave nodes in the cluster. CacheMonitors
access various APIs and collect necessary information for data eviction and prefetching. Moreover,
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CacheMonitors also conduct the RDD eviction strategy according to the instructions sent back
from REManager.

Table 1: APIs of spark implementation

API Description

DAGPro�le REManager reconstructs the DAG and return cache priority for each
RDD by recomputing the stage distance

updateCachePriority REManager sends a new cache priority �le to CacheMonitor
updateDSD DAGAnalyzer returns a new dependency similarity index when receiving

new DAGs
BlocksEviction When the cache is full, data with low cache priority will be evicted
DataPrefetch Prefetch speci�c blocks used in the next stage

Work�ow. After submitting the application, the Spark driver creates a SparkContext within
which DAGAnalyzer and REManager are established. Meanwhile, other modules in Spark are
also established. The driver then informs the slave nodes to launch the Spark executors and
then deploys CacheManager and BlockManager. After establishing the connection between the
driver and the executor, DAGAnalyzer analyzes the job’s DAG from DAGScheduler, and the
entire application’s DAG together with the CS of each RDD are sent to REManager. REM-
anager reconstructs the DAG and recomputes the RDDs’ cache priority. Combined with the
running information received from CacheMonitor and the new cache priority, REManager sends
the eviction and prefetching strategy of present stages to BlockManager MasterEndpoint. Then,
BlockManager communicates with BlockManager MasterEndpoint to conduct the speci�c cache
operation, such as evicting RDDs from the cache or conducting prefetching by pulling data from
the disk.

Communication overhead. RDE results in a slight communication overhead for Spark. While
REManager reconstructs the DAG and determines the cache priority for each RDD, the cache
priority �le is sent to each slave node and can be kept locally during the work�ow. REManager
only updates the cache priority when necessary through heartbeats between the master and slave
nodes. Speci�cally, REManager should inform the slave nodes to update their initial RDD caching
priority when DAGAnalyzer receives a new job’s DAG. Thus, the overhead from communication
could be neglected during this work�ow.

Prefetching overhead. In most situations, prefetching will surely improve the system’s per-
formance by increasing the cache hit ratio. Only in some extreme memory-constrained systems
does prefetching cause frequent data replacement, and data with high priority, which should be
computed in the next stage, could be evicted from the cache due to severe memory occupation.
RDE evicts redundant RDDs and is more unlikely to experience a memory bottleneck compared
to existing DAG-based cache polices. Therefore, the prefetching overhead could be ignored.



CMC, 2021, vol.68, no.1 737

4 Evaluations

In this section, we evaluate the performance of our cache policy with typical benchmarks.

4.1 Experimental Environment
Our experimental platform was composed of several virtualized machines in two high-

performance blade servers, which had 32 cores and 64 GB of memory each. The main tests were
conducted in this virtual environment with nine nodes, which consisted of one master and eight
slave nodes. The master node obtained a better con�guration to satisfy the computing demand for
cache policies. All the nodes were deployed with Spark 2.4.0 and Hadoop 2.8.0. The datasets were
generated by SparkBench. The workloads and the amounts of input data are given in Tab. 2.

Table 2: Workloads and data input

Workloads Amounts of data (GB)

KMeans 10
PageRank 11
Connected component 8
PregelOperation 7
SVD++ 8.3

4.2 Overall Performance
The master is con�gured with 8 cores and 8 GB of memory, while the slave nodes are

con�gured with 4 cores and 4 GB of memory. We compared RDE with the Spark native cache
policy LRU and two typical DAG-based cache policies, known as LRC and MRD. We show
the results for two different scenarios: RDE with eviction-only and RDE with both eviction
and prefetching. In both scenarios, RDE performs well, especially with prefetching; and RDE
signi�cantly decreases the benchmark runtime by increasing the hit ratio of the cache.

RDE with eviction-only. We conducted RDE eviction-only on several Spark benchmarks and
compared its performance with the performances of the LRU, LRC and MRD polices. The results
are shown in Fig. 6.

It is clear that the application runtimes are reduced by up to 56% compared to the original
cache policy LRU. Furthermore, RDE considers both the dependency and computing sequence
of RDD, is more time sensitive than LRC in caching RDDs and achieves as high as a 30%
improvement in performance over the Connected Component (CC) workload. RDE with the
eviction-only policy also has a 9% to 15% performance improvement compared to MRD with
the eviction-only policy since RDE caches less redundant RDDs to obtain a better hit ratio. In
general, RDE provides a signi�cant performance improvement due to its ef�cient eviction policy.

RDE with prefetching. RDE evicts redundant RDDs to free memory space for more valuable
RDDs. With this mechanism, RDE can be more suitable for prefetching policies in memory-
constrained situations. We conducted RDE with prefetching on the same benchmarks and datasets
above, and the results of this method compared with those of LRU, LRC and MRD-Prefetch are
shown in Fig. 7.
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Figure 6: Overall performance compared with existing cache policies (eviction-only)
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Figure 7: Overall performance compared with existing cache policies

RDE with prefetching combines the eviction policy with the prefetching method to obtain a
performance. Compared to eviction-only policies, RDE improves the cache hit ratio with prefetch-
ing. It can be concluded that the performance improvement reaches 63% and 48% compared to
LRU and LRC, respectively. We also compared our policy to MRD-Prefetch, which is also a
DAG-based cache policy with prefetching. RDE achieves an approximately 9% to 20% advan-
tage in performance, which bene�ts from the eviction policy of redundant RDDs. Especially in
memory-constrained situations, RDE can take full use of memory space and make a prefetch
policy easier to trigger.
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4.3 Performance Comparison with Different Memory Sizes
As we mentioned above, RDE shows less memory sensitivity and performs well in memory-

constrained situations. We deploy each executor memory size from 2 to 6 GB and compare RDE-
Prefetch with LRU, LRC and MRD-Prefetch in several benchmarks with different con�gurations.
Our purpose is to �nd the in�uence of the memory size on different cache policies.
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Figure 8: Performance under four cache management policies with different cache sizes

As shown in Fig. 8, each cache policy performs better as the amount of memory is increased.
Policies with prefetching, such as MRD-Prefetch and RDE-Prefetch, show more advantages in
clusters with more memory. However, in memory-constrained situations, such as when executors
are deployed with 2 GB of memory, the cache system with MRD-Prefetch seems to be the
�rst to encounter a memory bottleneck. The results show that with suf�cient memory, MRD-
Prefetch performs well with various workloads. In regard to a memory-constrained situation,
MRD-Prefetch achieves a worse performance, and the application running time equals that of the
system with LRC in k-means and PageRank. After analyzing the system logs, we �nd frequent
RDD eviction occurring in memory, and there is not enough memory space to trigger the prefetch
method in MRD. The prefetching method in MRD-Prefetch is limited in memory-constrained
situations. RDE still outperforms in clusters deployed with low memory. It reduces the execution
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time by 40% to 56% compared to LRU, which means that the prefetch method in RDE works
well in memory-constrained situations. We can expect RDE to have good performance in some
new �elds with constrained resources, such as edge computing [22,23].

5 Conclusion

In this paper, we present a DAG-based cache management policy with redundant eviction
data in Spark named RDE. RDE traverses the lineage of an application and computes the degree
of dependency similarity for each RDD. Redundant RDDs have no opportunity to be cached in
the work�ow, which makes RDE perform better in memory-constrained situations. Moreover, we
also adapt a prefetch mechanism to RDE to obtain a better cache hit ratio. Compared to the
LRC and MRD policies, RDE achieves 35% and 20% improvements in performance, respectively,
under memory-constrained circumstances.
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