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Abstract: In this work, we propose a new, fully automated system for multi-
class skin lesion localization and classification using deep learning. The main
challenge is to address the problem of imbalanced data classes, found in
HAM10000, ISBI2018, and ISBI2019 datasets. Initially, we consider a pre-
trained deep neural networkmodel,DarkeNet19, and fine-tune the parameters
of third convolutional layer to generate the image gradients. All the visualized
images are fused using a High-Frequency approach along with Multilayered
Feed-Forward Neural Network (HFaFFNN). The resultant image is further
enhanced by employing a log-opening based activation function to generate
a localized binary image. Later, two pre-trained deep models, Darknet-53
and NasNet-mobile, are employed and fine-tuned according to the selected
datasets. The concept of transfer learning is later explored to train both
models, where the input feed is the generated localized lesion images. In the
subsequent step, the extracted features are fused using parallel max entropy
correlation (PMEC) technique. To avoid the problem of overfitting and to
select the most discriminant feature information, we implement a hybrid
optimization algorithm called entropy-kurtosis controlled whale optimization
(EKWO) algorithm. The selected features are finally passed to the softmax
classifier for the final classification. Three datasets are used for the experi-
mental process, such as HAM10000, ISBI2018, and ISBI2019 to achieve an
accuracy of 95.8%, 97.1%, and 85.35%, respectively.

Keywords: Skin cancer; convolutional neural network; lesion localization;
transfer learning; features fusion; features optimization

1 Introduction

Skin cancer, as per stats from the World Health Organization (WHO) [1], is one of the most
deadly types of cancer worldwide [2,3]. According to the reports, the number of deaths in the next
two years will be doubled. However, the death rate could be controlled if the infection is diagnosed
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in the earlier early stages [4]. Skin cancer typically has seven major types, but the most common
types are basal cell carcinoma, squamous cell carcinoma, and malignant melanoma. Melanoma is
the most deadly skin cancer and causes several deaths worldwide [5]. According to WHO, in 2020
only, the number of melanoma cases is increased, but the total number of deaths is decreased
with a ratio of 5.3%. The estimated number of melanoma cases in the USA alone, since 2020,
will be 196,060. From the numbers around 95,710 will be noninvasive, and 100,350 will be invasive
(Skin Cancer Facts & Statistics, 2020). However, based on the previous reports, the number of
new invasive cases has increased by 47% in the last ten years. Timely identification of skin cancer
increases the survival rate by 95% [6]. This cancer is primarily diagnosed using clinical methods
such as ABCDE rules, a 3-point checklist, and a 7-point checklist. However, these methods face a
lot of constraints including unavailability of experts, limited resources, time deficiency, etc. [7,8].

Dermoscopy is a new imaging technology used for skin lesion diagnosis with the draw-
backs of its high cost, limited number of expert dermatologists and the diagnosis time [9,10].
The skin lesions are irregular in shape and texture, which is another factor for an inaccurate
identification [11]. Researchers actively working in the domain of computer vision and machine
learning introduced several computer-aided diagnosis (CAD) techniques to identify skin can-
cer [12]. A CAD system can be helpful for dermatologists as a second opinion [13]. The classical
techniques are introduced between 2010–2016 and before 2010 [14]. These conventional techniques
mostly were based on thresholding and clustering [15]. Moreover, machine learning techniques are
used for the binary classification purposes and on the balanced data. The main theme of these
techniques is to extract the handcrafted features including shape, color, point, and texture, and
later use them for the classification purpose [16].

Recently, deep learning algorithms are utilized to develop computerized medical image anal-
ysis algorithms [17,18]. Using deep learning, researchers achieved remarkable results, especially
stomach and skin cancer lesions classification [19,20]. The results of deep learning techniques
are much improved compared to the conventional techniques [21,22]. Moreover, the information
fusion of deep learning model also showed improved performance in medical diseases diagno-
sis [23,24]. Recently, Huang et al. [25] presented a lightweight deep learning approach for skin
lesion classification. They employed two pre-trained models named EfficientNet and Densenet
and optimize their features for multiclass classification. This work was tested on the HAM10000
dataset and achieved an accuracy of 85.8%. The main advantage of this work is that it is
applicable in mobiles for skin lesion diagnosis. Carcagnì et al. [26] presented a convolutional neural
network (CNN) approach for multiclass skin cancer classification. They initially implemented
Densenet deep model and fine-tuned it according to the dataset classes. Later they extracted the
more relevant features and classified them using SVM. The experimental process was conducted on
the Ham10000 dataset and achieved an accuracy of 90%. This method is only useful for balanced
class datasets.

Thurnhofer-Hemsi et al. [27] presented an ensemble of a deep learning model for multiclass
skin cancer classification. They employed five pre-trained deep models such as Googlenet, Incep-
tion3, Densenet201, Inception-ResNetV2, and MobileNetV2. They performed fine-tuning and
train using transfer learning. After that, they performed a plain classifier and hierarchy of clas-
sifiers approach for final classification. For the experimental process, the HAM10000 dataset was
used and achieved an accuracy of 87.7%. They conclude that the Densenet model is performed
well, and overall, this work is useful for the balanced dataset. Mohamed et al. [28] introduced a
deep CNN-based approach for multiclass skin cancer classification. They implemented this method
in two factors. First, they train the model on all deeply connected layers. In the second, they
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balance the data to resolve the issue of data imbalancing. After that, they selected two pre-
trained models named Densenet121 and Mobilenet for the classification purpose. The fine-tuned
these models and map features for the classification phase. A HAM10000 dataset is used for
the experimental process and achieved an accuracy of 92.7%. Because of the balanced training
data, this model is useful for Mobile applications. Chaturvedi et al. [29] presented a deep CNN-
based computerized approach for multiclass skin cancer classification. They initially normalize
images and resized according to the deep models. Later, five pre-trained models are selected
and fine-tuned. Deep features are extracted from each model and performed classification. The
classification performance is evaluated on balanced dataset HAM10000 and achieved an accuracy
of 92.83%. The main concept in this work was the fusion of different neural network information
for better classification performance. Shahin et al. [30] ensembles two deep learning network
features for the classification of skin cancer. They used ResNet50 and InceptionV3 models for
this work. The experimental process was performed on HAM10000 and ISBI2018 datasets and
achieved 89.9% and 89.05% accuracy. Almaraz-Damian et al. [31] introduced a fusion framework
for skin cancer classification from dermoscopic images. They fused handcrafted features and
clinical features such as ABCDE to better lesion information at the first stage. In the next phase,
deep CNN features are also extracted and fused with first phase features. The classification is
performed by L.R., SVM, and relevant vector machine (RVM). For the experimental process,
they used the ISBI2018 dataset and achieved an accuracy of 92.4%. Moreover, authors in [32]
presented a residual deep learning framework and achieved an accuracy of above 93% using
ISBI2018 dataset.

The rest of the manuscript is organized as follows: Problem statement and major novelties are
presented in Section 2. Proposed CAD system is described in the Section 3. Section 4 represents
the experimental results and analysis. Finally conclusion is given in Section 5.

2 Problem Statement and Novelties

According to research by [33] poor lesion segmentation extract poor features, which later
degrades the classification accuracy. The poor contrast skin lesions are the main factor for poor
segmentation; therefore, it is essential to improve local contrast before the lesion segmentation
step. The second problem which is facing in the studies mentioned above is imbalanced datasets.
The researchers resolve this issue by employing data augmentation, and few of them balance
the datasets based on a minimum class count. But this is not a good approach because several
images are ignored in the training process. Multiclass skin cancer is not an easy process due to
the high similarity among skin lesions shown in Fig. 1. In this figure, it is demonstrated that bcc
and bkl lesions have high similarity. Similarly, melanoma and vasc lesion have high similarity. To
handle this issue, more relevant and strong features are required. Several extracted features are
irrelevant, and few of them are redundant; hence, it is essential to remove those features before
the classification phase.

In this work, our major contributions are as follows:

i) We consider a pre-trained deep CNN model named Darknet19 to apply fine tuning for
optimal weights generation. A third convolutional layer is utilized to fetch the gradient
information after the visualization. Later, all 128 visualized images are fused using the
novel High-Frequency along with feed-forward neural network (HFaFFNN). The fused
image is further enhanced by employing a log-opening based activation function.
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ii) Two pre-trained deep neural networks, Drarknet53 and NasNetMobile (NMobileNet), are
fine-tuned and trained through transfer learning. The features from the second last layers
of both models are extracted and fused using a new approach, named Parallel max-entropy
correlation (PEnC).

iii) A feature selection criteria is also proposed using biologically inspired whale feature
optimization (WFO) algorithm controlled using entropy and kurtosis based activation
functions. Through this function, the best features are selected for final classification.

Figure 1: Sample skin lesion types of HAM10000 dataset [34]

3 Proposed Methodology

A new end to end computerized method is proposed in this work for multiclass skin lesion
localization and classification. Two main phases are included in this method. In the first phase,
skin lesions are localized using a new CNN and image fusion-based approach. In the second
phase, two pre-trained models are fine-tuned and trained using transfer learning. Features are
extracted from the last feature layers and performed fusion using a new approach named Parallel
Entropy Correlation (PEnC). After the fusion process, a new hybrid optimization method is
implemented, named Entropy Kurtosis controlled Whale Optimizer (EKcWO), for the optimal
features selection. The selected features are classified using Softmax classifier for final prediction
accuracy. A complete flow diagram of the proposed method is showing in Fig. 2.

3.1 Datasets
Three publically available datasets are used in this work for the experimental process. The

selected datasets are HAM10000, ISBI2018, and ISBI2019. These datasets are used for the clas-
sification tasks. HAM10000 is one of the complex skin cancer datasets containing 10,015 image
samples of different resolutions. These images are categorized into seven different lesion classes;
akiec, bcc, bkl, df, nv, mel, and vasc. Against each label, the number of images is 327, 541, 1099,
155, 6705, 1113, and 142, respectively. ISBI2018 dataset consists of 10,015 images of seven skin
lesion types such as Nevus, Dermatofibroma, Melanoma, Pigmented Bowen’s, Keratosis, Basal
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Cell Carcinoma, and Vascular. For testing and validation, 1,512 and 193 images are provided
without ground truths. The ISIC 2019 skin cancer dataset consists of eight classes: akiec, bcc, df,
bkl, mel, SCC, vasc, and nv. This dataset is the combination of HAM10000 and BCN dataset.
Moreover, a few clinical images are also added in this dataset. The images in each mentioned
class, such as akieck are 867, bcc are 3,323, df is 239, bkl are 2,624, mel is 4,522, nv is 12,875,
SCC is 628, and vasc are 253, respectively. A few sample images are also shown in Fig. 1. Based
on the above detail, it is show that these datasets are extremely imbalnced. We used testing and
validation images jus for labeling. At the same time, the 50:50 approach is considered for training
and testing.

Figure 2: Proposed flow diagram of multiclass skin cancer classification

3.2 Fine-Tuned DarkNet Model
The arrival of deep learning technology in machine learning has reformed the performance of

AI. A deep model consists of a large number of layers. A deep model’s structure starts from the
input layer and later processed in the convolutional layer. In this layer, a convolutional operator
is used to extract the features called weights. This operation is works based on filters such as
filter size and stride. Mathematically, it is formulated as follows: Consider, F0 is an input image
of CNN having r rows, c columns, and K color components, where K = 3 in this work. Hence,
F0(x, y, z) image is transformed in this model where, 0≤ x≤ r, 0≤ y≤ c, and 0≤ z ≤ K are the
spatial coordinated. Using these points, a convolutional layer is defined as follows:

Fmap (u, v)= β +
t∑
i=t

t∑
j=1

K−1∑
k=0

ωi, j,kF0 (u+ i, v+ j, k) (1)

where feature map of the convolutional layer is represented by Fmap, β represent an offset, and
ωi, j,k ∈ ω × ω × K represent filters of a 2D array. Usually, in a CNN model, many filters are
employed to increase the sharpness of object edges. Next, a batch normalization layer is followed
to reduces the number of epochs for fast training. Later, a leaky relu (LR) is added to convert
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the negative values into zero. This function only allows the positive weights for the next step.
Mathematically, we defined LR as follows:

LR (f )=
{
0.02f for f < 0

f for f ≥ 0
, where f ∈ Fmap (u, v) (2)

Then, a max-pooling layer is applied to reduce the neighborhood. This layer is based on the
filter size, and mostly it is defined W ×H. In this work, we consider the DarkNet19 pre-trained
deep neural network [35] and fine-tuned according to the requirement. Our purpose is the only
visualization of convolutional layer features instead of training a model. Therefore, we ignore
the last layers and only consider the network to the third convolutional layer, as shown in Fig. 3.
The input of this network is 256 × 256 × 3. For the first convolutional layer, the filter size is
3× 3, the number of filters is 32, the number of channels is 3, and stride 1× 1. Following these
operations, the learnable weights and bias matrix are of size 3× 3× 3× 32 and 1× 1× 32. The
activation of this matrix of this layer is 256×256×32. Then, batch normalization and leaky relu
layers are followed to this convolutional layer. A pooling layer is applied to filter size 2× 2 and
stride 2.

After this operation, the activations is 128×128×32. In the next step, a second convolutional
laye is added and peformed a convolutional filter of size 3× 3, where the number of filters and
channels are 64 and 32, respectively. The stride of this layer is 2, and the resultant activation is
128×128×64. The learnable weights and bias matrix are 3×3×32×64 and 1×1×64, respectively.
Similar to the first convolutional layer, this follows the batch normalization and leaky relu layers.
Then, a pooling layer is added of filter size 2× 2 and stride 2. The activations of this layer is
64× 64× 64.

A convolutional layer is applied to these activations of filter size 3× 3, where the number
of filters and channels are 128 and 64. For this layer, the activations are 64 × 64 × 128, and
learnable weights and bias matrix are 3× 3× 64× 128 and 1× 1× 128, respectively. On in this
layer, it is described that a total 128 filters are employed, and for each filter, the matrix size is
3×3×64. Hence, we visualize these filter matrix based on filter size. Visually, it is shown in Fig. 3.
In this figure, it is illustrated that a total 128 subimages are reshaped. These images provide the
information of input images according to their gradients and pixel-level information, etc.

Figure 3: Visualization of fine-tuned convolutional layer weights

We consider these 128 images and fused them in one image for better visualization of the
lesion part. For this purpose, we implemented a hybrid approach name High-Frequency along
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with Feed Forward Neural Network (HFaFFNN). In this approach, these images are considered
high-frequency images and learn their pixels based on the feed-forward neural network (FwNN),
where the FwNN is multilayered. Since a MLFwNN consider a one image pixel as one neuron.
The two hidden layers denoted by H are included in this network. The inputs of each layer H
are represented by Ĩ1, Ĩ2 and total neurons are Ĩ and J̃, respectively. The sigmoid is applied as
an activation function of H layers, and linear function is used as an activation function for the
output layer, where the output layer is denoted by Ô. The output of lth and pth hidden layer is
formulated as follows:

Y (H1)
l = 1[

1+ e(
∑n

i=1(ωlixi−βl))
] , l = 1, 2, . . . , J̃ (3)

Y (H2)
p = 1[

1+ e
(∑J̃

l=1(ωplyl−βp)
)] , p= 1, 2, . . . , Ĩ (4)

Here hidden layers weights are represented by ωli and ωpl. The outputs of each hidden layer

are represented by Y (H1)
l and Y (H2)

p . The base of each hidden layer is represented by βl and βp,
respectively. In the last, the output is computed by the following mathematical formulation.

Ôn =
Ĩ∑

p=1

(
ωnpYp

)
, n= 1, 2, . . . , H (5)

To assess this neural network’s training performance, the mean square error rate (MSER)
is computed. Based on the MSER value, the weights and bias are updated in the next step.
Mathematically, the MSER of this network is calculated as follows:

MSER= 1
n

n∑
i=1

(
Ôi− ti

)2
(6)

Here, Ôi is system output image and ti is an target output. This output is judge through the
fitness function, which is formulated as follows:

Fit (Xi)=min
(
1
n

(
Ôi− ti

)2)
(7)

However, in our work, we required a more useful and informative image; therefore, we update
the weights and bias of the first hidden layer based on the number of iterations. Here, the number
of iterations is the number of image pixel values. Hence, the updated weights and bias are defined
as follows:

ξωli = ϕ
(
Ŷl −xi

)
(8)

ξβl = ϕ
(
Ŷl −xi

)
(9)
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Here, updated weights are represented by ξωli and updated bias is represented by ξβl. The
learning rate in these equations is defined by ϕ and the value of ϕ = 0.001. Hence, the newly
updated equations are:

βnew= βold + ξβl (10)

ωnew =ωold + ξω (11)

In the last, by employing these updated weights and bias, the fusion is performed. The fusion
process is formulated through the following activation function:

hL,dF (x, y)=
⎧⎨⎩h

L,d
I (x, y) , for Iter (I)≥ Iter (B) .

hL,dJ , Otherwsie
(12)

Here, hL,dI (x, y) represents high-level decomposition images, L represents levels, d represents
directions, and Iter(.) represents the number of iterations per image based on the image pixels,
performed by a neural network. Finally, the high-level decomposition pixels are reconstructed by
MATLAB image reconstruction function and obtained an output image, shown in Fig. 4 (Fused
using the proposed approach). After this step, we applied a hybrid contrast stretching method to
increase the pixel’s intensity range (can be seen in Fig. 4 (Contrast stretching)). The logarithmic
function is applied for the contrast enhancement, which later converted into a binary form using
the Otsu thresholding approach (can be seen in Fig. 4 (binary image)). The active contour-based
boundary is drawn on the original image based on the binary lesion image. The localized lesions
are used for the text classification task. A few sample qualitative results are illustrated in Fig. 5.

Figure 4: Complete steps involves in the lesion localization using proposed approach

3.3 Lesion Classification
Transfer Learning: Transfer Learning is reusing a pre-trained deep learning model for a new

task [36]. In this task, we used the TL to reuse a pre-trained model (trained on ImageNet 1000
classes) for skin cancer classification (small dataset, max 8 classes). Suppose the source data is �s
representing ImageNet dataset, source labels representing �L (1000 object classes), and objective
function is representing by �o. This process can be written as:

�= {�s, �L, �o} (13)
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Figure 5: Proposed lesion localization visual results

Hence, we have three targets as target data representing by �T (HAM10000, ISBI2018, and
ISBI2019), target labels representing by TL, and objective function TL. It can be defined as:

�̃= {�T , TL, To} (14)

Hence, the transfer learning is applied to �̃ by using the knowledge of �. Visually, this
process is showing in Fig. 6 and mathematically defined as follows:

δ̃ =To (�T , TL, �) ,=To (�T , TL |�s, �L, �o) (15)

Fine Tuned NasNet Mobile CNN: NasNet Mobile [37] is a new CNN architecture constructed
by the search architecture of neural network (NN). This architecture contains building blocks, and
each block consists of several layers (i.e., convolutional layer, pooling layer, batch normalization
layer). These blocks are optimized using reinforcement learning. This process is repeated several
times and based on the capacity of a network. A total of 12 blocks are added in this network,
where the number of parameters and MACs are 5.3 and 564 M, respectively. This network accepts
an input image of h×w× 3, where h= 224 and w= 224. These input image pixels are considered
as initial weights and passed in the first convolutional layer. In the first convolutional layer,
a convolutional operator is applied to filter size 3 × 3 and stride 2. Moreover, the number of
channels and filters for the first layer are 3 and 32, respectively. For most of the blocks, a batch
normalization layer is added of value e= 1.0000e− 03. This process is continued for all blocks in
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the network. In the end, all blocks are concatenated and added a few additional layers. Later, a
global average pooling layer is added, which followed the last fully connected layer.

Source Labels
(1000 Object Classes)

Source Pre-Trained
Models

(DarkNet53, NasNet
Mobile)

Source Dataset
(ImageNet Dataset)

Target Dataset
(HAM10000, ISBI2018,

and ISBI2019)
(Around 40k Images)

Target Deep Learning
Models

Target Labels
(8 Skin Cancer Clases)

Transfer
Learned

Knowledge

High Dimensional Data Small Dimensional Data

Figure 6: Visual process of transfer learning for feature extraction

We remove the last fully connected layer and add a new layer according to the skin classes’
number in this work. Then, we train the new fine-tuned model using transfer learning. We utilized
50% skin images for training a model due to an imbalanced dataset in the learning process. For
training, we initialized a learning rate of 0.002 and a mini-batch size of 64. Moreover, the dropout
factor was 0.5, and the weight decay value of 4e−5. After learning this new model, we extract
features from the last layer named Global Average Pooling layer (GAP). On this layer, the number
of extracted features is 1056, and a vector length is N × 1056, where N denotes the number of
training images. Mathematically, this vector is represented by λN

�
, where k denotes feature-length

and N denotes sample images.

Fine Tuned DarkNet53 CNN: Darknet53 [38] is the Convolutional Neural Network (CNN)
based model, which is used to extract the deep features for object detection and classification [39].
It has 53 layers of deep structure. This model combines the basic feature extraction model
of YOLOv2 Darknet19 and the deep Residual Network [40]. This network utilized the 1 × 1
consecutively and 3 × 3 convolution layers and residuals. Its smallest component consists of
convolution, Batch Normalization (BN), and LeakyRelu layers. The input of this network is
h × w × 3, where h = 256 and w = 256. The filter size of first convolutional layer is 3 × 3 and
stride 2. The batch normalization layer is followed by the convolutional layer, where the value of
epsilon e= 1.000000000000000e− 05. In this network, leaku relu is added instead of ReLu layer.
Thrugh this layer, convolved weights are converted into positive (0.01) if negative. This process
is continued for all 52 convolutional layers. Besides, an additional layer was added which follows
the Global Average Pool (GAP) layer and FC layer.

We removed the last fully connected layer and added a new layer according to the number of
skin cancer classes. Transfer learning is employed for training this new fine-tuned model. In the
learning process, we utilized 50% skin images for training a model due to an imbalanced dataset
and the rest 50% for testing. For training, we initialized a learning rate of 0.002 and a mini-batch
size of 64. Moreover, the dropout factor was 0.5, and the weight decay value of 4e−5. This new
model’s features are extracted from the last layer named Global Average Pooling layer (GAP).
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On this layer, the number of extracted features is 1056, and a vector length is N × 1056, where
N denotes the number of training images. Mathematically, this vector is represented by λNl , where
l denotes feature-length and N denotes sample images.

3.3.1 Features Fusion
In this article, we proposed a fusion technique using parallel process. The main reason behind

the choice of parallel approach instead of serial approach is to get only most relevant features and
try to minimize the dimension of feature vector. Consider, we have two deep learning extracted
feature vectors, represented by λN

�
of dimension N × 1056 and λNl of dimension N × 1056,

respectively. Suppose, λNf is a fused feature vector of dimension N ×max (length). Initially, we

calculated the maximum length feature vectors from the extracted vectors as follows:

Lng2i = length
(
λN
�
, λNl

)
, i= 1, 2. (16)

MLng =max
(
Lng2i

)
(17)

Based on MLng, we define a resultant feature vector matrix as: λNf =
[
λ1f 1, λ2f 2, . . . , λNf

]
. Then

two entropy values are computed for each vector λN
�

and λNl as:

H
(
λN
�

)
=−

N∑
�=1

P (λ�) logb P (λ�) (18)

H
(
λNl

)
=−

N∑
l=1

P (λl) logb P (λl) (19)

Each corresponding vector features are multiplied by their entropy value. The purpose of this
operation is to get positive features only. Mathematically, this operation is formulated as follows:

	
(
λN
�

)
=

∣∣∣λN�i×H (
λN
�

)∣∣∣ (20)

	
(
λNl

)
=

∣∣∣λNlj ×H (
λNl

)∣∣∣ (21)

Here, 	
(
λN
�

)
and 	

(
λNl

)
are two updated feature vectors and each value in both vectors

are positive. A Pearson Correlation Coefficient (PCC) is applied and fused features based on the
positive correlation value. As mentioned at the start of the fusion process that our fused vector
length of dimension N×1056; hence, this process is continued as per the length of a fused vector.
Mathematically, the PCC formulation is defined as follows:

r̃=
∑(

λ�i−λN
�

) (
λlj−λNl

)
√∑(

λ�i−λN
�

)2 ∑(
λlj −λNl

)2
(22)
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Here, PCC is represented by r̃, λ�� represents an ith feature of vector 	
(
λN
�

)
, λlj represents

a jth feature of vector 	
(
λNl

)
. Similarly, the mean value of each vector is represented by λN

�
and

λNl , respectively. Through r̃, we get the strength between the ith and jth features as follows:

Vectors=

⎧⎪⎨⎪⎩
λNf , for r̃

(
	

(
λN
�

)
i , 	

(
λNl

)
j

)
≥ 0.4

λNnf for Otherwise
(23)

where, λNf is a fused vector. The features in this vector are higher correlated of value greater

than 0.4, selected in a fused vector and λNnf vector features are ignored. As mentioned above

that this process is continued till the vector is completed. If fused vector length is not com-
pleted in one iteration, then feature in vectors 	

(
λN
�

)
and 	

(
λNl

)
are updated according to the

following formulation:

Update
(
	

(
λN
�

))
=

∣∣∣∣∑(
	

(
λN
�

)
i

)
+

∑ (
	

(
λN
�

)
i+1

)∣∣∣∣ (24)

Update
(
	

(
λNl

))
=

∣∣∣∣∑(
	

(
λNl

)
j

)
+

∑ (
	

(
λNl

)
j+1

)∣∣∣∣ (25)

The resultant fused feature vector λNf of dimension, N × 1056 is further optimized for

more accurate classification results. For optimization, we implemented a hybrid approach name
Entropy–Kurtosis controlled Whale Optimization (EKcWO). The detail of this technique is given
in the next section.

3.3.2 Features Optimization and Classification
Whale Optimization Algorithm (WOA) [41] is a new optimization algorithm inspired to

mimic the humpback whales’ natural behavior. Three main steps are involved in this algorithm:
(i) prey encircling, (ii) exploitation, and (iii) exploration [42]. The detail of each step can be
found in [41,42]. This algorithm is a wrapper-based approach because classification algorithms are
applied to check the accuracy of selected features. In this paper, we used the Softmax classifier
for classification accuracy.

Given a fused feature vector λNf of dimension N × 1056 and λNsel represents the selected

optimal feature vector of dimension N×S, where S denotes the length of the optimally selected
vector. Initially, we applied WOA, which returns the best features for each iteration. We add one
more stage selection by a new activation function based on the Entropy and Kurtosis (E&K).
Each iteration’s selected features are first passed in this function and then check the fitness through
a fitness function. This process is continued until all initialized iterations are completed. The
detail of this hybrid algorithm is given in Algorithm 1. In this algorithm, the maximum iterations
(max_Iter) are 50, α is a parameter that decreases the linearly from 2 to 0, vec1 and vec2 are two
coefficient vectors, l is a random number of range [−1, 1], and prob is another random number of
value between [0, 1]. In this algorithm, the position of whales is updated for prob< 0.4 as follows:

UP
(
λfi

)= λ∗best (Iter+ 1)− vec1.Dist (26)

Dist= vec2.λ∗best (Iter)−λfi(Iter) (27)
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Algorithm 1

Output: Optimally selected feature vector λNsel of dimension N×S.
Input: Fused feature vector λNf of dimension N × 1056.
Step 1: Generates Initial Populations← λNsel = (1, 2, 3 . . . , fn).
Step 2: Compute Objective Values using Softmax.
Step 3: λ∗best← Best Selection.

While (Iter<max_Iter)
for each solution λfi.
Update α, vec1, vec2, l,prob.

if (prob< 0.4) // Outer if statement
if (|vec1|< 1) // Inner if statement
Update Position of λfi←UP(λfi).

else if (|vec1|> 1)
Select Random solutions ← λrand.

end if // End inner if statement
else if (prob ≥0.4)

Update position ← λ∗best(Iter+ 1).
end if // End outer if statement
end for

Step 4: Put features on Kurtosis controlled Entropy activation function.
—Compute Kurtosis of λ∗best
—Compute Entropy of λ∗best
—Combine in an activation function.

Step 5: Compute Fitness through Fitness Function.
Step 6: Update λ∗best.
Step 7: Iter= Iter+ 1.

End While
λNsel = λ∗best←Final selected feature vector

Here, Dist represents the distance among best selected features. The value of a random vector
is between [0, 1]. For prob ≥0.4, the position is updated as follows:

λfi (Iter+ 1)=Dist′.ebl. cos (2π l)+λ∗best(Iter) (28)

In the next, we proposed a new activation function for one more step feature selection. The
activation function is defined as:

Funt= H
(
λ∗best (Iter+ 1)

)×SK (
λ∗best (Iter+ 1)

)
H

(
λ∗best (Iter+ 1)

)+SK (
λ∗best (Iter+ 1)

)+ 0.1
×Const (29)

Act (f )=
⎧⎨⎩
G

(
λ∗best (Iter+ 1)

)
, for λ∗best (Iter+ 1)i ≥ Funt

Not Consider, Otherwise
(30)
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Based on this activation function, each selected feature is again checked and then compute
the fitness through fitness function as follows:

Fitness= αEr (Dist)+ b |R|
|f | (31)

Here, Er (Dist) represents the classification error, R represents the selected subset’s cardinality,
and f represents the total features, respectively. This process is continued for maximum iterations,
and at the end, we get a final optimal selected feature vector of dimension N × 506. This vector
dimension can be changed according to the nature of the dataset and selected iterations. Finally,
the Softmax classifier [43] based classified these features for final classification. The proposed
visual labeled results are shown in Fig. 7. The detailed testing results are discussed in Section 4.

Figure 7: Proposed predicted labeled images

4 Experimental Results and Analysis

Experimental Setup: In this section, the proposed method results are presented. As shown in
Fig. 2, the proposed method works through a sequence of steps. Therefore, we compute the results
of each step to show the importance of the next step. As described in Section 3.1, three datasets
are used for the experimental process; hence, we computed each datasets results with several
experiments. The Softmax classifier is used as a main classifier in this work for the classification of
selected features. The 70% of each dataset’s dermoscopic images are used to train a model, while
the rest are used for testing. For cross-validation, we used 10-Fold validation. The performance of
Softmax classifier is also compared with few other classifiers such as: Fine tree (F-Tree), Gaussian
Naïve Bayes (GNB), SVM of cubic kernel function (C-SVM), extreme learning machine (ELM),
fine KNN (F-KNN), and ensemble boosted tree (EBT). Each classifier performance is analyzed
using the following performance measures such as sensitivity rate (Sen), precision rate (Prec)
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F1 Score, AUC, accuracy (Acc), and computational time. This work’s simulations are conducted
on MATALB2020b using a Desktop Computer having 16 GB of RAM and 16 GB graphics card.

4.1 Results
Results of ISBI2018 Dataset: Tab. 1 presented the proposed classification results of multiclass

skin lesions. The Softmax classifier produced the best performance of 97.1% accuracy rate using
the proposed framework. The sensitivity and precision rate of Softmax is 86.34% and 97.41%,
respectively. The F1-Score and AUC are also computed for this classifier, having obtained values
are 91.54% and 0.987. The computational testing time is 21.627 (s). The C-SVM produced
the second-best performance of 92.3% accuracy. The sensitivity, precision, and F-Score of this
classifier are 77.07%, 84.40%, and 80.57%, respectively. For the rest of the classifiers, precision rate
is 66.20%, 72.37%, 92.02%, 92.01%, and 92.65%. The minimum computational time is 7.9919 (s);
however, it is noted that the accuracy of this classifier is almost 12% lesser as compared to
Softmax. Moreover, the performance of the Softmax classifier is verified in Fig. 8 in the form of
a confusion matrix. In this figure, it is illustrated that DF and VASC skin classes have high error
rate. The main challenge in this work is an imbalanced dataset. Hence, due to low sample images,
the error rate is high for these two classes.

Table 1: Proposed multiclass skin lesion classification results for ISBI2018 dataset

Method Evaluation protocols

Sen (%) Prec (%) F-score (%) AUC Acc (%) Time (s)

F-tree 54.87 66.20 60.00 0.871 85.0 7.9919
GNB 79.17 72.37 75.62 0.915 86.5 43.291
C-SVM 77.07 84.40 80.57 0.875 92.3 19.592
ELM 68.58 92.02 78.59 0.853 91.9 17.8347
F-KNN 68.07 92.01 78.25 0.851 91.6 33.554
EBT 64.94 92.65 76.36 0.850 91.4 24.042
Softmax 86.34 97.41 91.54 0.987 97.1 21.627
∗Sen (sensitivity), Prec (precision), Acc (accuracy), F-tree (fine tree), GNB (Gaussian Naïve Bayes).

Tab. 2 presented the comparison of proposed framework accuracy with individual steps that
are involved in this work. Initially, we computed the classification results without using lesion
localization. The original images are directly passed in the proposed framework and achieved
an accuracy of 90.8%, where the computational time was 16.1295 (s). In the second step, only
Darknet53 is employed and performed experiment. For this experiment, the noted accuracy was
92.1%, but time is increased to 34.8915 (s). In the third step, results are computed for NasNet
Mobile CNN and achieved an accuracy of 91.6%. In the fourth step, we removed the feature
selection step and just fused features. For this experiment, the accuracy is improved to 94.2%,
where the computational time was 24.1168 (s). In the last step, we consider the entire proposed
framework and achieved an accuracy of 97.1% which is 7% improved as compared first step
accuracy. The computational time of this experiment is 21.627 (s). Overall, it is noticed that the
lesion localization step consumes much time, but this step improves the classification accuracy.
Moreover, we compared the proposed accuracy with a few other neural nets, as illustrated in
Fig. 9. From this figure, it is confirmed that proposed fusion and proposed selection methods
outperform for this dataset.
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Figure 8: Confusion matrix of Softmax classifier using proposed method for ISBI2018 dataset

Table 2: Comparison of proposed accuracy with individual steps

Method WoL D-53 Mobile Fusion Pro Acc (%) Time (sec)

Softmax � 90.8 16.1295
� 92.1 34.8915

� 91.6 31.6650
� 94.2 24.1168

� 97.1 21.627
∗WoL (without lesion localization), D-53 (Darknet-53), and Pro (proposed)

Results of ISBI2019 Dataset: Tab. 3 presented the proposed classification results of multiclass
skin lesions using ISBI2019 dataset. The Softmax classifier produced the best performance of
85.3% accuracy rate using the proposed framework. The sensitivity and precision rate of Softmax
is 73.3% and 82.6%, respectively. Moreover, the F1-Score and AUC are also computed for this
classifier of 77.68% and 0.9725. The computational time of this classifier is 76.3046 (s). The
GNB obtained the second-best performance of 84.9% accuracy. The sensitivity, precision, and
F-Score of this classifier is 74.13%, 81.25%, and 77.53%, respectively. For the rest of the classifiers,
the precision rate is 71.21%, 78.96%, 79.07%, and 82.59%. The minimum computational time is
61.112 (s); however, it is noted that the accuracy of this classifier is almost 9% lesser as compared
to Softmax. Moreover, the performance of the Softmax classifier is verified in Fig. 10 in the form
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of a confusion matrix. This figure illustrated that BKL, DF, SCC, and VASC skin classes have
low accuracy rates due to fewer images and high similarity.

Figure 9: Comparison of proposed method with existing pre-trained deep learning models using
ISBI2018 dataset

Table 3: Proposed multiclass skin lesion classification results using ISBI2019 dataset

Method Evaluation protocols

Sen (%) Prec (%) F-score (%) AUC Acc (%) Time (S)

F-tree 60.43 71.21 65.38 0.780 76.2 76.261
GNB 74.13 81.25 77.53 0.9316 84.9 61.112
C-SVM 64.83 78.96 71.20 0.960 82.0 67.117
ELM 76.66 79.07 77.85 0.9287 84.1 62.386
EBT 60.85 82.59 70.07 0.9662 82.9 77.786
Softmax 73.3 82.61 77.68 0.9725 85.3 76.3046

Tab. 4 presents the comparison of proposed framework accuracy with individual steps
involved in the main Fig. 2. Initially, we computed the classification results without using lesion
localization and obtained an accuracy of 78.6%, where the computational time was 39.448 (s).
In the second step, only Darknet53 is employed and got an accuracy of 80.4%, but time is
increased to 89.162 (s). This tie show that the lesion localization step consumes much time.
In the third step, results are computed for NasNet Mobile CNN and achieved an accuracy of
81.9%. In the fourth step, we removed the feature selection step and just fused features of both
networks. For this experiment, the accuracy is improved to 82.6%, where the computational time
was 91.290 (s). In the last step, we consider the entire proposed framework and achieved an
accuracy of 85.3%, which is 8% improved as compared first step accuracy and 3% from the fusion
step. The computational time of this experiment is 76 (s). Overall, it is noticed that the lesion
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localization step is more important for improved classification accuracy. Also, the selection step
minimizes the computational time and increases accuracy. Moreover, we compared the proposed
accuracy with a few other neural nets, as illustrated in Fig. 11. This figure showed the significance
of the proposed fusion and proposed selection steps for this dataset.

Figure 10: Confusion matrix of Softmax classifier using proposed method for ISBI2019 dataset

Table 4: Comparison of proposed accuracy with individual steps

Method WoL D-53 Mobile Fusion Pro Acc (%) Time (s)

Softmax � 78.6 39.448
� 80.4 89.162

� 81.9 93.660
� 82.6 91.290

� 85.3 76.3046

Results of HAM10000Dataset: The proposed classification results of HAM10000 are presented
in Tab. 5. This dataset’s best precision rate and accuracy are 92.22% and 95.8% for the Softmax
classifier. The sensitivity rate is 84.20%, which can be verified in Fig. 12. This figure showed the
confusion matrix of the Softmax classifier. Moreover, the F1-Score and AUC of this classifier
are 88.03% and 0.9721. The computational time of this classifier is 9.546 (s). The second-best
accuracy was achieved on CSVM of 94.9%. The sensitivity, precision, and F-Score of this classifier
is 76.64%, 95.67%, and 85.10%, respectively. For the rest of the classifiers, the precision rate is
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62.05%, 96.05%, 93.17%, 92.28%, and 93%. The minimum computational time is 8.189 (s) on
F-KNN; however, it is noted that the accuracy of this classifier is almost 3% lesser as compared
to Softmax, and there is no big difference in time among both. The comparison of proposed
accuracy with an individual step involved in the proposed framework is presented in Tab. 6. From
this table, the proposed accuracy is significantly better. Moreover, the proposed method accuracy
is also compared with other neural nets, as illustrated in Fig. 13. This figure shows the significance
of the proposed accuracy.

Figure 11: Comparison of proposed method with existing pre-trained deep learning models using
ISBI2019 dataset

Table 5: Proposed multiclass skin lesion classification results using HAM10000 dataset

Method Evaluation protocols

Sen (%) Prec (%) F-score (%) AUC Acc (%) Time (s)

F-tree 54.10 62.05 57.80 0.8257 85.2 13.446
GNB 72.71 96.05 82.77 0.9671 93.8 30.479
C-SVM 76.64 95.67 85.10 0.9692 94.9 20.517
ELM 68.60 93.17 79.02 0.9424 91.5 8.342
F-KNN 73.82 92.28 82.02 0.9517 92.4 8.189
EBT 66.88 93.00 77.81 0.9304 91.0 45.112
Softmax 84.20 92.22 88.03 0.9721 95.8 9.546

4.2 Comparison
In this section, we analyze the proposed results based on the confidence interval and compare

our proposed method accuracy with recent techniques as presented in Tabs. 7 and 8. In Tab. 7, it
is described that a minor change is occurred in the accuracy after the 100 times execution of the
proposed framework. Tab. 8, the each method is compared base on the dataset and evaluation
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measures. The accuracy is used as a main measure. However, few of them also consider precision
and F1-Score. Hung et al. used the HAM10000 dataset and achieved an accuracy of 85.8% and a
precision rate of 75.18%. Carcgani et al. noted accuracy was 90%, and F1-Score is 82%. However,
our method obtained an improved accuracy of 95.8% and a precision rate of 92.22%. Similarly,
for ISBI2018, the more recent best accuracy was 93.4%. Our method achieved an accuracy of
97.1%. For ISBI2019 dataset, our approach obtained an accuracy of 85.3%. From this table, it is
shown that the proposed method works better on these selected datasets.

Figure 12: Confusion matrix of Softmax classifier using proposed method for HAM10000 dataset

Table 6: Comparison of proposed accuracy with individual steps using Ham10000 dataset

Method WoL D-53 Mobile Fusion Pro Acc (%) Time (s)

Softmax � 91.4 6.8963
� 83.2 17.446

� 87.8 29.2949
� 92.50 19.4316

� 95.8 9.5468
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Figure 13: Comparison of proposed method accuracy with existing pre-trained deep learning
models using HAM10000 dataset

Table 7: Confidence interval based analysis of proposed accuracy

Dataset Min (%) Max (%) σ σx̄ CI

ISBI2018 95.6 97.1 0.75 0.5303 96.35± 1.039 (±1.08%)
ISBI2019 83.2 85.3 1.05 0.7424 84.24± 1.455 (±1.73%)
HAM10000 94.1 95.8 0.85 0.6010 94.95± 1.178 (±1.24%)

Table 8: Proposed method comparison with existing techniques

Method Dataset Evaluation measures

[25] HAM10000 Accuracy (85.8%), Precision (75.18%)
[26] HAM10000 Accuracy (90.0%), Precision (88%), F1-score (82%)
[27] HAM10000 Accuracy (87.7%)
[28] HAM10000 Accuracy (92.70%)
[29] HAM10000 Acuracy (92.83%)
[30] HAM10000 Acuracy (89.9%)
[30] ISBI2018 Accuracy (89.05%)
[31] ISBI2018 Accuracy (92.4%)
[32] ISBI2018 Accuracy (93.4%)
Proposed ISBI2018 Accuracy (97.1%), Precision (97.41%), F1-score (91.54%)
Proposed ISBI2019 Accuracy (85.3%), Precision (82.61%), F1-score (77.68%)
Proposed HAM10000 Accuracy (95.8%), Precision (92.22%), F1-score (88.03%)

5 Conclusion

This paper presents a computerized architecture for multiclass skin lesion classification using
a deep neural network. The main challenge of this work was imbalanced datasets for training a
deep model. Therefore, in our method, we first localize the skin lesions for more useful feature
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extraction. This process improves the classification accuracy but increases the overall system
computational time. The localized lesions are utilized for learning the pre-trained CNN models.
The features are extracted from the last layers and performed fusion using a new parallel based
approach. This approach’s main advantage is the fusion of most correlated features and controls
the length of a feature vector. However, few redundant and irrelevant features are also added,
which misclassifies the final classification accuracy. Therefore, we implemented a hybrid features
optimization approach. The best features are selected using a proposed hybrid, which is finally
classified using Softmax classifier. The experimental process is conducted on three extremely imbal-
anced datasets. On these datasets, our method achieved improved performance. This work’s main
strength is the localization and fusion process; however, the selection of most optimal features
decreases the computational time, as described in the results section. This work’s main limitation
is the incorrect localization of skin lesion, which extracts the wrong features in the later stage. In
the future, we will focus on the more optimized lesion localization approach, which is useful for
real-time lesion localization and has improved accuracy.

Acknowledgement: Authors are like to thanks COMSATS University Islamabad, Wah Campus for
technical support in this work.

Funding Statement: Authors are like to thanks COMSATS University Islamabad, Wah Campus
for technical support in this work. This research was supported by Korea Institute for Advance-
ment of Technology (KIAT) grant funded by the Korea Government (MOTIE) (P0012724, The
Competency Development Program for Industry Specialist) and the Soonchunhyang University
Research Fund.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

References
[1] H. A. Haenssle, C. Fink, R. Schneiderbauer, F. Toberer, T. Buhl et al., “Man against machine:

Diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma
recognition in comparison to 58 dermatologists,” Annals of Oncology, vol. 29, no. 2, pp. 1836–
1842, 2018.

[2] I. Razzak and S. Naz, “Unit-vise: Deep shallow unit-vise residual neural networks with transition
layer for expert level skin cancer classification,” IEEE/ACM Transactions on Computational Biology and
Bioinformatics, vol. 1, no. 11, pp. 1–10, 2020.

[3] M. A. Khan, Y.-D. Zhang, M. Sharif and T. Akram, “Pixels to classes: Intelligent learning framework
for multiclass skin lesion localization and classification,” Computers & Electrical Engineering, vol. 90,
pp. 106956, 2021.

[4] M. A. Khan, T. Akram, Y. D. Zhang and M. Sharif , “Attributes based skin lesion detection and
recognition: A mask RCNN and transfer learning-based deep learning framework,” Pattern Recognition
Letters, vol. 53, pp. 58–66, 2020.

[5] P. Tang, Q. Liang, X. Yan, S. Xiang and D. Zhang, “GP-CNN-DTEL: Global-part CNN model with
data-transformed ensemble learning for skin lesion classification,” IEEE Journal of Biomedical andHealth
Informatics, vol. 1, no. 4, pp. 1–7, 2020.

[6] A. A. Adegun and S. Viriri, “FCN-based densenet framework for automated detection and classifica-
tion of skin lesions in dermoscopy images,” IEEE Access, vol. 8, pp. 150377–150396, 2020.

[7] J. Kawahara, S. Daneshvar, G. Argenziano and G. Hamarneh, “Seven-point checklist and skin
lesion classification using multitask multimodal neural nets,” IEEE Journal of Biomedical and Health
Informatics, vol. 23, no. 1, pp. 538–546, 2018.



CMC, 2021, vol.68, no.1 1063

[8] J. Dissemond, “ABCDE rule in the diagnosis of chronic wounds,” Journal of the German Society of
Dermatology, vol. 15, pp. 732, 2017.

[9] M. Nasir, M. A. Khan, M. Sharif, M. Y. Javed, T. Saba et al., “Melanoma detection and classification
using computerized analysis of dermoscopic systems: A review,” CurrentMedical Imaging, vol. 16, no. 3,
pp. 794–822, 2020.

[10] M. A. Khan, M. Sharif, T. Akram, S. A. C. Bukhari and R. S. Nayak, “Developed newton-raphson
based deep features selection framework for skin lesion recognition,” Pattern Recognition Letters,
vol. 129, no. 17, pp. 293–303, 2020.

[11] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter et al., “Dermatologist-level classification of
skin cancer with deep neural networks,” Nature, vol. 542, no. 7639, pp. 115–118, 2017.

[12] L. Song, J. P. Lin, Z. J. Wang and H. Wang, “An end-to-end multi-task deep learning framework for
skin lesion analysis,” IEEE Journal of Biomedical and Health Informatics, vol. 4, pp. 1–7, 2020.

[13] J. M. Gálvez, D. Castillo-Secilla, L. J. Herrera, O. Valenzuela, O. Caba et al., “Towards improving
skin cancer diagnosis by integrating microarray and RNA-seq datasets,” IEEE Journal of Biomedical and
Health Informatics, vol. 24, pp. 2119–2130, 2019.

[14] M. E. Celebi, N. Codella and A. Halpern, “Dermoscopy image analysis: Overview and future
directions,” IEEE Journal of Biomedical and Health Informatics, vol. 23, no. 2, pp. 474–478, 2019.

[15] M. A. Khan, T. Akram, M. Sharif, T. Saba, K. Javed et al., “Construction of saliency map and hybrid
set of features for efficient segmentation and classification of skin lesion,” Microscopy Research and
Technique, vol. 82, no. 6, pp. 741–763, 2019.

[16] C. Dhivyaa, K. Sangeetha, M. Balamurugan, S. Amaran, T. Vetriselvi et al., “Skin lesion classification
using decision trees and random forest algorithms,” Journal of Ambient Intelligence and Humanized
Computing, vol. 12, no. 4, pp. 1–13, 2020.

[17] S. H. Wang, V. V. Govindaraj, J. M. Górriz, X. Zhang and Y. D. Zhang, “Covid-19 classification
by FGCNet with deep feature fusion from graph convolutional network and convolutional neural
network,” Information Fusion, vol. 67, pp. 208–229, 2020.

[18] Y. D. Zhang, S. C. Satapathy, D. S. Guttery, J. M. Górriz and S. H. Wang, “Improved breast can-
cer classification through combining graph convolutional network and convolutional neural network,”
Information Processing & Management, vol. 58, pp. 102439, 2020.

[19] S. Wang, Y. Cong, H. Zhu, X. Chen, L. Qu et al., “Multi-scale context-guided deep network for auto-
mated lesion segmentation with endoscopy images of gastrointestinal tract,” IEEE Journal of Biomedical
and Health Informatics, vol. 15, pp. 1–7, 2020.

[20] A. Adegun and S. Viriri, “Deep learning techniques for skin lesion analysis and melanoma cancer
detection: A survey of state-of-the-art,” Artificial Intelligence Review, vol. 7, pp. 1–31, 2020.

[21] T. Saba, M. A. Khan, A. Rehman and S. L. Marie-Sainte, “Region extraction and classification of skin
cancer: A heterogeneous framework of deep CNN features fusion and reduction,” Journal of Medical
Systems, vol. 43, no. 2, pp. 289, 2019.

[22] M. A. Khan, M. I. Sharif, M. Raza, A. Anjum, T. Saba et al., “Skin lesion segmentation and classi-
fication: A unified framework of deep neural network features fusion and selection,” Expert Systems,
vol. 5, pp. e12497, 2019.

[23] S. Ding, H. Huang, Z. Li, X. Liu and S. Yang, “SCNET: A novel UGI cancer screening framework
based on semantic-level multimodal data fusion,” IEEE Journal of Biomedical and Health Informatics,
vol. 19, pp. 22–29, 2020.

[24] M. A. Khan, T. Akram, M. Sharif, K. Javed, M. Rashid et al., “An integrated framework of skin
lesion detection and recognition through saliency method and optimal deep neural network features
selection,” Neural Computing and Applications, vol. 5, no. 14, pp. 1–20, 2019.

[25] H. W. Huang, B. W. Y. Hsu, C. H. Lee and V. S. Tseng, “Development of a light-weight deep learning
model for cloud applications and remote diagnosis of skin cancers,” Journal of Dermatology, vol. 3,
no. 6, pp. 1–7, 2020.



1064 CMC, 2021, vol.68, no.1

[26] P. Carcagnì, M. Leo, A. Cuna, P. L. Mazzeo, P. Spagnolo et al., “Classification of skin lesions
by combining multilevel learnings in a denseNet architecture,” in Int. Conf. on Image Analysis and
Processing, Cham. Springer, pp. 335–344, 2019.

[27] K. Thurnhofer-Hemsi and E. Domínguez, “A convolutional neural network framework for accurate
skin cancer detection,” Neural Processing Letters, vol. 8, no. 4, pp. 1–21, 2020.

[28] E. H. Mohamed and W. H. El-Behaidy, “Enhanced skin lesions classification using deep convolutional
networks,” in 2019 Ninth Int. Conf. on Intelligent Computing and Information Systems, Cairo, Egypt,
pp. 180–188, 2019.

[29] S. S. Chaturvedi, J. V. Tembhurne and T. Diwan, “A multi-class skin cancer classification using
deep convolutional neural networks,” Multimedia Tools and Applications, vol. 79, no. 17, pp. 28477–
28498, 2020.

[30] A. H. Shahin, A. Kamal and M. A. Elattar, “Deep ensemble learning for skin lesion classification
from dermoscopic images,” in 2018 9th Cairo Int. Biomedical Engineering Conf., Cairo, Egypt, pp. 150–
153, 2018.

[31] J. A. Almaraz-Damian, V. Ponomaryov, S. Sadovnychiy and H. Castillejos-Fernandez, “Melanoma and
nevus skin lesion classification using handcraft and deep learning feature fusion via mutual information
measures,” Entropy, vol. 22, no. 3, pp. 484, 2020.

[32] J. Zhang, Y. Xie, Y. Xia and C. Shen, “Attention residual learning for skin lesion classification,” IEEE
Transactions on Medical Imaging, vol. 38, no. 11, pp. 2092–2103, 2019.

[33] M. A. Marchetti, N. C. Codella, S. W. Dusza, D. A. Gutman, B. Helba et al., “Results of the
2016 international skin imaging collaboration international symposium on biomedical imaging chal-
lenge: comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of
melanoma from dermoscopic images,” Journal of the American Academy of Dermatology, vol. 78, no. 2,
pp. 270–277, 2018.

[34] P. Tschandl, C. Rosendahl and H. Kittler, “The HAM10000 dataset, a large collection of multi-
source dermatoscopic images of common pigmented skin lesions,” Scientific Data, vol. 5, no. 1,
pp. 180161, 2018.

[35] J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,” in Proc. of the IEEEConf. onComputer
Vision and Pattern Recognition, Honolulu, Hawaii, pp. 7263–7271, 2017.

[36] S. H. Wang, D. R. Nayak, D. S. Guttery, X. Zhang and Y. D. Zhang, “nCOVID-19 classification by
CCSHNet with deep fusion using transfer learning and discriminant correlation analysis,” Information
Fusion, vol. 26, pp. 1–21, 2020.

[37] B. Zoph, V. Vasudevan, J. Shlens and Q. V. Le, “Learning transferable architectures for scalable image
recognitionLearning transferable architectures for scalable image recognition,” in Proc. of the IEEEConf.
on Computer Vision and Pattern Recognition, Salt Lake City, Utah, pp. 8697–8710, 2018.

[38] J. Redmon and A. J. A. P. A. Farhadi, “Yolov3: An incremental improvement,” 2018.
[39] H. Wang, F. Zhang and L. Wang, “Fruit classification model based on improved darknet53 convolu-

tional neural network,” in 2020 Int. Conf. on Intelligent Transportation, Big Data & Smart City, Vientiane,
Laos, pp. 881–884, 2020.

[40] K. He, X. Zhang, S. Ren and J. Sun, “Deep residual learning for image recognition,” in Proc. of the
IEEE Conf. on Computer Vision and Pattern Recognition, Las Vegas, Nevada, pp. 770–778, 2016.

[41] M. Mafarja and S. Mirjalili, “Whale optimization approaches for wrapper feature selection,” Applied
Soft Computing, vol. 62, no. 17, pp. 441–453, 2018.

[42] M. Sharawi, H. M. Zawbaa and E. Emary, “Feature selection approach based on whale opti-
mization algorithm,” in 2017 Ninth Int. Conf. on Advanced Computational Intelligence, Doha, Qatar,
pp. 163–168, 2017.

[43] B. Liao, J. Xu, J. Lv and S. Zhou, “An image retrieval method for binary images based on DBN and
softmax classifier,” IETE Technical Review, vol. 32, no. 11, pp. 294–303, 2015.


