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Abstract: The deadliest type of skin cancer is malignant melanoma. The
diagnosis requires at the earliest to reduce the mortality rate. In this study,
an efficient Skin Melanoma Classification (SMC) system is presented using
dermoscopic images as a non-invasive procedure. The SMC system consists of
four modules; segmentation, feature extraction, feature reduction and finally
classification. In the first module, k-means clustering is applied to cluster the
colour informationof dermoscopic images.The secondmodule extractsmean-
ingful and useful descriptors based on the statistics of local property, parame-
ters of Generalized Autoregressive Conditional Heteroscedasticity (GARCH)
model of wavelet and spatial patterns by DominantRotated Local Binary Pat-
tern (DRLBP). The thirdmodule reduces the features by the t-test, and the last
module uses deep learning for the classification. The individual performance
shows that GARCH parameters of 3rd DWT level sub-bands provide 92.50%
accuracy than local properties (77.5%) and DRLBP (88%) based features
for the 1st stage (normal/abnormal). For the 2nd stage (benign/malignant),
it is 95.83% (GRACH), 90% (DRLBP) and 80.8% (Local Properties). The
selected 2% of features from the combination gives 99.5% and 100% for 1st
and 2nd stage of the SMC system. The greatest degree of success is achieved
on PH2 database images using two stages of deep learning. It can be used as a
pre-screening tool as it provides 100% accuracy for melanoma cases.

Keywords: Dermoscopic images; skin cancer; melanoma; deep learning;
autoregressive models

1 Introduction

The decrease in mortality rate due to skin cancer may be attributed to several treatment and
detection factors. Due to the vast amount of research in both categories, significant advances
have seen over the past 30 years. One of the prognostic factors for cancer cure is detection at
the earliest. Currently, the advancement in imaging techniques and computerized system provides
better results. The imaging techniques used for skin cancer diagnosis is dermoscopy, where a
magnified visualization of the affected skin region is acquired. It shows the morphological struc-
tures that cannot be found by naked eyes. The accuracy of skin melanoma diagnosis has been
improved with the use of many algorithms, such as ABCD rule [1], 7-point checklist [2] and
pattern analysis [3]. However, the interpretation is time-consuming and also it is subjective based
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on skills of dermatologists. To overcome these difficulties, computerized systems are developed to
help the dermatologists.

Among the various components in the computerized system, feature extraction and classifica-
tion are the main components. Many spatial and spectral features are utilized in the former steps,
and many machine learning methods are developed in the later stage for the classification. Apart
from ABCD rule [1], quantitative measures such as the shape of the affected region [4], colors and
structural differences [5,6] are used for effective classification. Textural patterns play a vital role
to extract dominant features in the medical domain. These patterns include Haralick features [7]
from gray level co-occurrence matrix, Laws texture features [8], Local Binary Pattern (LBP) [9]
and their extensions.

Due to the advancement in multiresolution analysis, frequency domain features are added to
the feature vector to increase accuracy further. Some of them are Discrete Wavelet Transform
(DWT) [10], Multi wavelet transform [11], Contourlet [12], Curvelet [13], and Shearlet [14]. They
can be used for the diagnosis independently or combined with the statistical features for better
performance. The novelty is the choice of feature vectors used for effective classification of
dermoscopic images. DWT will be used in conjunction with GARCH [15] to generate one of the
feature vectors used with other features. In the diagnosis stage, many machine learning approaches
are used for classification such as SVM [11], Naive Bayes [12], k-nearest neighbour [16], and
decision trees [17].

The evaluation of deep learning [18–20] helps the computerized system highly effective in
melanoma diagnosis, and thus this study uses deep learning as a classifier. The objective is to
design a computerized SMC system with a high level of sensitivity and specificity. The rest of
the paper is as follows: Section 2 discusses SMC system’s design and a summary of the results
obtained in this study are discussed in Section 3. The conclusion is given in the last Section.

2 Related Works

This Section discusses the design of the SMC system. It consists of four sequential steps
which are illustrated in Fig. 1. Section 2.1 explains the lesion segmentation by a clustering
approach. Section 2.2 describes how the features are extracted from dermoscopic images. The
feature reduction technique is described in Section 2.3, and Section 2.4 explains the deep learning
approach for the classification.

2.1 Segmentation
The exact skin cancer region is segmented using k-means clustering approach on RGB colour

image. Before segmentation, the noises and hair in the images are removed by averaging filter
with a predefined window size of 21× 21. The basic k-means clustering approach is applied to
segment gray scale images [21]. As the dermoscopic images are colour images and the colour
information is very useful for extracting skin lesions, the k-means clustering is modified to accept
colour images. The visual differences can be easily quantifiable in L ∗ a ∗ b∗ colour space than
RGB mode. The conversion formulae can be found in [21] and it is known that all colour
information can be visible in only two channels; a∗ and b∗. k-means clustering is easily applied
to cluster the colour information by Euclidean distance metric. In this study, k is set to 3, so
that exact lesion area, background and unaffected skin areas are clustered. From the clusters, skin
lesion area can be easily separated from the other two clusters. Fig. 2 shows the results of the
segmentation approach.
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Figure 1: Block diagram of the SMC system

2.2 Feature Extraction
Feature extraction aims to preserve the class discriminating information so that best class

separation is achieved for least computational complexity. A classifier then uses these to decide
whether the region is normal or abnormal. The advantage of extracting descriptors is that they
will be a more compact representation of the segmented region than the image pixels alone if
carefully chosen. The features are usually chosen based on the domain under consideration and in
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this study fall into three categories. The first group is based on the statistics of local property, and
the second group consists of the parameters of the GARCH model of wavelet. Thirdly, spatial
patterns of skin lesions are also recorded.

Figure 2: Outputs of segmentation of the SMC system

2.2.1 Local Properties
There are four local properties extracted in this study, mean (μ), standard deviation (σ ),

skewness (S) and kurtosis (K). They are computed from the central moments about the mean.
The first moment, Mean (μ) is simply the total of pixel intensities (PI) divided by the number of
pixels (n) in the dermoscopic images (Eq. (1)).

μ= 1
n

n∑
i=1

PIi (1)

The second moment is called variance and its positive square root is called σ (Eq. (2)). It
measures how much a PI in the dermoscopic images can be expected to deviate from μ. A low
μ indicates that the PI is clustered about σ while high μ means the opposite.

σ =
√√√√1
n

n∑
i=1

(PIi−μ)2 (2)
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The third standardized central moment is skewness (Eq. (3)), and the fourth standardized
central moment is called kurtosis (Eq. (4)).

S=
1
n

∑n
i=1 (PIi−μ)3(

1
n

∑n
i=1 (PIi−μ)2

) 3
2

(3)

K =
1
n

∑n
i=1 (PIi−μ)4(

1
n

∑n
i=1 (PIi−μ)2

)2 − 3 (4)

Using Eqs. (1)–(4), the local proprieties are computed for each colour channel and stored in
the feature database.

2.2.2 GARCH Features
To boost the performance of the SMC system, GARCH model is applied in the wavelet

domain. The GARCH (p, q) for εt is as follows [15]:

εt = ztσt (5)

and

σ 2
t = α0+

q∑
i=1

αiε
2
k−i+

p∑
j=1

βjσ
2
k−j

where q> 0; p≥ 0; α0 > 0; αi ≥ 0; βj ≥ 0; 1≤ i≤ q; 1≤ j ≤ p; and
q∑
i=1

αi+
p∑
j=1

βj < 1 (6)

where αi and βj are GARCH parameters and these parameters are estimated using maximum
likelihood estimation [15] for unit p and q. zt and σt represents random variable and conditional
standard deviation. These two variables are computed from a Gaussian distribution which has
unit (1) variance and zero (0) mean.

At first, the dermoscopic images are transformed into DWT domain which is a powerful tool
used in many pattern recognition techniques [22]. DWT is very useful to increase the accuracy
of the SMC system as it provides localized frequency information. Fig. 3 shows a DWT decom-
position of a dermoscopic image at two levels. While applying DWT on the dermoscopic image,
it is observed that it provides four sub-bands by applying low pass and high pass filter in a
predefined manner.

It is noted that the GARCH model is efficient only when the distribution of data has a heavy
tail [23]. Thus, the coefficients’ distribution in each sub-band in the DWT domain is tested for a
heavy tail. It is achieved by calculating the K value using Eq. 4 which demonstrates whether they
have a heavy tail or not. For a Gaussian distribution, K is three. If the K value of any data is
greater than three, it indicates a heavier tail than the Gaussian distribution. Hence, the GARCH
parameters are extracted from the sub-bands which have K of more than three.
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Figure 3: DWT decomposition of a dermoscopic image at two levels

2.2.3 DRLBP Features
DRLBP [24] is an extended version of LBP [9]. LBP features are rotational invariant due to

the fixed order of the weights. To overcome this limitation, the weights are arranged based on a
reference direction which is computed locally. It is defined as

D= argmax
n∈(0,1,...N−1)

|in− ic| (7)

where ic and in are intensity of central pixel and nth neighborhood pixels respectively. The DRLBP
is defined based on D is given below.

DRLBP=
N−1∑
n=0

s (in− ic) · 2mod(n−D,N),

s (in− ic)=
{
1 in ≥ ic

0 in < ic
(8)

It is evident from the Eq. (8), the weights depend on D and thus DRLBP satisfies the rotation
invariant property. DRLBP gives the spatial pattern in the dermoscopic images. In this study, they
are computed for each colour channel and stored in the feature database. The feature extraction
is also used in [25,26].

2.3 Feature Reduction
A large set of features makes the classification system extremely computationally intensive.

The complexity of the SMC system increases more when the combination of features used in the
classifiers. Thus a feature reduction step is necessary to eliminate the poor performing features
that affect the classifier’s performance. The significant features are identified using t-test [27].
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Let us consider features from two classes; c1 of n1 samples and c2 of n2 samples. A statistical
value called as t is computed for a particular feature (f ) in the feature set is defined by

t (f )= μc1 (f )−μc2 (f )√(
σ 2
c1 (f ) /n1+ σ 2

c2 (f ) /n2
) (9)

where μx (f ), and σx (f ) are the mean and standard deviation of f of xth class. The application
of Eq. (9) for all features produces t value. This value indicates the significance of features. They
are sorted and features having high t values are selected.

2.4 Classification by Deep Learning
The non-linear relationship between the features of different classes can be modeled by neural

networks which consist of input layers (number of features), hidden layer (normally 1) and output
layer (number of classes). The information in the bracket shows the number of layers in each
layer. The relationship between the features can be effectively modeled if the number of the
hidden layer is increased. This is called deep learning [28] and in this study, it is applied for
the classification.

The error between the actual and desired output is computed at first. The weights are updated
iteratively while computing the error signal in the training phase. The update is done using
the mean-squared error function. In the output layer, the error is multiplied using the sigmoid
activation function. This process is stopped when the error is minimized at a predefined level by
using the backpropagation algorithm. It is a descent algorithm that propagates the error from the
output layer to lower layers. The weights are adjusted for the dampening oscillations with the help
of learning rate and momentum factor so that the error rate is reduced in a decent direction. As
the SMC system outputs a binary decision, a linear function is used in the output layer.

3 Results and Discussion

The developed SMC system is analyzed using publically available dermoscopic image
databases; PH2 [29,30]. It is extremely useful for the development and testing of any computerized
skin cancer classification system. Also, they included ground truth data that describes the types
of abnormal severity present in the dermoscopic images. The system is applied to classify the
dermoscopic images into normal and abnormal categories in the first stage and then classified
into benign or malignant in the second stage. The various details about the databases are listed
in Tab. 1.

Table 1: Basic information about the images used in this study

Description Parameters

Name of the database PH2

#Normal images 80
#Benign images 80
#Malignant images 40
#Resolution 768× 560
#Type of images RGB
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The accuracy (Ac) of the system can be broken into two important measures; sensitivity (Sn)
and specificity (Sp). Before defining these two terms, four more variables are to be computed from
the SMC system’s outputs. When the system correctly identifies a positive result, it is referred to
True Positive (TP) and if the system incorrectly identifies a positive result, it is referred as False
Positive (FP). Similarly, two more terms can be defined and referred to True Negative (TP) and
False Negative (FN) for identifying negative results. The definition of sensitivity and specificity
are as follows:

Sn= TP
TP+FN

(10)

Sp= TN
TN +FP

(11)

Ac = TP+TN
TP+FN +TN +FP

(12)

There is no misclassification for a perfect system, which means that sensitivity and specificity
will both be 100%. A high sensitivity measure can lead to a decrease the mortality rate. These
measures are computed using k-fold (10-fold) cross-validation testing scheme where the classifier
uses k-1 folds in training, and the remaining fold is tested.

As the GARCH features are extracted from DWT with many resolution levels of decompo-
sition, the local properties and DRLBP are first analyzed independently. All normal images are
considered a group of negative samples and abnormal images as positive samples in this stage.
Then, k-fold cross-validation is employed for splitting images into these two groups for training
and testing purposes. The confusion matrices obtained from these features are given in Fig. 4.

(a) (b)

Figure 4: Confusion matrices of the 1st stage SMC system (a) local properties (b) DRLBP
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It is evident from the Fig. 4 that the DRLBP features provide better performance than
local properties of dermoscopic images. This is because DRLBP extracts spatial patterns that
are available in the different classes of images effectively. It increases the performance by ∼10%
than the performance of local properties in terms of sensitivity, specificity and accuracy. The
GARCH parameters are extracted from different DWT Levels (DWT-L), and their performances
are analyzed. Tab. 2 shows the performance of the 1st stage SMC system using GARCH features
with DWT levels.

Table 2: Performance of 1st stage SMC system using GARCH features with DWT

DWT-L Performance measures

TP FN TN FP Sn Sp Ac

1 100 20 70 10 83.33 87.50 85.00
2 103 17 72 8 85.83 90.00 87.50
3 109 11 76 4 90.83 95.00 92.50
4 105 15 73 7 87.50 91.25 89.00

It is observed that over 90% of accuracy is obtained by GARCH parameters extracted from
the sub-bands of 3rd level DWT. It is well known that more information can be obtained when
increasing the resolution levels. However, the features obtained from higher resolution levels reduce
the system’s accuracy due to the redundant data that can be seen at 4th level DWT features. Also,
it is evident from Tab. 2 and Fig. 4, the GARCH features have better performance than others.

Applying the 1st stage SMC system is reasonable while using the features independently
but insufficient in the medical field that requires more accuracy to decrease the mortality. The
redundant features in each group, which affects the performance, are eliminated by a feature
reduction approach to obtain more accuracy. Tab. 3 shows the performance of the 1st stage SMC
system after the feature reduction approach.

After feature reduction, the highest performance is 99.17% sensitivity and 100% specificity
for 2% selected features. With more features, both performance measures are reduced and thus
the system select only 2% features from the combination of features as the best set to classify
abnormal images. Fig. 5 shows the SMC system’s accuracy for all possible feature set used in the
1st stage. Fig. 6 Confusion matrices of 2nd stage SMC system obtained using local properties and
DRLBP respectively.

Table 3: Performance of the 1st stage SMC system using after feature reduction

SF (%) Performance measures

TP FN TN FP Sn Sp Ac

1 115 5 79 1 95.83 98.75 97.00
2 119 1 80 0 99.17 100 99.50
3 112 8 78 2 93.33 97.50 95.00
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Figure 5: Accuracy of the SMC system for all possible feature set used in the 1st stage

(a) (b)

Figure 6: Confusion matrices of the 2nd stage SMC system (a) local properties (b) DRLBP

It is evident from the 2nd stage SMC system; DRLBP has a maximum specificity of 86.8%
and sensitivity of 92.5%. Tab. 4 shows the performance of the 2nd stage SMC system using
GARCH features with DWT levels.

The best features which perform better than any other GARCH features are extracted from
the 3rd level. The sensitivity of 3rd level GARCH features is increased ∼5% than other features.
Tab. 5 shows the 2nd stage SMC system’s performance after feature reduction approach.
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Table 4: Performance of the 2nd stage SMC system using GARCH features with DWT

DWT-L Performance measures

TP FN TN FP Sn Sp Ac

1 35 5 72 8 87.50 90.00 89.17
2 36 4 75 5 90.00 93.75 92.50
3 38 2 77 3 95.00 96.25 95.83
4 36 4 74 6 90.00 92.50 91.67

Table 5: Performance of the 2nd stage SMC system using after feature reduction

SF-% Performance measures

TP FN TN FP Sn Sp Ac

1 37 3 79 1 92.50 98.75 96.67
2 40 0 80 0 100.00 100.00 100.00
3 36 4 77 3 90.00 96.25 94.17

After feature reduction, the best performing features for 100% sensitivity and specificity are
2% features from the feature reduction approach. Fig. 7 shows the SMC system’s accuracy for all
possible feature set used in the 2nd stage.
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Figure 7: Accuracy of the SMC system for all possible feature set used in the 2nd stage

To visually analyze the SMC system, which uses three types of features and a combination
of these features, ROC is used. Fig. 8 shows the ROCs of 1st and 2nd stage of SMC system. The
classification is significantly better for the best-selected features (2% features) than others in both
stages. The areas under the curve for the 1st stage and 2nd stage of SMC systems are 0.775 &
0.808 (Local properties), 0.88 & 0.9 (DRLBP), 0.925 & 0.9583 (GARCH of 3rd Level of DWT)
and 0.99 & 1 (Best Selected Features) respectively.
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Figure 8: ROCs of 1st and 2nd stage SMC system

4 Conclusion

An efficient SMC system which combines segmentation, feature extraction, feature reduction
and classification stages into one automated operation is developed and investigated for skin
cancer diagnosis. The use of local properties, GARCH parameters from 3rd DWT level sub-
bands and DRLBP to classify skin melanoma images is tested. Deep learning is tested using PH2

database images and gives almost near-ideal system performance in terms of accuracy, sensitivity
and specificity. Also, it is found that GARCH modelling can indeed be used for skin cancer
diagnosis, and there are indeed performance differences in these features. The sensitivity of 1st
stage and 2nd stage of the SMC system are 99.17% and 100% respectively, with all normal images
are perfectly classified. The greatest degree of success is achieved on PH2 database images using
two stages of deep learning. It can be used as a pre-screening tool as it provides 100% accuracy
for melanoma cases.
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