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Abstract: The era of the Internet of things (IoT) has marked a continued
explorationof applications and services that canmake people’s livesmore con-
venient than ever before. However, the exploration of IoT services also means
that people face unprecedented difficulties in spontaneously selecting the most
appropriate services. Thus, there is a paramount need for a recommendation
system that can help improve the experience of the users of IoT services to
ensure the best quality of service. Most of the existing techniques—including
collaborative filtering (CF), which is most widely adopted when building rec-
ommendation systems—suffer from rating sparsity and cold-start problems,
preventing them from providing high quality recommendations. Inspired by
the great success of deep learning in awide range of fields, this work introduces
a deep-learning-enabled autoencoder architecture to overcome the setbacks
of CF recommendations. The proposed deep learning model is designed as a
hybrid architecture with three key networks, namely autoencoder (AE), multi-
layered perceptron (MLP), and generalized matrix factorization (GMF). The
model employs two AE networks to learn deep latent feature representations
of users and items respectively and in parallel. Next, MLP and GMF net-
works are employed to model the linear and non-linear user-item interactions
respectively with the extracted latent user and item features. Finally, the rating
prediction is performed based on the idea of ensemble learning by fusing the
output of the GMF andMLP networks. We conducted extensive experiments
on two benchmark datasets, MoiveLens100K and MovieLens1M, using four
standard evaluationmetrics. Ablation experiments were conducted to confirm
the validity of the proposed model and the contribution of each of its compo-
nents in achieving better recommendation performance. Comparativeanalyses
were also carried out to demonstrate the potential of the proposed model in
gaining better accuracy than the existing CFmethods with resistance to rating
sparsity and cold-start problems.
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1 Introduction

The IoT is a new communication paradigm that digitizes the real-world environment by
interconnecting vast number of smart objects and systems using Internet infrastructure. In this
process, the networked smart objects can sense and generate large volume of useful data about
their surroundings specifically about the product performance or customer usage patterns [1]. The
data generated in the context of IoT brings excellent capability in supporting the development of
value-added services and smart applications. The notion of IoT is to create a smart environment
that can enable global exchange and delivery of intelligent services to improve the quality of daily
life [2]. From the industry perspective, the IoT is expected to facilitate the businesses in optimizing
their productivity and achieving their goals [3].

It is forecasted by Gartner that by 2021, the number of connected devices in the IoT will
reach 25 billion. SAP predicts that this number will reach 50 billion by 2023. According to
research by McKinsey Global, the number of connected IoT devices is set to exceed between
$4 and $11 trillion in economic impact [4]. As a result, there is a general belief that the IoT
will become an important source of contextual information and be ubiquitous in satisfying users’
needs through a multitude of services. Nevertheless, when users are swamped with information
and offered a plethora of services, they face unprecedented difficulty in making the right decision
when spontaneously selecting the desired information and appropriate services. This leads to the
phenomenon called the information overload problem [5–7]. In this sense, it is of paramount
importance to deploy flexible information systems that can extract effectively and efficiently
valuable information from massive amounts of data. To this end, in recent years, recommender
systems have been considered instrumental in alleviating the problem of information overload by
effectively assisting the users in finding the potential products or services that meet their needs
and match their interests from a large pool of possible options [8]. With such an indispensable
role in online information systems, recommendation systems are widely recognized in many fields
and have become an animated topic of research [9].

The literature has discussed two kinds of recommendation algorithm: collaborative filtering
(CF) and content-based (CB) [10]. CB algorithms make recommendations based on the similarities
between the item description and the user preferences. This approach ignores the relationship
between items and suffers from a serendipity problem, providing recommendations with limited
novelty. As a result, the effectiveness and extensibility of the system is limited [11]. Comparatively,
CF algorithms are successful and are the most popular approach in many recommender systems
because they make recommendations based on user interactions with items and other users with
similar preferences. CF offers many advantages, such as being content-independent and efficient
in providing serendipitous recommendations. Also, by considering only real quality measurements,
CF is effective at providing recommendations [12].

Among various CF techniques, matrix factorization (MF) and its variants are more effective
and most widely used in practice [13]. MF maps both users and items onto a shared latent space
and uses the inner product of the latent vectors to model the user interaction on an item. Despite
the appeal of MF, it is well known that their effective performance is hindered by three serious
problems: Rating sparsity, cold-start problems, and their linear nature. Rating sparsity occurs when
there is very little available rating data. A cold start occurs when making a recommendation with
no prior interaction data for a user or an item. Due to its linear nature, MF fails to capture
complex interactions between users and items [14].
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Recently, the application of deep learning models in recommendation systems has made
breakthroughs [15,16]. Several research studies in the literature have leveraged the roaring success
of deep learning to change the linear structure of MF and have demonstrated the powerful ability
of deep learning to gain satisfactory results [17,18]. A neural CF (NCF) was introduced [19]
exploiting the benefits of MLP to capture non-linear user-item interactions. Here, the authors
combine MF and MLP networks and build a new neural-based MF (NeuMF) that can capture
linear and non-linear user-item interactions. Similarly, Chen et al. [20] adopted a non-sampling
strategy through mathematical reasoning to learn neural recommendation models. Here, the
adopted strategy proved its efficiency in learning the model parameters with reduced time com-
plexity. However, the developed model was not validated for its effectiveness against data sparsity
and cold-start problems. Recently, Thanh et al. [21] presented a DNN model called FeaNMF to
improve the predictive accuracy of NCF incorporating user latent and auxiliary features. Wang
et al. [22] constructed a hybrid architecture to improve predictive accuracy by combining two
different kinds of neural network model, AE and MLP, to extract the latent feature vector from
rating data and to describe the user-item interactions, respectively. Wan et al. [23] proposed a new
continuous imputation denoising AE model and combined the new model with NCF to alleviate
the data sparsity problem. Likewise, a neural-network-based CF model called a deep dual relation
network (DRNet) was proposed for recommendations [24]. Unlike the previous literature, the
present model captures both item–item and user-item interactions to improve the quality of the
recommendation performance. Despite the success of existing models, there are still opportunities
to improve the quality of recommendations.

Most of the existing NCF and NeuMF methods focus on user-item interactions and show
promise in effectively learning the robust latent feature representations. However, they do not aim
to extract key latent features from users and items individually. Consequently, this not only affects
the feature representation of users and items but could also affect the user-item interactions.
Notably, the benefits of stacked sparse autoencoder (SSAE) can be leveraged to address the
setbacks of NCF. In the proposed architecture, two separate SSAE networks are employed to
extract the latent features of users and items, respectively, from the implicit rating data. Then,
the resulting latent features are used as an input for the two different NCF models, GMF and
MLP, to capture the complex user-item interactions. The key contributions of this work are
as follows:

a. Proposed model integrates SSAE within NCF framework to effectively mitigate the rating
sparsity problem. Also, to overcome the possibility of overfitting and improve the accuracy
of the rating prediction.

b. Proposed model effectively captures both linear and non-linear interactions between users
and items employing two different NCF networks, GMF and MLP respectively.

c. Proposed model is designed to use only implicit rating data as they are comparatively easier
to collect for service provider.

2 Preliminaries

2.1 Neural Collaborative Filtering (NCF)
NCF is an extended version of a traditional CF model. Here, the power of neural networks

is leveraged to learn and model intricate user-item interactions with multiple levels of abstraction.
The general architecture of NCF consists of an input layer with a sparse user and item feature
vector and a feature embedding layer to project the sparse input representations onto a dense
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feature vector. The obtained user and item embeddings are combined and fed through a multi-
layer neural architecture for the CF process. In this process, the user and item embeddings are
mapped to determine the prediction score. Here, the layers participating in CF can be cus-
tomized to uncover intricate user-item interactions. Thus, the CF process through MLP is defined
as follows:

f (pu, qi)= φout (φL (. . . φ1 (ϕ (pu, qi)) . . .)) (1)

In the above equation, (pu, qi) denotes the embedding of user and item, and ϕ (·) and φn (·)
represents the mapping function used in the embedding layer, and the activation function used
in the nth layer of the neural network, respectively. Because NCF aims to predict rating score,
a sigmoid is used as an activation function of the output layer. In general, the known ratings
are used as labels to train NCF and learn the neural network parameters. After training, NCF
employs a non-linear process to predict unknown ratings as follows:

ŷu, i= f (pu, qi) (2)

2.2 Autoencoder (AE)
A simple AE comprises three layers: input, hidden, and output, as shown in Fig. 1. It aims

to reconstruct the original input at its output layer. The learning process of an AE consists of
two stages: Encoding and decoding [25]. On the one hand, the encoding stage uses the activation
function a parameterized {w, b} to map the input vector x = {xi}ni=1 onto the hidden layer and
capture the most relevant features z from the input vector x as follows:

z= a(wTx+ b) (3)

On the other hand, the decoding stage uses the activation function â parameterized
{
ŵ, b̂

}
to

map the extracted relevant feature z onto the output layer, and approximately recovers the original
input vector as x̂ from the extracted relevant feature vector z as follows:

x̂= â(ŵTz+ b̂) (4)

Figure 1: Structure of autoencoder network

During the training process, the AE is trained to learn the parameter set θ =
{
w, b, ŵ, b̂

}
,

minimizing the reconstruction error between x̂ and x. Also, to prevent overfitting, the weight
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penalty, termed the regularization parameter, is added to the reconstruction error to obtain the
cost function, which is defined as follows:

JAE (θ)=min
θ

n∑
i=1

‖xi− x̂i‖2+ λ

2

(
‖w‖2+ ∥∥ŵ∥∥2) (5)

3 Proposed Methodology

This section presents the hybrid deep-learning-enabled AE architecture proposed for rating
prediction. As shown in Fig. 2, the architecture comprises three different kinds of neural net-
work: AE, GMF, and MLP. The proposed architecture contains two AE networks with parallel
structures to learn the latent representation of users and items separately from implicit rating
data. Then, the resulting latent user and item features are fed into the two instantiations of NCF,
namely GMF and MLP networks, to learn user-item interactions. Finally, the output of GMF and
MLP is fused through ensemble learning to generate the rating prediction. The superior quality
of this architecture is that it introduces AE for the first time into the NCF framework to not
only extract the primary latent features of users and items but also to alleviate the data sparsity
problem. Moreover, it effectively enables the complex interactions between users and items to be
captured through the ensembles of GMF and MLP to gain better prediction performance. The
subsections that follow detail the working principles of the proposed architecture.

Figure 2: Proposed deep learning enabled autoencoder architecture for NCF

3.1 Feature Representation
Given M users and N items, the user ID set is denoted by U = [1, 2, . . . ,M] and the item ID

set is denoted as I = [1, 2, . . . , N]. The ratings from M users for N items are defined as a matrix
R with |M ×N| dimensions, where each element rui represents the rating from user u for item i.
Here, ratings can be explicit or implicit. In the case of explicit ratings, they are provided on a
scale ranging from 1 to Rmax, where Rmax can be 3, 5, 10, etc. On the contrary, with implicit
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ratings, they are unary, in the form of user clicks or purchases. This work considers only implicit
user ratings because users do not rate all items involved. The rating matrix is defined as follows:

rui =
{
rui if known

0 otherwise
(6)

These rating scores given by users are used to represent the feature vector for user and item.
For item i, the feature vector Ii is represented as follows, using the rating scores of all users:

Ii =
[
r1, i, r2, i, r3, i, r4, i, . . . , rM, i

]
(7)

Similarly, the feature vector Uu is represented as follows, using the rating score of user u for
all the involved items:

Uu =
[
ru, 1, ru, 2, ru, 3, ru, 4, . . . , ru,N

]
(8)

Here, the dimension of Uu and Ii are different because the dimensions M and N are usually
unequal. As in [23,24], the present work attempts to employ minimal information, using only user
ratings to achieve better rating prediction performance.

3.2 Feature Extraction Using Stacked Sparse Autoencoder (SSAE)
Motivated by recent successes of deep learning for better feature generalization, this work

employs a sparse autoencoder (SAE), a variant of AE proposed in [26]. The idea behind SAE
is to impose a sparsity constraint on the core idea of AE to learn the sparse features from
user and item feature vectors. In essence, SAE considers a neuron in a hidden layer to be active
if its activation value is close to 1; else, it considers the neuron to be inactive. Accordingly, a
hidden layer becomes sparse when most neurons are inactive. Thus, the act of imposing a sparse
constraint on a hidden layer, as shown in Fig. 3, restricts undesired activation and encourages
SAE to learn sparse features at the level of its hidden representation.

Figure 3: Structure of sparse autoencoder (left) and stacked autoencoder (right)

Accounting for the sparsity constraint, the cost function of AE defined in Eq. (5) is then
redefined with a sparsity term for SAE, as follows:

Jsae (θ)= Jae (θ)+α

s∑
j=1

KL(p‖p̂) (9)
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The sparsity constraint ρ in the above equation is optimized for the given task by minimizing
the Kullback–Leibler (KL) divergence between ρ and ρ̂. Also, the parameter α introduced in the
above equation controls the relative importance of the sparsity term in the cost function. To better
extract latent features of the raw rating data, this work employs deep learning by stacking multiple
SAEs where the hidden layer of an SAE is fed into the next SAE as input. The stacked SAE
(SSAE) adopts bottom-up greedy layer-wise training, starting with the first SAE. After the training
process of the first SAE is complete, its hidden layer acts as input for training the next SAE. This
work stacks three layers of SAE together and employs two SSAEs, namely Auto-I and Auto-U, to
perfectly reconstruct the feature vectors of the users and items respectively from the sparse rating
matrix data. This is computed as given below

qi = a(wTIi+ b)

pu= a(wTUu+ b) (10)

3.3 Feature Fusion Using Generalized Neural Matrix Factorization (GMF)
GMF, which is regarded as an extension of MF under NCF, is utilized in the proposed

framework to learn user-item interactions. Nonetheless, to address the data sparsity limitation of
the GMF network, in the proposed framework, the latent feature vectors extracted by SSAE for
the user and item undergo a CF process, as follows:

ϕ (pu, qi)= pu� qi (11)

where pu and qi represent the user and item latent feature vectors generated by SSAE, respectively.
Also, � denotes the element-wise product. Lastly, GMF makes a prediction at the output layer
as follows:

φGLMu, i = a(wT (pu� qi)) (12)

In the above equation, a(·) denotes the activation function and w represents the weight vector
of the GMF network. Unlike earlier studies [19,23], this work applies the linear activation function
to uncover the linear relationships between the latent feature vector of users and of items.

3.4 Feature Fusion Using Multi-Layer Perceptron (MLP)
The proposed framework employs MLP to deeply learn the critical interactions between the

user and item latent feature vectors. In this first step, the latent feature vectors of users and items
extracted from SSAE are concatenated and then employed in CF as follows:

x= φ1 =
[
pu

qi

]
(13)

The computation process of each hidden layer can be defined as follows:

φL = aL(wTLφn−L+ bL) (14)

Here, aL,wL and bL denote the activation function, bias vector, and weight matrix of the Lth
hidden layer respectively; the [·] denotes the concatenating operation. Further, the final prediction
of MLP is given as

φMLP
u, i = φL (15)
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In this work, ReLU is used as a hidden layer activation function for MLP for two reasons.
First, it encourages sparse activations; second, it prevents the model from overfitting. Because the
objective of the MLP model employed here is to capture the critical interaction between user and
item vectors, the MLP network is designed as in [19] to follow a tower pattern with three layers.
Unlike other NCF models [19,23,24], the GMF and MLP employed in this work captures the
linear and non-linear interactions from latent feature vectors generated by SSAEs for users and
items to achieve better performance rather being limited due to the sparsity of user preferences.

3.5 Ensemble Learning for Rating Prediction
The two models described above, GMF and MLP, which capture user-item interactions by

employing linear and non-linear kernels respectively, are ensembled by concatenating their last
hidden layers. Following earlier studies [19,23,24], the ensemble formulation of the final output is
defined as follows:

ŷu, i= a

(
wT

[
φGLM

φMLP

])
(16)

where w and a are the weight and activation function of the output layer, respectively. Here, a
sigmoid is applied as an activation function.

4 Experimental Setup

4.1 Datasets
The effectiveness of the proposed model was investigated by choosing two benchmark

datasets published by the GroupLens research group, MovieLens100K and MovieLens1M. They
are real-world datasets collected through a movie recommender system with different data
sparsity percentages. The MovieLens100K dataset contains 943 users and 100,000 ratings on
1,682 movies, whereas the MovieLens1M dataset contains 6,040 users and 1,000,209 rating records
on 3,952 movies. In these datasets, each user has rated at least 20 movies on a scale of
1 to 5, with a rating of 5 indicating that the user liked the movie more. There are also some
movies with no ratings in the datasets. These movies were removed and the discontinuous movie
serial numbers were preprocessed with successive serial numbers to produce rating records for
1,682 and 3,706 movies with data sparsities of 93.70% and 95.75% in MovieLens100K and
MovieLens1M, respectively.

The statistics of these datasets are illustrated in Tab. 1. Because the datasets contain explicit
user feedback, a strategy like that in [23,24] was adopted to obtain the implicit feedback, which
ignores the rating values and retains only the rating as 0 or 1. Also, following the same experi-
mental setup as that in [19–24], we chose to use 90% of the observed ratings to create the training
set and the remaining 10% as the testing set. Further, 10% of the training set was used to create
a validation set for all these datasets.

Table 1: Statistics of movielens datasets

Dataset Movies Users Ratings Sparsity

MovieLens100K 100,000 1682 943 93.70
MovieLens1M 1,000,209 3706 6040 95.53
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4.2 Pre-Training Process
Generally, the presence of a non-linear activation function in a neural network induces a

non-convex optimization problem and easily traps the model to local optima during the learning
process. This degrades the model’s performance. Intuitively, the initialization of network param-
eters gains paramount importance in improving the model’s performance. For instance, when we
trained our model with random initialization, it converged slowly with poor performance. This
might be attributed to the co-adaption effect of training the three networks—AE, GMF, and
MLP—involved in the process of feature extraction and CF simultaneously. Hence, in agreement
with earlier studies [19,24], we hypothesize that the pre-training process can resolve the co-
adaption effect by initializing the network parameters close to the global optimal solution. We
therefore adopted pre-training to initialize the network parameters of GMF and MLP. While
pre-training these networks, the robust features learnt by Auto-I and Auto-U were employed.
However, for networks such as Auto-I and Auto-U, greedy layer-wise pre-training was performed
with tied weights and random initialization because they are not affected by the co-adaptation
effect. Further, the Adam optimizer was used in the pre-training process of GMF and MLP.
After the pre-training process, the proposed recommendation model was trained with a stochastic
gradient descent optimizer for two reasons: first, to achieve better generalization; second, because
the Adam update rule requires previous momentum but, in our case, it was unavailable because the
network parameters of GMF and MLP were initialized through the pre-training process. A batch
size of 256 and learning rate of 0.001 were adopted, considering the convergence rate and lower
memory requirements for computing the gradients of the trainable parameters.

Table 2: Hyperparameter of proposed model

Parameters Values

Activation function in fusion layer Sigmoid
AE network
Number of hidden layers in AE 3
Activation function in AE Sigmoid
Dimension of 1st hidden layer 1000
Dimension of 2nd hidden layer 500
Dimension of 3rd hidden layer 50
MLP Network
Number of layers in MLP 3
Number of hidden units in 1st 32
Number of hidden units in 2nd layer 16
Number of hidden units in 3rd layer 8
Activation function in MLP ReLu
GMF Network
Activation function in GMF Sigmoid

4.3 Implementation Details
The proposed recommendation model was implemented as described in Section 3 using

Python and Keras deep learning libraries, with TensorFlow as the backend. The hyperparameters
of the proposed model are set by using a grid search on the training dataset and performing a
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5-fold cross validation. The search space and obtained optimal values for the hyperparameters of
the proposed model are presented in Tab. 2.

4.4 Evaluation Metrics
To sufficiently assess the effectiveness of the proposed model for recommendation perfor-

mance, we chose four of the most commonly used evaluation metrics: Mean absolute error
(MAE), root mean square error (RMSE), hit ratio (HR), and normalized discounted cumulative
gain (NDCG). They are formulated as follows:

MAE =
∑

(u, i)∈R
∣∣ru, i− r̂u, i

∣∣
|T | (17)

RMSE =

√√√√∑
(u, i)∈R

(
ru, i− r̂u, i

)2
|T | (18)

HR= # hits
# users

(19)

NDCG= 1
# users

#users∑
i=1

1
log2(Pi+ 1)

(20)

The first two metrics, MAE and RMSE, were chosen with the purpose of evaluating the rating
effectiveness of the proposed model because they are the ones most widely used in past literature
for CF evaluation. Further, the work uses HR and NDCG metrics to evaluate the performance
of the proposed model in determining top-K ranked recommendation lists. HR indicates ranking
accuracy by measuring whether the preferred items are listed in the top-K recommendation list
of a user. Similarly, NDCG evaluates hit positions by assigning higher scores to the hits at the
top of the ranking.

5 Experimental Results and Discussion

This section explains the two sets of analysis devised to validate the performance of the
proposed recommendation model. In particular, these two sets of analysis were conducted to
answer the following questions:

a) Is the integration of an AE network effective in improving the performance of the
proposed model?

b) Does the proposed model perform better than the existing state-of-the-art CF models?
c) Does the proposed model perform better than the existing state-of-the-art CF models with

resistance to data sparsity in terms of recommendation accuracy?

5.1 Ablation Analysis
First, we conducted a series of ablation analysis experiments to validate the correctness of the

proposed model design and to examine the contribution of different components in the proposed
model for recommendation performance. To achieve this, we developed different variants of the
proposed model, as detailed below:
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(a) GMF: This variant was created by removing the MLP network and fusion layer from the
proposed model. Further, the SSAE networks were replaced with embedding layers to learn
the user and item embeddings for CF. Thus, this variant receives the user and item latent
features from the embedding layers to perform the element-wise product of the user and
item latent features.

(b) MLP: This variant was created by removing the GMF network and fusion layer from the
proposed model. Further, the SSAE networks were replaced with embedding layers to learn
the user and item embeddings for CF. Thus, this variant receives the user and item latent
features from the embedding layers to learn the non-linear user-item relationships.

(c) GMF++: This variant was created by removing the MLP network and fusion layer
from the proposed model. Thus, this variant utilizes the user and item latent features
extracted from the SSAE networks to perform the element-wise product of user and item
latent features.

(a) MLP++: This variant was created by removing the GMF network and fusion layer from
the proposed model. Thus, this variant utilizes the user and item latent features extracted
from the SSAE networks to learn the non-linear user-item relationships.

(b) I-Autorec: This variant was created by keeping only one SSAE network and removing all
other components, such as the MLP and GMF networks. This variant uses the SSAE
network to reconstruct item vectors and predict the missing ratings. It is proven in the
literature that I-Autorec outperforms user-based AE [27,28].

(c) NeuMF: This variant was created by replacing the SSAE networks in the proposed model
with embedding layers to learn the user and item embeddings for CF.

Table 3: Ablation analysis on MovieLens1M for different variants of proposed model

Ablations MovieLens1M

RMSE MAE

GMF 0.711 0.424
MLP 0.672 0.401
I-Autorec 0.840 0.639
GMF++ 0.646 0.391
MLP++ 0.601 0.388
NeuMF 0.635 0.393
Proposed model 0.583 0.36

To maintain a reasonable comparison, the same network parameters and experimental setup
were utilized to create the above variants and to conduct the ablation experiments. The results
of the ablation experiments on the MovieLens1M dataset are presented in Tab. 3. To improve
interpretability, the results in Tab. 3 are depicted in a comparison plot in Fig. 4. The ablation
results shown in Tab. 3 and Fig. 4 clearly indicate the contribution and importance of each com-
ponent of the proposed model for improving its performance benefits. In particular, the variant
I-Autorec delivered the worst performance, with high RMSE and MAE, indicating its failure to
capture the user-item interactions, which is essential for improving recommendation performance.
Next, observing the performance improvement of GMF++ and MLP++ over GMF and MLP
respectively, it is clear that the AE significantly contributes to learning the robust user and item
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latent features required to enhance the CF process. Also, the variant NeuMF performed better
than the variants GMF and MLP, in accordance with the findings reported in [24]. This illustrates
the significant role of the fusion strategy in learning both linear and non-linear user-item inter-
actions in CF. When comparing the performance of NeuMF with that of the proposed model, a
significant performance improvement in the proposed model can be observed. This highlights the
role of the AE network in ensuring overall improvement in recommendation performance. In sum,
it is evident from these observations that all components in the proposed model play an essential
role and contribute greatly to its success in improving recommendation performance.

Figure 4: A plot comparing the performance of different ablations of proposed model

5.2 Comparative Analysis with Related Works
Two sets of experiments were conducted to compare the effectiveness of the proposed model

against existing state-of-the-art models. To do this, we considered three CF models based on fusion
strategy—NeuMF, I-NMF, and DRNet—and two state-of-the-art, non-fusion CF models—eALS
and BPR. The main reason for this is that, to our knowledge, there are few works in the literature
that leverage the benefits of fusion strategies to learn user-item interactions, as we do in our work.
Further, we used the results of the papers that do address this to perform a fair comparison. If
the authors did not conduct a particular type of experiment and the results were not available,
this was indicated with “NA.” To demonstrate the effectiveness of the proposed model, the
comparison was conducted on two benchmark datasets, MovieLens100K and MovieLens1M, from
two different perspectives, as follows:

5.3 Top-K Recommendations
In most real-world applications, the goal of recommendation system is to generate a person-

alized top-K ranked list of items for the target user based on rating predictions. We therefore
conducted an experiment to compare the efficiency of the proposed model with existing state-
of-the-art models for top-K recommendations. The experiment analyzes all chosen models for
three different values of N {5, 10, 15}. Tabs. 4 and 5 present the top-K recommendation results
of all methods in terms of HR@K and NDCG@K for different N values on two benchmark
datasets, MovieLens100K and MovieLens1M, respectively. Comparison plots of the results shown
in Tabs. 4 and 5 are provided in Figs. 5 and 6, respectively.
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Table 4: Performance comparison of proposed model against related works for Top-K recommen-
dations on MovieLens100K

Related Works HR@5 HR@10 HR@15 NDCG@5 NDCG@10 NDCG@15

eALS [27] 0.4698 0.6638 0.7529 0.3201 0.3819 0.4056
BPR [28] 0.4984 0.6914 0.7741 0.3315 0.3933 0.4149
NeuMF [19] 0.4942 0.6766 0.7635 0.3357 0.3945 0.4175
I-NMF [23] 0.4370 0.3688 0.3244 0.4636 0.4068 0.3685
DRNet [24] NA 0.676 NA NA 0.401 NA
Proposed 0.5219 0.7227 0.8123 0.3782 0.4311 0.4544

Table 5: Performance comparison of proposed model against related works for Top-K recommen-
dations on MovieLens1M

Related Works HR@5 HR@10 HR@15 NDCG@5 NDCG@10 NDCG@15

eALS [27] 0.5353 0.7055 0.7914 0.3670 0.4220 0.4448
BPR [28] 0.5414 0.7161 0.7988 0.3756 0.4321 0.4541
NeuMF [19] 0.5485 0.7177 0.7982 0.3865 0.4415 0.4628
I-NMF [23] 0.4229 0.3653 0.3285 0.4429 0.3960 0.3643
DRNet [24] NA 0.726 NA NA 0.448 NA
Proposed 0.5751 0.7489 0.8292 0.4101 0.4622 0.4909

Figure 5: Performance comparison plot of top-K recommendations for proposed model against
related works on MovieLens100K

The results in Tabs. 5 and 6 show that the performance of all models improves with an
increase in the value of N in terms of both the HR and NDCG metrics. Also, the comparison
results indicate that the fusion models namely, NeuMF, DRNet, and the proposed model, except
I-NMR, outperform the non-fusion models namely, eALS and BPR, in terms of both metrics on
both datasets. These results indicate that the fusion models are effective at modeling user-item
interactions, leveraging the benefits of neural networks. Among the fusion models, the proposed
model performs better in terms of both metrics on both datasets. This demonstrates that the
integration of an AE model within a NeuMF framework helps with learning the more robust user
and item features that can enable significant improvement in the CF process. In particular, with
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the MovieLens100K dataset, the proposed model achieved an average of 2.7% and 4.6% relative
improvement compared to the NeuMF model in terms of HR and NDCG, respectively. Similarly,
with the MovieLens1M dataset, the proposed model achieved an average of 2.6% and 2.3%
relative improvement compared to the NeuMF model in terms of HR and NDCG, respectively.
Overall, these observations prove that the proposed model performs better than the existing
models in improving the performance of Top-K recommendations in terms of HR and NDCG.

Figure 6: Performance comparison plot of top-K recommendations for proposed model against
related works on MovieLens1M

5.4 Data Sparsity Cold-Start Problem
In real-world scenarios, the user-item rating matrix is exceedingly sparse and gives rise to data

sparsity problems that greatly affect the performance of recommendation system. To investigate
the efficacy of the proposed model in mitigating the impact of this problem, a comparative
analysis was conducted by arbitrarily removing some entries from the training set and creating a
sparse matrix with four different densities. For example, a sparse user-item matrix with 20% data
density was created, with 20% of the user-item entries used as the training set and the remaining
80% used as the testing set. Likewise, sparse user-item matrices with densities ranging from 20%
to 80% were created. Here, if the data density or the training set proportion is high, the data
sparsity is low, and vice versa.

Tab. 6 records the recommendation accuracy of the proposed model by comparing other
existing state-of-the-art CF models in terms of HR@10 for different data sparsity levels using two
different benchmark datasets. A plot of the same data is presented in Fig. 7 for improved inter-
pretability. The horizontal comparison of the results through different data sparsity levels on both
datasets indicate that the recommendation accuracy decreases as data sparsity increases, regardless
of the recommendation model used. This confirms that data sparsity impacts the accuracy of all
recommendation models. The vertical comparison of the results through different models on both
datasets indicates that fusion models, such as NeuMF, DRNet, and the proposed model, perform
better than non-fusion models namely eALS and BPR. Another notable observation is that the
proposed model shows significant improvement over DRNet and NeuMF when the data sparsity
level is higher than 60%. This might be because the AE enhances the CF process of NeuMF
by learning the most robust user and item features from the given training set. The comparison
results at different data sparsity levels show that CF process can be improved to have higher
recommendation accuracy with resistance to data sparsity if an AE is used to learn the most
robust user and item latent features.
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Table 6: Performance comparison against related works with different level of data sparsity

Related works HR@10 for MovieLens100K HR@10 for MovieLens1M

80% 60% 40% 20% 80% 60% 40% 20%

eALS [27] 0.338 0.461 0.548 0.597 0.363 0.511 0.585 0.643
BPR [28] 0.302 0.443 0.512 0.572 0.325 0.489 0.573 0.629
NeuMF [19] 0.367 0.499 0.579 0.633 0.395 0.538 0.634 0.680
I-NMF [23] NA NA NA NA NA NA NA NA
DRNet [24] 0.439 0.537 0.615 0.649 0.426 0.582 0.641 0.687
Proposed 0.488 0.572 0.637 0.661 0.511 0.631 0.676 0.712

Figure 7: Performance comparison plot of proposed model against related works for different
percentage of data sparsity on MovieLens100K (left) and MovieLens1M (right)

6 Conclusion

This paper proposed a hybrid deep-learning-enabled AE architecture for an NCF-based rec-
ommendation model. This paper is the first to integrate the potency of an AE into the NCF
framework. The advantage gained through this integration is that SAE allows rating sparsity and
cold-start problems to be overcome by extracting the primary latent features of users and items
from the rating matrix separately. Later, the extracted latent features are employed to enhance
the learning capability of GMF and MLP networks to effectively model the linear and non-
linear user-item interactions, respectively. Finally, the proposed model combines the strengths
of GMF and MLP based on ensemble learning to improve the accuracy of recommendations.
In addition, the proposed model is designed to gain accuracy based solely on implicit rating
data. Ablation experiments confirmed that the design decision to integrate SAE within the NCF
framework is beneficial for improving the recommendation performance of the proposed model.
Also, the comparative analysis results conducted on two established datasets, MovieLens100K and
MoiveLens1M, proved that the proposed model is effective in improving the accuracy of top-N
recommendations with resistance to rating sparsity and cold-start problems when compared to the
related NCF-based recommendation models.

The proposed architecture is limited to utilizing only implicit user feedback on items. Also, it
is limited to perform online recommendation. Along this line, future work can take three different
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directions. First, it can investigate how different types of AEs can influence the performance gain
in recommendation accuracy. Second, it can investigate how effectively the inclusion of auxiliary
information can be utilized to better improve recommendation accuracy. Third, it can restruc-
ture the proposed model to better support online recommendation because it is of paramount
importance in modern e-commerce applications.
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