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Abstract:Epilepsy is a type of brain disorder that causes recurrent seizures. It is
the secondmost common neurological disease after Alzheimer’s. The effects of
epilepsy in children are serious, since it causes a slower growth rate and a failure
to develop certain skills. In the medical field, specialists record brain activity
using an Electroencephalogram (EEG) to observe the epileptic seizures. The
detection of these seizures is performed by specialists, but the results might not
be accurate due to human errors; therefore, automated detection of epileptic
pediatric seizures might be the optimal solution. This paper investigates the
detection of epileptic seizures by applying supervised machine learning tech-
niques. The techniques applied on the data of patients with ages seven years
and below from children’s hospital boston massachusetts institute of technol-
ogy (CHB-MIT) scalp EEG database of epileptic pediatric signals. A group of
Naïve Bayes (NB), Support vector machine (SVM), Logistic regression (LR),
k-nearest neighbor (KNN), Linear discernment (LD), Decision tree (DT),
and ensemble learning methods were applied to the classification process. The
results demonstrated the outperformance of the present study by achieving
100% for all parameters using the Ensemble learning model in contrast to
state-of-the-art studies in the literature. Similarly, the SVM model achieved
performance with 98.3% for sensitivity, 97.7% for specificity, and 98% for
accuracy. The results of the LD and LRmodels reveal the lower performance
i.e., the sensitivity at 66.9%–68.9%, specificity at 73.5%–77.1%, and accuracy
at 70.2%–73%.

Keywords: Pediatric epilepsy; ensemble learning; machine learning; SVM;
EEG data

1 Introduction

According to the international league against epilepsy (ILAE) statement, quoted in 2014,
epilepsy is a transient occurrence of signs and symptoms due to abnormal, excessive, or
synchronous neuronal activity in the brain [1]. Epilepsy can be diagnosed by three main
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symptoms: at least two seizures have occurred over 24 h, reflex seizures have occurred twice
or more over 10 years, and/or epilepsy syndrome [1]. Epileptic seizure is the most common
symptom [2], that is caused by a disrupting episode with the brain’s activities, and not all epileptic
patients have seizures [3]. Approximately 50 million people over the world have epilepsy [4], that
is 1% of the overall population. According to the Saudi epilepsy society, 0.654% of people in
Saudi Arabia suffer from this disease. Epilepsy affects all ages, however, the symptoms and signs
differ by age group. For example, in newborns, the symptoms involve a lack of oxygen during
delivery and/or abnormal brain development. In infants symptoms are brain tumors and/or genetic
disorders [5]. Therefore, an accurate diagnosis is important. As childhood is the stage of brain
formation, epilepsy occurs more dynamically in the nervous system and may interfere with the
brain development. That could affect the individual in several ways, such as the failure to develop
skills, a slower growth rate, and the possibility of losing previously developed skills [6]. Every
4.8/1000 children worldwide suffer from epilepsy. In the US, 0.94/1000 children under 18 suffer
from epilepsy [7]. In recent years, epilepsy diagnosis in infants and children has been improved,
and investigation of new methods has become hot topic for researchers. EEG signals can reflect
the state of temporal brain activities. It is a complex and nonlinear interconnection between a
billion neurons [8]. In addition, it is common to diagnose epilepsy by analyzing the EEG data;
in this regard, several studies have focused on aiding epileptic patients to find suitable treatments.
Moreover, it involves EEG signal processing prior to application of the identification methods.
Hence, the accuracy of the system also depends on the way the EEG signals are processed. In this
regard, time and transform domain (frequency transform, wavelet transform etc.) signal processing
techqniues have been investigated in the literature [9]. Efficacy of the signal processing technique
greatly enhances the efficiency of epilyptic pediatric identification approaches. So to identify such a
critical disease at the early stages, there is a dire need for investigating the machine learning (ML)
techniques. Current study aims to investigate the ensamable based ML techniques for pediatric
epilyse identification.

The organization of the paper is as follows: Section 2 contains a literature review, proposed
methods are given in Section 3, Section 4 contains results and discussion while Section 5 concludes
the paper.

2 Review of Literature

ML has countless applications in almost every field of study and human life. However,
in the medical sector, its significance is matchless. Other than pediatric epilepsy, ML has been
investigated for detection and prediction of several fatal diseases like COVID19 [10], cardio
diseases [11], diabetes [12], Parkinson [13], and many others. In [14,15], the researchers applied
the SVM algorithm to classify seizure onset in pediatric epilepsy patients. The dataset from the
CHB-MIT [16]contained 23 patient’s files of EEG recording and all patients under eighteen years.
It is consisted of eighteen channels containing 163 seizures that were separated into records of
one hour each. In [17], the authors designed an advanced seizure prediction via preictal relabeling
(ASPPR) algorithm to predict epileptic pediatric seizures. The model achieved 96.30% accuracy
for predicting seizures between 1 to 6 mins, 96.13% accuracy for 8 to 13 mins, 94% accuracy
for 14 and 19 mins, and 94.2% accuracy for 20 and 25 mins. In [18], the authors proposed
a technique to extract features from the epileptic pediatric dataset from the CHB-MIT EEG
database. In their proposed method, EEG signals are mapped into 2D space that leads to texture
image and the gray-level image domain. Furthermore, they compared their results with other
methods and achieved 97.74% accuracy using the SVM classifier with linear kernels.
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The data mining of EEG signals was analyzed by using a time series approach, which
calculated peak points (the lowest point in a part of the signals) and valley points (the highest
point in a part of the signals) and then calculated the distances between them. The study
consisted of three experiments; all of them predicted onset seizures early with minimum latency.
Identifying seizures in children is different than in adults because the seizures in children have
lacked the characteristics of EEG features. The study in [19] aimed to find the difference between
the type of spike called Rolandic in two groups of epilepsy, patients with benign focal epilepsy
and patients with structure focal epilepsy, the author used an algorithm with three stages: spike
detection, determination parameters, and classification. The proposed method achieved 75% with
an Artificial neural network (ANN). Some studies that focused on newborn data, proposed
alternative methods for detecting seizures [20–25] and achieved a high-level accuracy compared
with previous studies. The number of electrodes may affect pediatric seizure detection. In [26],
authors proposed a collective network of binary classifiers (CNBC) using multi-dimensional par-
ticle swarm optimization (MD PSO). The proposed method achieved 93% accuracy and it was
applied on long-term EEG data for seizures extraction. The authors in [27] detected cognitive
impairment in children with epilepsy by using network analysis, and their proposed method
achieved 85% accuracy.

Summary of the state-of-the-art ML related techniques in detection of epilepsy in babies
and children are enlisted in Tab. 1. According to the comprehensive and systematic literature
review, many studies in detecting pediatric epilepsy are done, but the performance still needs to
be improved. The highest achieved accuracy of 96% is claimed by [14,15] for the CHB-MIT EEG
database. Apart from the detection/prediction accuracy, there is another challenge to identify the
right candidate ML algorithm for future and advance prediction of pediatric epilepsy. Since there
is a variety of ML algorithms with their own strengths and weaknesses against various application
domains. To answer these questions, the current study is performed. The study aims to investigate
several ML and ensemble learning algorithms to potentially enhance the performance of EEG
data classification. For evaluation of these techniques, several performance metrics are targeted
including accuracy, sensitivity (true positive rate) and specificity (true negative rate), etc.

Table 1: Summary of ML techniques in pediatric epilepsy

Publication Type of data Algorithms Performance

Me [19] Children ANN Accuracy 75%
Deburchgraeve et al. [20] Newborn “Neonatal seizure detection

mimicking a human observer
reading EEG”

Sensitivity 88%
Specificity 66%

Shoeb [14],
Shoeb, [15]

Children SVM Accuracy 96%

Temko et al., [21] Newborn SVM Sensitivity &
Specificity 90%

Temko et al. [25] Newborn SVM Accuracy 89%
Cherian et al. [22] Newborn Patients classified into two

groups: “mild to moderate”
(grades 1–5) and “severe”
(grades 6–8) EEG abnormalities

Group 1: 73.7%
Group 2: 89.5%

(Continued)
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Table 1: Continued

Publication Type of data Algorithms Performance

Moghim et al. [17] Children ASPPR (Advance Seizure
Prediction via Pre-ictal
Relabeling)

Sensitivity &
Specificity 95%

Kiranyaz et al. [26] Children CNBC using MD-PSO Accuracy 93%
Samiee et al. [18] Children SVM with linear kernel

trained with stochastic
gradient descent (SGD)

Sensitivity 70.19%,
Specificity 97.74%

Mathieson et al. [24] Newborn Seizure detection algorithm
(SDA)

Accuracy 70%

Samiee et al. [18] Children Time series approach –
Kinney-lang et al. [27] Children Network analysis Accuracy 85%

3 Proposed Approach

Original EEG signals contain noise from two environments, the first is external environments,
such as electrode displacement and cable movement, and the second is internal sources, such as
muscle movements and eyes blink [28]. These noises affect the signal and as a result the signals
may incorrectly classified. Therefore, preprocessing the EEG signals prior to classification is essen-
tial and inevitable. The EEGLAB is an open-source toolbox for preprocessing EEG data [29].
It is compatible with MATLAB and is used to remove all noises and artifacts from the EEG
signals. EEG signals are comprised of five sub-band frequencies: “delta” (0.5–4 Hz), “theta”
(4–8 Hz), “alpha” (8–13 Hz), “beta” (13–30 Hz), and “gamma” (>30 Hz), given in Tab. 2. The
higher frequencies are considered as abnormal [30]. These five frequency bands present accurate
information regarding brain signals. Therefore, using specific techniques to decompose signals to
classify them is an optimal method, and the wavelet transform is a famous technique for this
purpose [30].

Table 2: Frequency bands of EEG signals

EEG signals Frequency bands (Hz)

“Delta” “0.5–4”
“Theta” “4–8”
“Alpha” “8–13”
“Beta” “13–30”
“Gamma” “>30”

3.1 EEG Data
The EEG dataset is comprised of signals that need to be processed and transformed into

a specific format so that the ML algorithms can be applied. A public CHB-MIT scalp EEG
database from Physionet.org was used for the experiment Since the current study focused on
children, the patients with age seven and less in the CHB-MIT scalp EEG database were selected
as shown in Tab. 3. Two files from each patient were used; the first file had no seizure as a
“non-seizure” record, while the second had seizures as a “seizures” record.

http://Physionet.org


CMC, 2021, vol.68, no.1 153

Table 3: CHB-MIT scalp EEG database information for age <= 7

Subject name Gender Age (year) Duration (h)

chb05 F 7 1
chb06 F 1.5 4
chb08 M 3.5 1
chb10 M 3 2
chb12 F 2 1
chb16 F 7 1
chb20 F 6 1
chb23 F 6 4

3.2 Wavelet Transform
Feature extraction is a process that represents specific information about the given input [31].

In biomedical signals, feature extraction represents specific behavior about signals, and it reduces
the dimensionality or compresses the data to analyze it. EEG signals are in time-domain that
could not provide the useful information. Wavelet transforms convert the time domain signals into
the frequency domain, and this technique works well with non-stationary signals such as EEG
signals. There are two types of wavelet tranform namely continuous wavelet transform (CWT)
and discrete wavelet transform (DWT). CWT matches the signal with the wavelet basis function
at continuous-time and frequency growing, and the data must be digitized. The equation of the
wavelet function [32] is described as follows:

ψa,b (t)= 1√
a
ψ

(
t− b
a

)
(1)

where a, b ∈ R and a �= 0, t is time, and R is a set of real numbers. As a result, the weighted
integral of the continuing basis wavelet function is expressed as the original signal. In DWT,
the inner points of the original signal with a wavelet basis are taken as discrete points, giving a
weighted sum of series function bases. There is a family of wavelet that is commonly used an
orthogonal wavelet, it is called the Daubechies family (orders 2, 3, 4, and 5 until 10) that allows
for reconstructing the original signal from wavelet coefficients [33], Daubechies order 4 has the
most affective for epileptic EEG data analysis, and the level of decomposition depends on the
sampling rate of EEG data when it was being recorded. In this paper, DWT using the Daubechies
family are employed to extract features from EEG data. The experiments were performed in signal
processing toolbox of Matlab [34].

3.3 Machine Learning Algorithm
In the current work, the following ML techniques are used:

• Logistic Regression (LR)
• Decision Tree (DT)
• Naïve Bayes (NB)
• Support vector machine (SVM)
• K-Nearest Neighbor (KNN)
• Ensemble Learning
• Linear Discriminant (LD)
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These algorithms are good candidates for classification problems [35–37]. In the current study,
these algorithms were tested on an “Intel (R) Core (TM) i7-5500” with a CPU speed of 2.40 GHz
and RAM of 16 GB; the system type was 64-bit, running on Windows 8. Seven algorithms
including LR, DT, LD, NB, SVM, k-NN, and ensemble learning were employed, and their
performance was measured.

3.4 Preprocessing
The first step in EEG signal processing is to remove artifacts. To do so, specific software must

be used, such as MATLAB or Python. Then, the feature from the signals data must be extracted
using feature extraction methods, such as wavelet transform. When features are extracted, the
signals are ready to be classified by the ML techniques. Finally, the results compared with recent
studies to evaluate it. The pipeline processing of this study is illustrated in Fig. 1.

Figure 1: Processing pipeline steps

To remove artifacts from signals, a finite impulse response (FIR) filter was applied. The FIR
filter consisted of “high-pass” and “low-pass” filters. The “high-pass” filter was used to “allow
frequencies higher than the border to pass through it while blocking low frequencies,” and the
“low-pass” filter was used to allow frequencies lower than the border to pass through it while
blocking high frequencies.

In this paper, the high-pass filter border was 0.5 Hz, and the low-pass filter border was
40 Hz. These boundary frequencies were selected because 0.5 to 40 Hz represents the range of
the five frequency bands, from delta to gamma. However, any frequencies lower than 0.5 Hz
and higher than 40 Hz are regarded as noisy signals. Since the EEG data is comprised of non-
stationary signals, DWT is suitable since it captures features in both the “time domain” and
“frequency domain.” The Daubechies family with order 9 is applied. To select a convenient level
of decomposition in the Daubechies family, wavelet decomposition spilled the original signal into
a different band of frequencies called the A’s and D’s, which are approximations and details
of the coefficient information, respectively and they complement each other [38–40]. With this
information related to high-pass and low-pass frequencies, this procedure is presented in Fig. 2
by sampling the EEG at Nyquist rate [41]. In each stage, two types of coefficients exist: details as
high-pass frequencies and approximations as low-pass frequencies, together with the number for
the level (e.g., in level one there are D1 and A1). This procedure is repeated on the approximation
side until it reaches the low-pass frequency. Fig. 3 presents the full decomposition levels of a
single signal at level 9. The band corresponding to nine levels of EEG signal decomposition are
presented in Tab. 4, and the signals are decomposed into D1 to D9 and A9.
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Figure 2: Wavelet decomposition tree of level 9

Figure 3: Decomposition levels of single signal at level 9



156 CMC, 2021, vol.68, no.1

Table 4: Signal decomposition

Decomposed signal Frequency range (Hz)

“D1” “128–256”
“D2” “64–128”
“D3” “32–64”
“D4” “16–32”
“D5” “8–16”
“D6” “4–8”
“D7” “2–4”
“D8” “1–2”
“D9” “0.5–1”
“A9” “0–0.5”

Statistics over the sets of coefficients are used to decrease the dimensionality of the extracted
feature vectors and to represent the time-frequency distribution of the EEG signals. The statistical
features selected in this study are “maximum,” “minimum,” “mean,” “median,” and “standard
deviation (STD)” of the wavelet coefficients in each original signal. Based on the feature extrac-
tion, 9-dimensional feature sets (from D1 to D9 and A9) over the five statistics are calculated.
Consequently, average of the statistical features of the wavelet coefficients for each channel is
calculated. As an example, Tab. 5 presents the extracted features in five statistics sets of two
signals in the various decomposition levels for patient 16. The coefficients are calculated by the
signal processing toolbox of Matlab.

Table 5: Statistical features of wavelet coefficients of two signals in patient 16

Signals Statistics
features

Wavelets coefficients

D1 D2 D3 D4 D5 D6 D7 D8 D9 A9

1 Mean 0 0 0 0 0 0 −0.006 0.012 0.015 −0.002
Max 322.236 1562.663 1255.958 579.812 921.728 1089.348 1223.869 818.552 555.981 118.823
Min −296.95 −1586.65 −1265.84 −434.34 −654.67 −873.745 −1355.68 −1046.1 −640.02 −110.76
STD 6.443 27.733 27.615 28.169 59.41 91.627 109.003 101.676 64.797 17.737
Median −0.006 −0.013 0.066 −0.022 0.06 0.154 0.234 0.168 0.008 −0.102

2 Mean 0 0 0 0 0 0 0 0 0.001 −0.001
Max 0.062 0.187 0.046 0.455 0.92 1.226 2.865 7.053 7.328 4.167
Min −0.06 −0.162 −0.21 −0.593 −1.15 −1.75 −1.849 −5.251 −5.459 −15.373
STD 0.002 0.004 0.002 0.002 0.006 0.032 0.086 0.097 0.12 0.156
Median 0 0 0 0 0 0 0 0 0 0.001

3.5 Performance Parameters
To classify the features, as shown in Tab. 5 with statistical features as rows and the 9 levels of

wavelet decomposition as columns were produced and imported into the classification learner tool-
box of Matlab to apply the proposed ML techniques. In this study, three performance parameters
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were used to evaluate the proposed model, namely, accuracy, sensitivity, and specificity according
to the following equations [42]:

accuracy= number of correct classes
number of classes

× 100 (2)

sensitivity= TP
TP+FN

× 100 (3)

specificity= TN
TN +FP

× 100 (4)

Where, “TP/FP” is a “true/false” positive, and “TN/FN” is a “true/false” negative class after
testing the model. The accuracy is a common method used to measure the classifier performance
by dividing the number of correct classes by the number of all classes multiply by 100. Whereas
the sensitivity and the specificity are statistical measures for classification performance. Sensitivity
measures the true positive value and specificity measures true negative value [43].

4 Results and Discussion

After extracting useful features from the EEG signals, seven algorithms were applied to
classify the data into “epileptic” and “non-epileptic” seizures, and the performance parameters
were calculated to evaluate the model. This section presents the results as well as a comparison
of the study with previous studies that used the same dataset. The data were divided into two
sets: training and testing, with 90% and 10% division, respectively for each classifier. Then, the
sensitivity, specificity, and accuracy for each classifier were calculated for the entire dataset and
averaged. The results of the performance measurement parameters for all patients equal and less
than 7 years old are presented in Tab. 6 and depicted in Fig. 4 as well. It can be observed that the
best performance was achieved with Ensemble learning which achieved 100% accuracy overall and
indicating that the model predicted all classes successfully. SVM achieved good accuracy which is
98% overall. The lowest accuracies were achieved with LD and LR, with 70.2% and 73% overall,
respectively. NB, KNN, and DT classifiers achieved satisfactory accuracies with 87.5%, 90.2%,
and 92.3%, respectively. In the KNN model, the number of neighbors (K) that achieved the best
accuracy was 3 (while 1 and 2 achieved the same accuracy but lower than 3). When the ensemble
learning model was applied, the bagged tree method was used to solve the classification problems
and the DT was used for building the learner type of ensemble classifier.

Table 6: Performance results for all patients

Classifier Performance
parameter

Patient number

5 6 8 10 12 16 20 23 Overall

SVM Acc. (%) 92.7 100.0 100.0 100.0 100.0 100 96.0 95.2 98.0
Sen. (%) 95.2 100.0 100.0 100.0 100.0 100 96.0 95.2 98.3
Spec. (%) 90.0 100.0 100 100.0 100.0 100 96.0 95.2 97.7

k-NN Acc. (%) 80.5 100.0 88.1 95.2 82.0 96 94.0 85.7 90.2
Sen. (%) 76.2 100.0 76.2 100.0 80.0 92.3 96.0 85.7 88.3
Spec. (%) 85.0 100.0 100 90.5 84.0 100 88.0 85.7 91.7

(Continued)
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Table 6: Continued

Classifier Performance
parameter

Patient number

5 6 8 10 12 16 20 23 Overall

Naïve Bayes Acc. (%) 75.6 92.9 97.6 73.8 86.0 100 100.0 73.8 87.5
Sen. (%) 71.4 90.5 95.2 70.0 76.0 100 100.0 85.7 86.1
Spec. (%) 80.0 95.2 100 85.7 96.0 100 100.0 61.9 89.9

Linear discriminant Acc. (%) 61.0 81.0 71.4 69.0 80.0 76.9 70.0 52.4 70.2
Sen. (%) 71.4 85.7 42.9 71.4 68.0 53.9 80.0 61.9 66.9
Spec. (%) 50.0 76.2 100 66.7 92.0 100.0 60.0 42.9 73.5

Logistic regression Acc. (%) 61.0 78.6 85.7 71.4 82.0 78.8 74.0 52.4 73.0
Sen. (%) 71.4 81.0 71.4 71.4 72.0 57.7 64.0 61.9 68.9
Spec. (%) 50.0 76.2 100 71.4 92.0 100.0 84.0 42.9 77.1

Decision tree Acc. (%) 85.4 95.2 92.2 85.7 98.0 100.0 94.0 88.1 92.3
Sen. (%) 85.7 95.2 90.5 85.7 100.0 100.0 92.0 100.0 93.6
Spec. (%) 85.0 95.2 95 85.7 96.0 100.0 96.0 76.2 91.2

Ensemble learning Acc. (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Sen. (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Spec. (%) 100.0 100.0 100 100.0 100.0 100.0 100.0 100.0 100.0
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Figure 4: The chart of aggregate performance results

There are various ways to assess classifier performance like scatter plots, confusion matrices,
and receiver operation characteristic (ROC) curves. Presented below are the three assessment
methods as an example for patient 16. The scatter plot of the LD model is presented in Fig. 5.
Further, the classifier result after training the data is presented, in which the correct and incorrect
classes are denoted with a dot and as X, respectively, while the different colors refer to different
classes. For the LD model, confusion matrix is presented in Fig. 6 as an example and the classifier
performance for each class is presented. The rows present the predicted classes, while the columns
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display the actual classes. The blue cells denote that the classifiers are performing well, while the
red cells denote that they are not. The classifier predicted the true negative classes correctly and
predicted twelve of the false-negative classes incorrectly. It appears that the classifier peforms well
in the true classes and vice versa.

Figure 5: Scatter plot of the LD model

Figure 6: Confusion matrix of the LD model
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Figure 7: ROC curve of the NB model

The ROC curve is another method to assess model performance. It provides the TP rate
versus the FP rate of the classifier in the chart. For example, Fig. 7 illustrates the ROC curve
of the NB model for patient 16 as an example. The red marker displays the value of the “true
positive” and “false positive” of the classifier. The blue area under the curve indicates the quality
of the classifier. A larger area under the curve indicates better performance and vice versa. The
accuracies of the seven models were satisfactory, indicating that the proposed method worked
well on the EEG data. Ensamble learning and SVM model achieved high accuracies overall with
100% and 98%, respectively. Based on the previous studies presented in the literature review,
the SVM classifier demonstrated high performance. From the experiment, it is observed that the
outperformed accuracies were obtained by the Ensemble learning model, which achieved 100%
overall which is the highest accuracy achieved among the seven models. On the other hand, the
LD and LR models achieved the lowest accuracies among the algorithms, with 70.2% and 73% for
LD and LR overall, respectively. In comparing the results with other studies that used the same
EEG dataset the Ensemble learning method produced better sensitivity, specificity, and accuracy,
at 100%. According to Tab. 7, proposed model significantly outperformed recent studies, and with
lesser complexity. Satirasethawong et al. [44] proposed an algorithm for evaluating their methods
of epileptic seizure classification. This algorithm was developed based on static methods. They
used one performance parameter, namely sensitivity (in [45,46] they also used only the sensitivity
as a performance parameter), and it achieved good results, at 88.50%. The results in [47] were
superior to those of [48], and the KNN performed well at 98%. Compard to the proposed work,
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no methods achieved 100%, but overall, their results were satisfactory. In [49–51], the authors used
a Convolutional neural network (CNN) classifier, and this demonstrated a significant performance
reach to 99% in [51] but with a huge complexity. Nonetheless, complexity of the proposed method
is adequate enough for the application at hand. Because major time investment is required for
processing of EEG signals. Once it is done, identification task is of moderate complexity and
appropriate for such the soft real time application. Moreover, the techniques are applied on
offline dataset.

Table 7: Comparison of performance of different classifiers in recent studies

Author Year Classifier Sensitivity (%) Specificity (%) Accuracy (%)

Satirasethawong
et al. [44]

2015 Amplitude integrated EEG 88.50 Not shown Not shown

Chu et al. [45] 2017 Chu et al., algorithm 86.67 Not shown Not shown
Alotaiby et al. [46] 2017 Linear discriminant 89 Not shown Not shown
Samiee et al. [47] 2017 Random forest 66.35 99.65 82.79

Linear-kernel SVM 61.69 99.49 83.00
Log-reg 71.74 99.09 85.41

Bhattacharyya
et al. [48]

2017 RF 99.57 97.91 99.41
C4.5 99.09 95.44 98.64
FT 99.30 95.58 98.90
Bayes Net 98.70 91.93 97.98
Naïve Bayes 95.74 88.46 95.16
K-NN 98.82 94.02 98.35

Alickovic
et al. [52]

2018 SVM 99.7 99.8 99.7
K-NN Not shown Not shown 98.5
MLP Not shown Not shown 99.2
RF Not shown Not shown 99.3

Yuan [53] 2018 Bayesian linear discriminant 95.65 95.75 95.74
Park et al. [49] 2018 CNN 89.2 91.9 90.5
Harpale and
Bairagi [54]

2018 Fuzzy classifier 96.52 95.34 96.48

Wei et al. [50] 2019 CNN 72.1 95.8 84
Liang et al. [51] 2019 CNN 84 99 99
Raghu et al. [55] 2019 SVM 97.5 Not shown Not shown
Proposed work 2020 k-NN 88.3 88.3 90.2

Linear discriminant 66.9 73.5 70.2
Logistic regression 68.9 77.1 73
SVM 98.3 97.7 98
Naïve Bayes 86.1 89.9 87.5
Decision tree 93.6 91.2 92.3
Ensemble learning 100 100 100

5 Conclusion and Future Work

Epilepsy is a neurological disease that affects approximately 1% of the world’s population.
Seizures are a common symptom of epilepsy, and recently they have been used to diagnose
the disease in computer science research by using machine learning techniques. To observe the
seizures, the brain activity is recorded EEG signals, which is used as data in epilepsy classification
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processes. The goal of this work is to enhance the performance of detecting pediatric epilepsy by
analyzing EEG data and classifying it into “epileptic” and “non-epileptic” seizures by applying
various machine learning techniques as well as ensamble learning technique. To achieve this goal,
the patients with 7 years old and less from the EEG CHB-MIT scalp database were analyzed by
using EEGLAB (a toolbox in MATLAB) to remove the artifacts from the EEG signals. DWT
with Daubechies family order was used since the signals were non stationary. In the current study,
seven algorithms were used: KNN, DT, LD, SVM, ensemble learning, NB, and LR. The Ensemble
learning and SVM models in this work outdo the performance over other models in diagnosing
epileptic seizures in the literature. Future work could include creating a new method and tools
to analyze signals accurately and easily. This would assist in diagnosing epileptic seizures and
other neurological diseases in a shorter time and with fewer processing steps. In addition, further
advanced algorithms could be applied, including deep learning and extreme learning machines,
etc. More importantly, the research should be carried out on the detection of various types of
seizures rather than just presence or absense.
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