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Abstract: The joint extraction of entities and their relations from certain
texts plays a significant role in most natural language processes. For entity
and relation extraction in a specific domain, we propose a hybrid neural
framework consisting of two parts: a span-based model and a graph-based
model. The span-basedmodel can tackle overlapping problems comparedwith
BILOUmethods, whereas the graph-based model treats relation prediction as
graph classification. Our main contribution is to incorporate external lexical
and syntactic knowledge of a specific domain, such as domain dictionaries
and dependency structures from texts, into end-to-end neural models. We
conducted extensive experiments on a Chinese military entity and relation
extraction corpus. The results show that the proposed framework outperforms
the baselines with better performance in terms of entity and relation pre-
diction. The proposed method provides insight into problems with the joint
extraction of entities and their relations.
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1 Introduction

The extraction of entities and their interrelations is an essential issue in understanding text
corpora. Determining the token spans in texts that compose entities and assigning types to these
spans (i.e., named entity recognition, NER) [1] as well as assigning relations between each pair of
entity mentions (i.e., relation classification, RC) [2,3] are critical steps in obtaining knowledge from
texts for further possible applications, such as knowledge graph construction [4], knowledge-based
question answering [5], and sentiment analysis [6].

Currently, pre-trained language models, such as BERT [7], have achieved outstanding per-
formance in various natural language processing (NLP) tasks, including entity and relation
extraction. However, the performances of these BERT-based models on Chinese specific-domain
corpora are not as effective as on English datasets. We argue that this is mainly due to two
reasons. First, terminology is common in a specific domain, for example, weapons and equipment
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nomenclature in the military domain, bringing about the possible problem that important entities
with terminology that have never appeared in the open domain are understood as unregistered
words and are thus difficult to identify. Second, when used with Chinese corpora, BERT generates
embeddings at the character level. However, Chinese words contain more semantic information
than characters. As a result, it is difficult for BERT-based models to extract dependency relations
between Chinese words, which is important in relation extraction. As in the example shown in

Fig. 1, dependency parsing can mine the two pairs of relationships, ‘ ’ (Chinese) and ‘ ’

(J-20), ‘ ’ (American) and F-22, which contributes to relation extraction.

To address the above-mentioned issues, we propose a novel architecture for joint entity and
relation extraction. The key insight of our proposed model is to leverage external lexical and syn-
tactic knowledge to overcome the limitations of BERT-based models encountered during Chinese
specific-domain joint extraction. Specifically, lexical knowledge refers to domain dictionaries, such
as weapons and equipment nomenclature, which helps to improve NER performance on entities
with terminology. Moreover, syntactic knowledge refers to the dependency structure discussed in
the current text. As the result of dependency parsing can be transformed into a tree structure, we
further adopt the graph-based model to manage the dependency tree and capture the interaction
between relations, which compensates for the lack of existing BERT-based models to extract
dependencies and, in turn, contributes to relation extraction.

Figure 1: Examples of dependency tree in the Chinese specific corpus. The dependency pars-
ing result is generated by HanLP [8]. Arrows in red present dependencies that can contribute
to relation extraction. Blue blocks show that domain-dictionaries can help recognize entities
with terminology

Our proposed model incorporates the joint modeling of span-based and graph-based compo-
nents by taking advantage of two different structures. More specifically, span-based components
feature entity recognition and relation classification by making full use of a localized marker-free
context representation [9]. As an extension of the previous work in [9], we incorporate a graph-
based component in our model using graph neural networks (GNNs) in the relation classification
component. We allow the simultaneous classification of entities and relations with higher accuracy.
The main contributions of this study are summarized as follows:

—For the extraction of entities and relations in specific domains, a hybrid framework based
on a knowledge-enriched and span-based network is proposed.

—The dependency structure is incorporated in our model, which can leverage external lexical
and syntactic knowledge effectively in Chinese specific-domain joint extraction.
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—Comparative experimental results demonstrated that our model outperforms the state-of-
the-art model, and achieves an absolute 4.13% improvement in the F1 score in relation
extraction.

The remainder of this paper is structured into five sections. Related works on entity and relation
extraction are presented in Section 2. Section 3 defines the problem and provides details on the
architecture of our proposed model for the joint extraction of entities and relations. Our exper-
iments are presented in Section 4, and comparative experiments are implemented in Section 5.
Finally, the conclusions are presented in Section 6.

2 Related Work

Most systems adopt a two-stage pipeline framework for the extraction of entities and rela-
tions. First, the entities in a given sentence are recognized using NER. Then, certain classification
models are used to test each entity pair [10–12]. This method is easy to implement, and each
component can be more flexible, but it lacks the interaction between different tasks, leading to
error propagation [13,14].

Unlike pipelined methods, the joint extraction framework focuses on extracting entities
together with relations using a single model. The advantages lie in joint entity and relation
extraction to capture the inherent linguistic dependencies between relations and entity arguments
to resolve error propagation. Most initial joint models are feature-based structured systems that
require complicated feature engineering. For example, Roth et al. [15] investigated a joint inference
framework based on integer linear programming to extract entities and relations. Li et al. [16]
proposed a transition-based model for entity recognition and relation classification simultaneously.
Ren et al. [17] investigated a new domain-independent framework that focused on a data-driven
text segmentation algorithm for the extraction of entities and relations.

For the sake of reducing the manual work in the extraction process, models with different
neural networks have been proposed with the characteristics of automatic feature extraction. These
models adopt low-dimensional dense embedding to denote features. Gupta et al. [18] proposed
a table-filling multi-task recurrent neural network (RNN) for the joint extraction of entities
and relations. Adel et al. [19] introduced globally normalized convolutional neural networks and
relation extraction. Katiyar et al. [20] presented a novel attention-based long short-term memory
(LSTM) network for the joint extraction of entity mentions and relations.

Recently, Hong et al. [21] presented an end-to-end neural model based on graph convolutional
networks for jointly extracting entities and relations. Kok et al. [22] provided a brief introduction
to named entity (NE) extraction experiments performed on datasets of open-source intelligence
and post-training mission analytics. Recently, Wang et al. [23] investigated a relation extraction
method combining a bidirectional LSTM (Bi-LSTM) neural network, character embedding, and
attention mechanism to solve a military named entity relation extraction. Takanobu et al. [24]
later proposed a hierarchical reinforcement learning (HRL) framework for the sake of enhancing
the interaction between entity and relation types. Trisedya et al. [25] adopted an N-gram attention
mechanism with an encoder-decoder model for the completion of knowledge bases using distant
supervised data.

Despite the great efforts in this field, they still leave an open question: how to efficiently
capture the semantic information in texts, especially in a Chinese specific domain. In this study,
a novel framework with a knowledge-enriched and span-based network is proposed for jointly
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extracting entities and their relations simultaneously. Compared with other state-of-the-art models,
this model improves the F1 score of entity and relation recognition in a specific domain.

3 Methodology

This section provides details on the implementation of our knowledge-enriched and span-
based BERT (KSBERT) network, and its overall framework is presented in Fig. 2.

3.1 Problem Definition
This paper focuses on extracting entities and relations jointly; the input is a sentence S of

N tokens, S = {t1, t2, . . . , tN} and the output contains two structures: entity type E and relations
R. Specifically, we considered two subtasks. First, entity recognition extracts all possible entity
spans si =

{
ti, ti+1, . . . , ti+k

}
from sentence S and predicts its best entity type ei. Second, relation

classification focuses on predicting the relation type rij between each set of two entities
{
si, sj

}
.
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Figure 2: The framework of our KSBERT network

3.2 KSBERT
We developed a knowledge-enriched and span-based network, KSBERT, to recognize entities

and classify relations jointly from the given sentences. Because of the outstanding performance
of BERT [7] in natural language processing tasks, the pre-trained BERT model is applied to
encode each character into embeddings with a special classifier token extracting information from
the whole sentence. Then, the character embeddings of the sentence are fed into two models:
the span-based model and the graph-based model. The span-based model takes the selected
candidate span as input and judges whether or not the span is an entity; if it is, the model
predicts its type; otherwise, it filters the span. The graph-based model includes knowledge of
a specific domain, the core of which is GNNs. Fed with BERT embedding, the graph-based
model first changes the dependency parsing tree of the sentence into an adjacent matrix, taking
embeddings as node labels, dependency relations between words as edge labels, and relation types
of the sentence as graph labels. The adjacent matrix is then fed into the GNNs to predict the
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classes of the graph, which are the relation types of the given sentences. Finally, three losses,
including the entity recognition loss and relation classification loss of the span-based model and
the graph classification loss of the graph-based model, are trained jointly to predict the entity and
relation types.

Next, we introduce the main components of our KSBERT in detail.

Embeddings By taking advantage of a multi-layer bidirectional transformer architecture, BERT
can encode both left-to-right and right-to-left contexts for word representations, with semantic
and syntactic information extracted. Given a sentence of N words, the BERT encoder generates
an embedding sequence of length N + 1, (wcls,w1,w2, . . . ,wN), where wcls denotes the special
classification embedding capturing information of the whole sentence.

Span-based Model As presented in Fig. 2, the block in blue is the span-based model, con-
taining two elements: span classification and span filtering. In contrast to the previous model [9],
which takes a span of arbitrary length as input, our model proposes a novel negative sampling
method to generate candidate spans for a specific domain. We first build a set C containing as
many entities in the given dataset as possible. We then segment sentences in the dataset using the
Jieba toolkit, filtering out words other than nouns. The similarities between nouns and entities in
set C are computed, and the top similar Ne ones are selected as negative samples.

Using the above method, we obtain the candidate span
{
wi,wi+1, . . . ,wi+k

}
and feed it to

the span-based model. The BERT embeddings are then combined using max pooling, denoted
as f

(
wi,wi+1, . . . ,wi+k

)
. The output is concatenated with the width-embedding wwidth learned by

back-propagation and special classification embedding wcls.

xsi =
[
f

(
wi,wi+1, . . . ,wi+k

)
; wwidth; wcls

]
(1)

Then, the concatenation is fed into a softmax function to obtain the logtis of entity type yei .

yei = softmax
(
Wi ·xsi + bi

)
(2)

Moreover, our span-based model includes a span-filtering function. In Eq. (2), if a candidate
span is not an entity, our model classifies it as none type.

The embeddings of entity spans si and sj extracted by the span classifier are then combined
with context csi,sj , which ranges from the end of entity si to the beginning of entity sj, to obtain
the relation representation.

xri,j =
[
xsi ; csi,sj ; xsj

]
(3)

xrj,i =
[
xsj ; csi,sj ; xsi

]
(4)

Generally, as relations are asymmetric, two relation representations exist between two entities.

Relation representations are fed to a fully connected layer and activated by a sigmoid function
to perform relation classification.

yri,j = σ
(
Wi,j ·xri,j + bi,j

)
(5)

yrj,i = σ
(
Wj,i ·xrj,i + bj,i

)
(6)

Graph-based Model As the previous models cannot address challenges in specific domains, we
add the graph-based model to our KSBERT to introduce external knowledge, particularly depen-
dencies, which play an important role in capturing relations among words. In the graph-based
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model (the orange block in Fig. 2), we regard the relation classification task as graph classification
of dependency trees; that is, given a set of graphs (dependency trees) {G1,G2, . . . ,Gn} and their
labels (relation types) {y1,y2, . . . ,yn}, we aim to learn a representation vector hG to predict the
label of the graph. Given a sentence Si, we use HanLP [8] to obtain its dependency tree and then
change the tree into an adjacent matrix to obtain the input of graph Gi. The graph is then fed into
Graph Isomorphism Network (Gin) implemented by CogDL. Gin is a variant of GNN proposed
by Xu et al. [26] and is good at representing different multisets. The representation vector of the
entire graph hG is learned by an aggregating feature vector of node neighbors recursively.

hGi =GNN (Gi) (7)

Similar to the span classifier, representation vector hGi is fed into a softmax layer:

yGi = softmax
(
WGi · hGi + bGi

)
(8)

Final Prediction The final prediction is a joint training process and the loss function can be
given as follows:

γ = γe+ γr+ f (·) γg (9)

where γe denotes the entity classification loss by the span-based part, γr refers to the relation
classification loss by the span-based model, and γg represents the graph classification loss by the
graph-based model. f (·) is a linear function.

4 Experiments

This section provides an introduction to our experiments in detail. First, the dataset is
introduced in brief. Next, the metrics used in this study are presented. Then, the experimental
settings are tabulated. Three baselines are compared with the proposed model to illustrate its
superiority. Finally, we analyze the results in detail.

4.1 Dataset
As artificial construction features are insufficient in a specific domain, such as the military

field, and Chinese word segmentation errors are inevitable, we focus on extracting entities and
relations jointly in the Chinese military field. Owing to the lack of a dataset, we built one by
ourselves. After crawling several representative military news sites, we obtained 840,000 articles.
Based on the keywords relating to the military, we filtered out articles that were not closely related
to the military or from which military relations could not be extracted. Ultimately, 85,000 articles
were obtained in total. Because labeling a dataset in a specific domain is more time-consuming and
also requires rich domain knowledge, we invited military experts to label the entity location, entity
type, and relation type for approximately 300 articles. Fig. 3 presents an example of this human-
labeled data. When labeling, each entity span in the given article is assigned a unique ID. Then,
experts mark the beginning and end positions of the entity span in the article and judge its entity
type. The relation between two entities is also labeled with relation types, head entity ID, and
tail entity ID. There are seven entity types—equipment, person, organization, location, military
activity, title, and engineering for preparedness against war—as well as three relation types: deploy,
have, and locate.

For articles that were not manually labeled, we designed a regular template together with
experts to label the dataset automatically, the steps of which are shown in Fig. 4. After analyzing
100 articles randomly selected from the corpus, we designed regular expressions for predefined
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entities and relations. Regular expressions were then tested on a human-labeled dataset. If the
accuracy of entities and relations exceeded the threshold, the regular template was considered
credible and was applied to the automatic data labeling process. In the end, all of the labeled
data were randomly split into a training set and a test set, with a ratio of 10:1.

Figure 3: An example of dataset

Start

Build corpus in the 
specific domain

Define types of 
entities and relations

Select 100 articles 
randomly and design 

regular expression

Test regular 
expression on human-

labeled dataset

Stop or not

Yes

No

Label dataset 
by human

Use regular template 
to label dataset

End

Figure 4: The steps of designing regular templates to label the military corpus
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4.2 Metrics
In this study, three commonly used metrics, precision, recall, and F1 score, are adopted to

evaluate model performance.

First, with true positive (TP), false positive (FP), true negative (TN), and false negative (FN),
precision, recall, and F1 score can be computed as follows:

precision= TP
TP+FP

(10)

recall= TP
TP+FN

(11)

F1= 2×P×R
P+R

(12)

where P stands for precision and R for recall. Note that F1 is the harmonic average of the other
two metrics.

In our experiments, a relation is considered correct only if the relation type and the two
related entities are correctly predicted.

4.3 Experiment Settings
The parameter settings of the training process are listed in Tab. 1, along with the parameter

names and their illustrations. The determination of these parameters was not a major concern
in this study. In realistic applications, however, these values can be estimated based on historical
data, expert elicitation, or experiments.

4.4 Baselines
To illustrate the superiority of our proposed method, we compared the model to three other

competitive baselines, as follows:

SpERT: A span-based model for the joint extraction of entities and relations proposed
by Eberts et al. [9]. In contrast to other BILOU-based models, SpERT can search over all
spans in given sentences with span filtering and localized context representation and can identify
overlapping entities efficiently. Note that BILOU is a common scheme for tag tokens in NLP.

NN_GS: A joint model extracting entities and relations based on a novel tagging scheme
proposed by Zheng et al. [27]. This model can convert the joint extraction task into a tagging
problem. Thus, neural networks can be easily used to model the joint extraction task without
complicated feature engineering.

DYGIE: A joint framework proposed by David et al. [28]. This model extracts entities
and relations by enumerating, refining, and scoring text spans designed to capture local (within
sentence) and global (cross-sentence) contexts.

4.5 Results
Tab. 2 presents the evaluation results of the models for our dataset. The first column is the

index, and the second column is the model name. The third column presents the accuracy scores
of graph-based models when performing graph classification. The fourth and fifth columns show
the results of entity prediction and relation classification, respectively.
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Table 1: Parameters settings utilized in KSBERT model

Model Name Parameter name Illustration Value

Span-based model Train_batch_size The batch size of the
training process

2

Eval_batch_size The batch size of the
evaluation process

1

Neg_entity_count The number of negative
entities

100

Neg_relation_count The number of negative
relations

100

Learning_rate Learning rate 5e−5
Lr_warmup Proportion of total

training iterations to
warm up in linear
increase or decrease
schedule

0.1

Weight_decay Weight decay to apply
in span-based model

0.01

Max_grad_norm Maximum gradient
norm

1.0

Rel_filter_threshold Filter threshold for
relations

0.4

Size_embedding Dimensionality of size
embedding

25

Prop_drop Probability of dropout 0.1
Max_span_size Maximum size of spans 10
Sampling_limit Maximum number of

samples batches in
queue

100

Epoch Number of epochs 100
Graph-based model Weight_decay Weight decay to apply

in graph-based model
5e−4

Drop_out Rate of dropout 0.5
Pooling Polling method Sum
Learning_rate Learning rate 0.001
Gamma Value of gamma 0.5

Our model was compared with three other models. More specifically, the model in Row 1
is a span-based model without a graph-based component, whereas Rows 2 and 3 refer to two
novel hybrid models. As shown in Tab. 2, KSBET performs the best in relation extraction in
terms of the F1 score, followed by DYGIE, SpERT, and NN_GS. Although the NN_GS model
performs well in entity extraction compared with other models, it cannot improve the relation
prediction F1 scores. Comparing the results of Rows 1 and 4, we can see that our KSBERT
model, which applies Gin [26] using a graph-based model, performs well in both entity recognition
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and relation classification, which indicates that incorporating external knowledge with the graph-
based component can contribute to entity and relation extraction.

Table 2: The evaluation results of different models for our dataset

ID Model Graph classification Entity Relation

Precision Recall F1 Precision Recall F1

1 SpERT
/

92.33 64.22 75.75 74.29 45.5 56.43

2 DYGIE
/

72.49 73.44 72.96 68.34 50.75 58.25

3 NN_GS
/

83.70 87.62 87.66 63.91 49.63 55.87

4 KSBERT (our model) 95.82 84.42 69.22 76.07 68.12 54.50 60.56

5 Discussion

5.1 Ablation Study
To evaluate the performance of the different components of our proposed model, we further

conducted ablation studies.

As shown in Tab. 3, the results of our proposed model are presented in the first row, and
their ablations are listed below. It is clear that both the graph classification and the domain
dictionary components contribute to the model’s performance. More specifically, the graph classi-
fication results in a performance drop 0.32% and 4.13% in F1 score regarding entity and relation
extraction, respectively. The domain dictionary, however, results in a relatively lower performance
drop of 0.28% and 2.56% in F1 score regarding entity and relation extraction, respectively. In
other words, graph classification makes a greater contribution to the improvement of performance
than does the domain dictionary, but both of these components are indispensable.

Table 3: Ablation analysis results

ID Model Graph classification Entity (F1) Relation (F1)

1 KSBERT (our model) 95.82 76.07 60.56
2 —graph classification / −0.32 −4.13
3 —domain dictionary −2.57 −0.28 −2.56

5.2 Comparison of Joint Training Methods
To determine the most efficient method to jointly train the span-based and graph-based

models, in this section, we conduct a comparative analysis. There are three candidate approaches:
adding loss of relation classification in the span-based model γr and loss of graph classification
γg, multiplying γr and γg, or using a linear function to combine γr and γr together. The results are
shown in Tab. 4; the add method and linear function methods can perform joint training correctly,
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while the multiply method cannot. Moreover, with the linear function, the model can obtain higher
F1 scores of 76.07 and 60.56 in entity recognition and relation classification, respectively. In other
words, the linear function method outperforms the other two methods in terms of the F1 score
for both entity and relation extraction. Therefore, the linear function method was adopted in our
KSBERT model.

Table 4: The evaluation results of different joint training methods

Methods Entity Relation

Precision Recall F1 Precision Recall F1

Add 84.24 67.11 74.71 61.90 52.00 56.52
Multiply 84.94 60.78 70.85 3.24 17.50 5.47
Linear Function 84.42 69.22 76.07 68.12 54.50 60.56

5.3 Comparison of Aggregation of BERT Character Embeddings
A pre-trained BERT encoder can generate only character embeddings in Chinese, but Chinese

words may contain more information than characters. To obtain word embeddings from BERT-
encoded character embeddings, we compared two methods: sum and average. For each word,
the sum method adds all embeddings of characters in the word as word embedding, whereas
word embedding in the average method is obtained by dividing the sum value by the number of
characters in the word.

Tab. 5 presents the evaluation results of these two different methods. As can be seen, the sum
method has a larger precision metric value. However, the average method performs better than the
sum method for all other metrics, especially F1 score, indicating its efficiency in fully extracting
information of each character and representing the word.

Table 5: The evaluation results of different BERT character embedding aggregation approaches

Methods Entity Relation

Precision Recall F1 Precision Recall F1

Sum 89.85 65.89 75.93 67.48 48.25 56.27
Average 84.42 69.22 76.07 68.12 54.50 60.56

6 Conclusion

In this paper, we propose a hybrid framework based on a knowledge-enriched and span-based
network for the joint extraction of entities and their relations in a specific domain. With our
KSBERT network, dependency relation and domain dictionary, as external lexical and syntactic
knowledge, can be incorporated into relation prediction, which is essential for improving perfor-
mance. Extensive experiments have been conducted on a military entity and relation extraction
corpus. The results show that our proposed model outperforms other state-of-the-art approaches
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regarding F1 score and may be a more promising approach for future research. It should be
further noted that our proposed model can be applied to other domains with slight modifications.

In the future, our model can be easily extended by allowing for richer assumptions. As for
future research directions, integrating other knowledge such as pos-tags into our framework can
be taken into account. Addressing these and other challenges will contribute to the expansion of
this method for dealing with other problems.
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