
echT PressScienceComputers, Materials & Continua
DOI:10.32604/cmc.2021.016114

Article

Imperative Dynamic Routing Between Capsules Network for
Malaria Classification

G. Madhu1,*, A. Govardhan2, B. Sunil Srinivas3, Kshira Sagar Sahoo4,
N. Z. Jhanjhi5, K. S. Vardhan1 and B. Rohit6

1Department of Information Technology, VNRVJIET, Hyderabad, 500090, India
2Department of Computer Science and Engineering, JNTUH College of Engineering, Hyderabad, India

3Department of Computer Science and Engineering, TKR College of Engineering & Technology, Hyderabad, India
4Department of Computer Science and Engineering, SRM University, Amaravati, A.P., 522502, India

5School of Computer Science and Engineering, Taylor’s University, Subang Jaya, 47500, Malaysia
6Department of Computer Science and Engineering, VNRVJIET, Hyderabad, 500090, India

*Corresponding Author: G. Madhu. Email: madhu_g@vnrvjiet.in
Received: 10 December 2020; Accepted: 13 January 2021

Abstract: Malaria is a severe epidemic disease caused by Plasmodium falci-
parum. The parasite causes critical illness if persisted for longer durations and
delay in precise treatment can lead to further complications. The automatic
diagnostic model provides aid for medical practitioners to avail a fast and
efficient diagnosis. Most of the existing work either utilizes a fully connected
convolution neural network with successive pooling layers which causes loss
of information in pixels. Further, convolutions can capture spatial invariances
but, cannot capture rotational invariances. Hence to overcome these limi-
tations, this research, develops an Imperative Dynamic routing mechanism
with fully trained capsule networks for malaria classification. This model
identifies the presence of malaria parasites by classifying thin blood smears
containing samples of parasitized and healthy erythrocytes. The proposed
model is compared and evaluated with novel machine vision models evolved
over a decade such as VGG, ResNet, DenseNet, MobileNet. The problems in
previous research are cautiously addressed and overhauled using the proposed
capsule network by attaining the highest Area under the curve (AUC) and
Specificity of 99.03% and 99.43% respectively for 20% test samples. To under-
stand the underlying behavior of the proposed network various tests are
conducted for variant shuffle patterns. The model is analyzed and assessed in
distinct environments to depict its resilience and versatility. To provide greater
generalization, the proposed network has been tested on thick blood smear
images which surpassed with greater performance.
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1 Introduction

Malaria is a serious universal health burden that is caused by protozoa of the genus Plas-
modium that is spread through the bite of a female Anopheles mosquito [1]. Five parasite species
cause malaria in humans: P. falciparum, P. vivax, P. ovale, P. Knowlesi, and P. malaria [2]. Among
these species, two of the species P. falciparum and P. vivax pose a huge threat to human lives.
In 2019, the World Health Organization (WHO) survey report estimated 228 million cases of
malaria [3]. Major malaria cases belong to African regions (93%), followed by the South–East
Asia regions (3.4%) and Eastern Mediterranean regions (2.1%) [3]. In general, there are several
procedures to examine malaria disease through microscopic thick or thin blood smears that are
popular and commonly used methods [4–6]. Thus, these techniques are extremely time-consuming
and require a clinical expert that has limited reliability [7,8]. To deal with such issues, an automatic
diagnosis will ensure an accurate diagnosis process for detection and early diagnosis of malaria
to prevent deaths. In this era, high computational techniques have made huge contributions to
achieve higher and accurate detection through various medical diagnoses such as computerized
tomography, Magnetic resonance imaging, Microscopy, and Ultrasound analysis [4,9–11]. Most of
the medical image analysis requires a computer-assisted diagnostic procedure by utilizing methods
that help in learning the model. Most of the models developed with handcrafted features are used
for image classification and decision making which can impart lower generalization [12]. Recently,
major research work was done on deep learning architectures. These notable networks played an
important role in various kinds of image classification, detection, and recognition [13,14]. CNN’s
play a significant role in the deep learning community, not only extract features but also compute
predictive targets and provide actionable predictive models to help doctors competently [15].
However, traditional CNNs do not preserve the contextual proportional relationships of objects
within an overarching image. Applying these shortcomings to microscopic images can lead to
misclassification of the diagnostic model. There is a need for a better and accurate diagnostic
model to enhance the performance of malaria detection and classification.

This research develops an automatic diagnostic model for parasite detection and classification
of malaria:

• To extract the blood cell image features by using fully connected convolution neural
networks (without pooling layers).
• To capture the spatial relations between the cell features using Capsule nets which may have

high potential to identify infected regions.
• To compute dynamic routing (modified) for the conversion of low-level to higher-level

capsules that is useful for predicting instantiation parameters and classifying them with
L2-Norm.

2 Previous Works

In the literature, various research studies reveal the application of machine learning as well
as deep learning methods towards malaria detection from microscopic blood images. This study
discusses the recent applications of deep learning that prompt the key aspects to impact malaria
diagnosis. Liang et al. [16] proposed a 16-layer convolutional neural network (CNN) to classify
the parasite cells in thin blood smears on microscopic slides. However, the average accuracy of this
method is 97.37% by performing ten-fold cross-validation. On the other hand, the transfer learning
approach achieves an accuracy of 91.99% only. Quinn et al. [17] demonstrated a deep CNN
model for malaria diagnosis, tuberculosis (TB) in sputum, and intestinal parasite eggs in stool
samples. Nevertheless, in every class, the model attained a high accuracy by 50–50 train-test split.
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This approach contributes to many advances in microscopy for point to care diagnostics and
useful for laboratory staff in rural areas. Shen et al. [18] presented deep autoencoders for malaria
diagnosis from erythrocyte images, by utilizing stacked autoencoders that are trained with two
distinct Golomb–Rice encoders that study the important features from erythrocyte images and
achieved top results for lossless coding methods. Dong et al. [19] presented machine learning algo-
rithms and CNN’s methods for classifying the malaria parasites from blood cells. In this method,
different novel architectures were implemented out of which LeNet, AlexNet, and GoogLeNet
achieved an accuracy of more than 95%. Whereas, machine learning algorithms such as SVM and
Naive Bayes Classifier could not perform better much than deep architectures [20–22]. However,
most of these approaches required minimal human intervention under-diagnosis decision making.
Hung et al. [23] applied a faster R-CNN for object detection on malaria blood cell images, these
cell objects are labeled and classified with two different stages. In a one-stage classification, the
model consists of faster R-CNN and baseline (machine learning method). The model attains a
poor accuracy of 50% and in two-stage detection and classification, the model consists of faster
R-CNN and AlexNet which detects objects and classifies RBC or not. The model depicts an
accuracy of 98% (discarding background). The model tends to lose its generalizing ability when
tested on new samples. Sivaramakrishnan et al. [24] proposed a CNN model for malaria detection
and cell classification. The approach understands the probabilities of various layers and visualizes
the activation maps of each layer to understand the model learning strategy and finally attains
the accuracy of 98.61% with lesser complexity and lower computation speed. Sivaramakrishnan
et al. [25] proposed a customized CNN model and discussed the performance of pre-trained
CNNs and deep learning methods as feature extractors to classifying parasitized and healthy blood
cells from microscopic images. This method uses features from shallow layers to perform more
significant results than deep features and applied a level-set based algorithm to detect and segment
RBCs. The model achieved an accuracy of 98.6% (cell level). In modeling, the experiments have
shown random noise from the training set which leads to overfitting of the model. Pan et al. [26]
showed that LeNet-5 is capable of detecting malaria and it learns features automatically by
stacked autoencoders from a given input. LeNet-5 architecture has two convolutional layers, two
subsampling layers, and fully connected layers. Finally, the model got an accuracy of over 90%
of four different datasets (two are augmented). Gopakumar et al. [27] presented the CNN model
for the analysis of blood smears being a parasite or not. For the detection, customized CNNs
are used and a two-level segmentation method is used for blood cell counting and categorization
of cells. The detection accuracy in terms of sensitivity and specificity is 97.06% and 98,50%
respectively. Vijayalakshmi et al. [28] proposed a transfer learning approach to distinguish between
infected and healthy cell images by using VGG16 and Support Vector Machine (SVM) models
which obtained a classification accuracy of 93.13%. Yang et al. [29] performed five-fold cross-
validation on the customized CNN model with two processing steps. First, intensity-based iterative
global minimum screening (IGMS) schema, which is implemented to recognize the parasite, and
then customized CNN are used for classification of the presence of a parasite. The method
attained an accuracy of (93.46%± 0.32%). Avinash Kumar et al. [30] developed an application
based on CNN for malaria detection that classifies the infected and non-infected malaria images
and achieves an accuracy of 96.62%. Maity et al. [31] developed a hybrid screening algorithm
for automated identification and classification of malaria parasites. A modified capsule network
is utilized for the classification of segmented blood cells to categorize the species and stages of
the malaria parasites. Be that as it may, previous research works on CNNs for malaria detection
played a significant role in the deep learning community.
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By Observing the aforementioned challenges, this research develops an automatic diagnostic
model for parasite classification of malaria using capsule networks by surpassing the drawbacks
of existing research stated as follows:

a) Discarding Low pixel resolution images.
b) Decreasing loss of information with the use of fully connected convolutions (discarding

pooling layers) and imparting spatial relationship with imperative routing mechanism.
c) Imparting greater generalizations to the model by evaluating variant test samples with

altering shuffle patterns.

3 Methodology

3.1 Dataset Description
The dataset consists of two distinct classes of thin blood smear images of erythrocytes in

which one class is infected with malaria and the other is healthy. These samples are collected
from the National Institutes of Health (NIH) repository where this data was publicly available for
research [25]. There are 27,558 images collectively for both the classes without any class imbalance
in data. These samples are distributed with a variant pixel resolution from image to image. So, the
samples are iso-topically reshaped into a resolution of 128×128 and with three channels (RBG) to
fit into the designed neural network. The thin blood smear images of erythrocytes either infected
with malaria or having no infection are illustrated in Figs. 1 and 2 to give a visual understanding
of their morphological properties.

Figure 1: Malaria infected images (see Reference [25])

Figure 2: Non-infected images (healthy images) (see Reference [25])

Tab. 1 shows the distribution of malaria data samples which is evaluated in the proposed
model for training and testing and samples ranging from 10%–50%.
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Table 1: Distribution of complete data samples into train & test with different splits

Generalization Train Test

Split: 10% 24802 2756
Split: 20% 22046 5512
Split: 30% 19291 8267
Split: 40% 16535 11023
Split: 50% 13779 13779

3.2 Capsule Network
This section discusses the proposed imperative routing approach of capsule network, whose

motivation is to maximize the performance of networks for malaria classification. The custom
capsule network has three blocks: 1. Convolution block, 2. Capsule network block, and 3. Loss
function block showed in Fig. 3. In Fig. 3, Initially, the input is fed into a series of fully
connected convolution blocks to extract a set of features (local & global) regarding the parasitized
and uninfected portions. These captured features are learned by understanding their spatial orien-
tations regarding extracted features by using the imperative routing mechanism between primary
and secondary capsule layers. Then after a certain set of iterations, these feeds are classified to
Infected and healthy class by applying L2-Norm.

C

Figure 3: The proposed fully trained capsule network

3.3 Convolutional Block
Most of the modern convolutional neural architectures utilize a pattern of building alternative

convolutional networks and pooling layers to extract features and attach some fully connected
layers for classification. It is observed that max-pooling layers deprive the information regarding
entities residing in an object inside the image. Further, the replacement for pooling layers by
convolutional layers with increasing stride can resist information loss and improves learning
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operation during spatial-dimension reduction [32]. So, a series of convolutional layers attached
with batch normalization layers (Batchnorm) is proposed to extract the invariant features from
the images (malaria).

To understand the learning ability of individual layers, activation maps of each layer is visual-
ized. Parameters regarding network architecture are described in Tab. 2. For example (124, 124, 3)
signify the feature size, ReLU denotes the activation function, 1 represents the stride, and (5, 5)
specifies the kernel size of the network. The Batch normalization (Batchnorm) is used to increase
the stability of the capsule network.

Table 2: Proposed parameters of capsule network architecture

Layers Feature size; activation; stride; kernel size

Convolution block
Conv1+Batchnorm (124, 124, 3); ReLU; stride= 1; kernel= (5, 5)
Conv2+Batchnorm (60, 60, 64); ReLU; stride= 2; kernel= (5, 5)
Conv3+Batchnorm (28, 28, 64); ReLU; stride= 2; kernel= (5, 5)
Conv4+Batchnorm (12, 12, 64); ReLU; stride= 2; kernel= (5, 5)
Conv5+Batchnorm (4, 4, 64); ReLU; stride= 2; kernel= (5, 5)
Capsule block
Primary capsule+Batchnorm 8× (4, 4, 8); squash
Dynamic routing
Dense (p) 64; softmax
Dense (q) 64; softmax
Dense (r) 64; softmax
Multiply (p.r) In this layer, routing multiplication is done with

2 iterations
Dense (s) 64; ReLU
Dense (out) 64; ReLU

The input image (infected or healthy) is first sent into a series of convolutional layers. In this,
an input of shape 128× 128× 3 is spatially reduced to 4× 4× 64. This latent space represents a
shape of generic invariances residing in an image that completely describes it.

3.4 Capsule Block
The Capsule networks [33] are recently developed neural networks with state-of-the-art per-

formance in the classification of the MNIST dataset by vanquishing the pitfalls of max-pooling
layers and convolutional networks. The traditional capsule networks work efficiently by following
a design paradigm. Initially, the input is fed into a sequence of convolutional layers, and then
the extracted features from them are divided into partitions named as the primary capsules.
These primary capsules hold the information regarding entities extracted from convolutional
layers. Now, the next layer is named secondary capsules in which every partition in the primary
capsules tries to predict the output in the next layer. This process of predicting the successive
layer’s information is regarded as dynamic routing. Further, the predicted information of the indi-
vidual capsule is evaluated with the original information. If the predictions regarding information
in capsules are not agreed, then the weight is reduced, and if the agreed weight is increased to a
sustainable amount. This process is known as routing by agreement. Now, the complete routing
is repeated for a certain number of iterations. The reason for performing these iterations is to
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understand the orientation of the entities residing in the partitioned capsule which also helps in
understanding invariances of the image with spatial orientation. In our research, these capsule
networks have been imparted by careful fine-tuning under certain conditions such as:

1. Select appropriate iterations.
2. Analyzing the behavior of non-linear activations during dynamic routing.
3. Modifying the routing procedure for optimal classification.

Now, a detailed mathematical approach to capsule networks is obtained by understanding the
insights behind its optimal performance. As it is observed that the routing mechanism is implied
between primary and secondary capsules layers. The output of the latent feature map from the
convolution block is of the shape 4×4×64. Now, these features are reshaped to an 8-Dimensional
vector where in this vector each dimension represents the property of the entity (shape: 4 ∗ 4 ∗ 8).
This 8-Dimensional vector is known as the primary capsules. Further, this vector is reduced with
squash as nonlinearity as shown in Eqs. (1) to (4).

Squash
(
sj

)← λ ∗ sj (1)

where λ← 1
∥∥sj

∥∥(
1+ ∥∥sj

∥∥−2) (2)

sj←
∑
i

εij · ûi|j (3)

where ûi|j←Wij · ui (4)

The nonlinearity squash ensures that short vectors i.e., vectors with fewer dimensions shrink
close to zero and long vectors shrink close to unit length. The sj is the total input processed into
capsules network with the jth dimension. Where sj is a weighted sum of all the predicted vectors
with an assisted coupling coefficient (εij). These coupling coefficients are eventually updated during
the iterative training phase, where xij is the parameter that is utilized as a weighting agent which
means, it adds high weight to correct predictions during routing by agreement. It is assigned as
zero (in Reference [33]) and updated later by observing the training process. But it is initialized
with the present weight of input to enhance the training procedure both by reducing computa-
tional expense and predictive ability. A detailed explanation of the routing procedure is shown
in Algorithm 1.

Algorithm 1: Imperative dynamic routing (with ReLU)
1. Procedure Capsule Routing (ûi|j,n, l)
2. ∀ (Primary capsules in layer l)&(Secondary capsules in layer (l+ 1))
3. xi|j← ûi|j
4. for n iterations do
5. ∀, primary capsules in layer l : εi← exij∑

k exik

6. ∀, secondary capsule in layer l+ 1: sj←
∑

i εij · ûi|j
7. ∀, secondary capsule in layer l+ 1: vj←ReLU(sj)

8. ∀, secondary capsule in layer l+ 1: xij← xij + ûi|j · vj
9. return vj
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The number of iterations during routing (n) is a hyper-parameter and iterating for a certain
number of epochs is chosen during the training procedure.

Training is assessed by evaluating convergence and then the model is iterated for 2 iterations.
The convergence appeared and hence, n is chosen to be 2. Momentarily increasing these numbers
had no improvement in the learning process. The complete learning curves regarding the iterations
for 50 epochs are visualized in Fig. 4. So, in the next step, this routing information is classified
by applying L2-Norm to the routed feature units. During the routing procedure, at Step 3 in the
algorithm, ReLU activation is imparted to enhance the understanding of invariances in captured
features. In the traditional capsule network, squash is used as non-linearity. But it is observed that
utilizing ReLU non-linearity gradually leads to convergence and provides better generalization.
To understand the behavior of nonlinearities, the designed capsule model is trained for certain
epochs by interchanging non-linearities such as ReLU, Leaky ReLU, and squash. Their behavior
is visually shown by plotting error rates and loss of decay in Fig. 5. To understand the inner
representations and learning ability of the dense layers during routing (Tab. 2), the final layer acti-
vations obtained with ReLU nonlinearity are visualized using t-SNE. The t-SNE retains not only
the local structural patterns but also some global structural patterns which help in understanding
higher dimensional representations. Hence for a set of samples i.e., 8000 and 16000 samples t-SNE
are visually depicted in Fig. 6. Where 8000 and 16000 samples consumed execution time of 87
and 378 s respectively.

(a) (b)

Figure 4: (a) Accuracy curve and (b) loss decay curve for capsule network router over 3 different
iterations both during training and testing criterion for certain epochs (50)

From Fig. 5, observed by interchanging final layer non-linearities and loss decay and error
rate decay for ReLU are gradually low while compared to other nonlinearities during testing
criteria. These visualizations clearly depict the classification performance of the capsule network
in classifying infected class to that of healthy.
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(a) (b)

Figure 5: Error-rate and loss-decay curves of capsule network with dynamic routing on {ReLU,
LeakyReLU, Squash}

Figure 6: Illustrated t-SNE visualization depicts the class-wise distribution of extracted features
from the proposed capsule network. (a) t-SNE plot for 8000 samples (b) t-SNE plot for 16000
samples

3.5 Loss Function
The objective function discussed in Eq. (5) derives the performance of the capsule model.

As in the traditional capsule network, the margin loss function had weighted parameters θ ,
m+, m−, these hyperparameters are tuned to get the desired outcome during classification. To
discriminate parasitized input to that of uninfected, the parameters are tuned accordingly i.e.,
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θ ← 0.45; m+← 0.85; m− ← 0.15. Further, the loss function is regularized with MSE to reduce
the noise during training the network [34]. The objective function did improve performance
by optimally tuning the hyperparameters with appropriate regularization by handling noise in
intricate scenarios.

Loss=Tx ∗ReLU(m+ −‖vx‖2+ θ ∗ (1−Tx) ∗ReLU(‖vx‖−m−)2+
∑
‖Tx− vx‖2 (5)

4 Results and Discussion

To evaluate the resilience of the model, a set of metrics are used in bio-medical pattern
analysis. In this section complete evaluation of the model is done under various constraints.
Initially, the proposed Capsule Network is compared to existing state-of-the-art classification
architectures which outperformed in ILSVRC for the past decade. Those pre-trained weights are
utilized to extract features. This extracted feed is forwarded to a series of fully connected layers
with 64-32-2 neurons at each layer. The final layer is activated with SoftMax and other layers
used ReLU non-linearity. As mentioned in the Tab. 1 the proposed model is evaluated for testing
samples ranging from 10%–50%. The experimentations were carried out for multiple splits and
of which the performance of the capsule network attained high for 20%. A set of standard
classification metrics are evaluated for the model such as, accuracy score, AUC-ROC, sensitivity,
and specificity are evaluated for individual split are illustrated in the Tab. 3. But, for simplicity
20% split is considered for comparison and is mentioned in Tab. 4.

Table 3: Capsule network performance on variant generalizations tests ranging from 10%–50%

Generalization Accuracy AUC-ROC Sensitivity Specificity

Split–10% 98.73± 0.108 98.73± 0.105 98.50± 0.109 98.97± 0.189
Split–20% 98.82± 0.105 98.82± 0.147 98.36± 0.271 99.30± 0.182
Split–30% 98.58± 0.123 98.57± 0.120 98.30± 0.244 98.84± 0.074
Split–40% 98.49± 0.133 98.48± 0.135 98.27± 0.368 98.71± 0.178
Split–50% 98.44± 0.073 98.43± 0.075 98.01± 0.179 98.85± 0.055

Table 4: Illustrates the capsule network’s (variants) performance compared with existing pre-
trained state-of-the-art feature extraction architectures

Models Training Testing

Accuracy Loss Accuracy Loss

VGG-16 99.18 0.032 94.97 0.546
VGG-19 99.17 0.026 93.94 0.485
InceptionV3 97.26 0.146 94.26 0.146
ResNet-50 99.52 0.021 95.54 0.354
DenseNet-121 99.55 0.014 94.02 0.213
Xception 99.02 0.032 93.17 0.142
MobileNet 99.61 0.011 95.02 0.276
MobileNet-224 99.31 0.021 94.77 0.184
ResNet-101 98.96 0.023 95.97 0.023
CapsNet+Routing: ReLU 99.78 0.004 99.03 0.097
CapsNet+Routing: Leaky ReLU 99.40 0.012 96.63 0.082
CapsNet+Routing: Squash 99.51 0.047 96.82 0.093
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A comparative study has been shown in Tab. 5 to compare the proposed method vs. other
existing methods with respect to sensitivity, specificity, and f1-score. Tab. 6 describes the per-
formance of the proposed capsule network with variant non-linearities. Their performance is
compared to that of state-of-the-art pre-trained models over a generalization split of 80%–20%
for training and testing samples. It is observed that most of the models tend to perform poorly.
Their poor performance on this dataset is observed. Their weights tend to perform well on stan-
dard classification datasets but they aren’t able to classify them due to poor-feature extraction due
to overwhelming depth. Now the problem of overwhelming depth is observed and visualization
regarding the conceptions provided are clearly depicted without any ambiguity. In this research
work to evaluate the performance of the model AUC, Sensitivity, specificity, and accuracy score
are chosen as standard metrics with their individual importance in biomedical pattern analysis.
AUC determines the quality of Neural Architecture (classification) and its discriminative ability
is standard with statistical consistency. While choosing sensitivity and specificity, they might
not estimate the probability of occurrence of disease in an individual patient by qualifying the
diagnostic ability but, determines the diagnostic correctness.

Table 5: Comparison of proposed capsule network’s performance compared with existing pre-
trained state-of-the-art methods on malaria classification

Authors Generalization test Accuracy Sensitivity Specificity F1-score

Ross et al. [35] Train:Test (∗) 73.30 85.00 68.91 70.20
Sayyed et al. [36] Train:Test (75:25) 96.20 96.00 96.00 96.00
D. K. Das et al. [37] CV (3 fold) 96.84 100 98.64 –
Liang et al. [16] CV (10 fold) 97.37 96.99 97.75 97.36
Dong et al. [19] Train:Test (∗) 95.00 — — —
Rajaraman et al. [25] CV (5 fold) 98.60 96.10 99.20 98.70
Gopakumar et al. [27] CV (10 fold) 97.70 98.10 97.20 95.90
Yang et al. [29] CV (5 fold) 93.46 92.59 94.33 93.40
Vijayalakshmi et al. [28] CV (5 fold) 93.12 93.44 92.92 91.66
Diaz et al. [38] CV (10 fold) 85.00 94.00 98.70 92.15
Avinash Kumar et al. [30] Trian:Test (90.10) 96.62 96.00 — 96.00
Proposed Train:Test (80:20) 98.82 98.36 99.30 99.12

Table 6: Performance metrics of the model with 20% test samples

Models Precision Recall F1-score

Infected Non-infected Infected Non-infected Infected Non-infected

VGG-16 0.95 0.93 0.95 0.95 0.94 0.92
VGG-19 0.96 0.91 0.90 0.97 0.93 0.94
InceptionV3 0.93 0.95 0.92 0.90 0.92 0.94
ResNet50 0.95 0.95 0.96 0.92 0.95 0.94
DenseNet-121 0.92 0.94 0.92 0.96 0.92 0.93
Xception 0.97 0.96 0.93 0.91 0.93 0.96
MobileNet 0.95 0.97 0.91 0.95 0.92 0.95
MobileNet-224 0.94 0.94 0.95 0.96 0.91 0.92
ResNet-101 0.95 0.94 0.95 0.96 0.94 0.93
CapsNet+Routing: ReLU 0.98 0.96 0.96 0.98 0.97 0.97
CapsNet+Routing: Leaky ReLU 0.96 0.94 0.94 0.96 0.95 0.95
CapsNet+Routing: Squash 0.95 0.95 0.95 0.95 0.95 0.95
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Finally, accuracy score is a standard metric known for its generic utility invariant domains.
So, these metrics are utilized to determine the robustness of the proposed model. For appropriate
generalization, the model is driven to evaluate its performance by diving testing samples with
certain partitions varying from 10%–50%.

At each split (partition) samples are randomly shuffled five times not to misguide the pre-
dictions. So, at each test case, these 5 times shuffled samples are aggregated and tabulated in
Tab. 3. In each shuffle of a test phase, the model with greater performance is depicted in the form
of confusion matrices as shown in Fig. 7. It is observed that previous literature, for a certain
period used handcrafted techniques which tends to extract feature which is highly pre-processed
and was not able to perform well on large samples. After the evolution of convolution networks,
the process of automated learning has improved but they were not able to overhaul the problem
detecting entities with a flickering spatial orientation that increases misclassification errors. By
observing these challenges, a capsule network, with appropriate training is developed to overhaul
the problem individually. Additionally, the problem of generalization is proposed also observed
and shown experimentally that the proposed network is verbally robust to unseen samples. The
testing performance was extreme at 20% test samples under one of the shuffle constraints. At
which the model acquired an AUC of 99.03% and highest specifically of 99.43%. To understand
the behavior of individual networks at various test shuffle an Accuracy vs. test plot is visualized
in Fig. 8. It gives insights into the model by determining the accuracy of the model at various
shuffles for individual tests. As there are no class-imbalance scenario accuracy scores obtained will
add significance to the model. It is observed that most of the deep vision models tend to perform
poorly under three different constraints. These constraints are as follows:

Low Pixel Resolutions: The revival of deep convolutions led to extract features automati-
cally either by complete training of data or by transfer of features. In this process, the input
is fed into the model is crucial and if the resolution of input is degraded the features are
poorly extracted i.e., they might not contain the specified detail and hence input can be mis-
interpreted. The models [16,18,25,27,29,35] did not use proper pixel resolutions which might
cause misclassification. To suppress this, a pixel resolution of 128 × 128 with 3 color channels
are utilized.

Reducing Loss of Information: Most of the information is lost due to pooling layers (max-
pooling, average-pooling, etc.). These layers cause information loss either by holding the highest
pixel value from a group or by averaging a group of pixels. This can mislead information
regarding entity and in biomedical imaging, their impact can be adverse. So, an alternative
for downscaling a series of convolutions with stride 2 is preferred. This preference not only
reduces information loss but also provides uninterrupted end-to-end training. Further, capsule
networks with imperative routing are utilized for understanding spatial orientations of para-
sitized class. Sayyed et al. [36] utilized capsule networks but processed with a low pixel resolu-
tion and added pooling layers for downscaling the dimensions. The other models [16,27,29,30]
either trained with pooling layers or utilized pre-trained networks where pooling layers are
broadly used.
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(a) (b)

(c) (d)

Figure 7: Confusion matrices obtained for variant splits. (a) Confusion matrix with test samples
of 20%. (b) Confusion matrix with test samples of 30%. (c) Confusion matrix with test samples
of 40%. (d) Confusion matrix with test samples of 50%

Appropriate Generalization: Most of the models utilized various generalization strategies vary-
ing from train test to 10-fold cross-validation. As of known 10-fold cross-validation is chosen
as the gold standard for greater generalization outcomes. But due to its high computational
complexity, it is not widely used in deep learning. Either to test the resilience of the model a
train-test for variant splits is utilized. But, to understand learning patterns keenly, for an individual
test split 5 randomly shuffles are used to understand the model learning patterns. As to test for
further generalization, the trained models are tested on thick blood smears and this obliged to
design a versatile and robust model.
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Figure 8: Accuracy score obtained by the model under various splits with randomized shuffle
variants for an individual split

5 Conclusion

In this research, a hand-crafted deep capsule network along with a modified routing algorithm
has proposed. It attains a state-of-the-art classification of malaria being parasitized or not from
blood cell images. The capsule networks deliver high efficacy in performing the classification
task of classifying malaria parasites towards malaria diagnosis with the appropriate tuning of
parameters. This study generates various metrics to assess the performance of proposed works and
it is observed that tuning the loss parameters would affect the model’s performance. This proposed
network has a significant improvement when compared to other deep learning techniques and tests
the blood cell images for classification of malaria by achieving an accuracy score of 99.04% on
20% split and at the worst-case scenario (50% test) attained a test accuracy of 98.44%±0.07%. It
concludes that experimental results are beneficial as the developed model is resilient by overcoming
various models and having a versatile nature. As the future scope of the work, the model can
be utilized for identifying the species and stages of the parasites in thin blood smears. A vision
is laid on detecting and classifying the parasites by understanding the temporal and recurring
transformation of the parasite in the host.
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