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Abstract: Background: A brain tumor re�ects abnormal cell growth. Chal-
lenges: Surgery, radiation therapy, and chemotherapy are used to treat brain
tumors, but these procedures are painful and costly. Magnetic resonance imag-
ing (MRI) is a non-invasive modality for diagnosing tumors, but scans must
be interpretated by an expert radiologist. Methodology: We used deep learning
and improved particle swarm optimization (IPSO) to automate brain tumor
classi�cation. MRI scan contrast is enhanced by ant colony optimization
(ACO); the scans are then used to further train a pretrained deep learning
model, via transfer learning (TL), and to extract features from two dense
layers. We fused the features of both layers into a single, more informative
vector. An IPSO algorithm selected the optimal features, which were classi�ed
using a support vector machine. Results: We analyzed high- and low-grade
glioma images from the BRATS 2018 dataset; the identi�cation accuracies
were 99.9% and 99.3%, respectively. Impact: The accuracy of our method is
signi�cantly higher than existing techniques; thus, it will help radiologists to
make diagnoses, by providing a “second opinion.”

Keywords: Brain tumor; contrast enhancement; deep learning; feature
selection; classi�cation

1 Introduction

Brain tumors are the 10th most common type of cancer worldwide [1,2], and glioma is
the most prevalent brain tumor. A low-grade glioma (LGG) can be cured if diagnosed early;
high-grade gliomas (HGGs) are malignant. Generally, an LGG does not spread [3]. The World
Health Organization grades benign and malignant tumors as I, II and III, IV, respectively [4].
Symptoms include dif�culty speaking, short-term memory loss, frequent headaches, blurred vision,
and seizures; these vary by tumor size and location. Magnetic resonance imaging (MRI) is used to
visualize brain tumors. However, accurate classi�cation is not possible with a single MRI sequence;
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multiple MRI sequences (T1, T1 with contrast enhancement, T2, and FLAIR [3] are required).
In the United States alone, approximately 22,850 patients are diagnosed with brain tumors annu-
ally [5]; the number in 2019 was 23,890 (13,590 males and 10,300 females), including 18,020 deaths
(10,190 males and 7,830 females). MRI is much more ef�cient than computed tomography; the
amount of radiation is lower, while the contrast is higher. Analysis of MRI scans is dif�cult [6];
an automated approach is required [7]. The typical analytical steps include preprocessing, feature
extraction and reduction, and classi�cation. Some researchers have used image segmentation for
tumor detection, while others have focused on feature extraction for classi�cation based on tumor
intensity and shape [8,9]. Features extraction is an essential step in disease classi�cation [9].
Based on the features, the tumor is identi�ed by feature properties including intensity, shape,
etc. More recently, deep learning gives more impressive results for medical infection classi�cation.
Deep learning is invaluable for detecting and classifying tumors [10]. There are several pretrained
models [11] that classify extracted features using supervised learning algorithms such as Softmax,
support vector machine (SVM), naïve Bayes, and K-nearest neighbor (KNN) [12].

In medical imaging, deep learning shows huge performance for both disease detections and
classi�cation. The major medical diseases are brain tumors [13], skin cancers [14], lung can-
cers [15], stomach conditions [16], retinal injuries [17], and blood diseases [18], among other
conditions [19–21]. Brain tumor analysis remains challenging [22]; several techniques are available
but none of them are 100% accurate [23,24]. Most techniques are based on machine learning [25],
which facilitates early tumor detection [26]. Convolutional neural networks (CNNs) [27], K-means
algorithms [28], decision-level fusion [29], machine learning-based evaluation [30], and deep learn-
ing [31] approaches have all been used. Tanzila et al. [32] accurately detected tumors using feature
fusion and deep learning. A grab-cut method was used for segmentation. The geometry of a
transfer learning (TL) model was �ne-tuned to identify features, and a serial-based method was
used to fuse them. All features were optimized by entropy. The tumor detection accuracy was
98.78% for BRATS 2015, 99.63% for BRATS 2016, and 99.67% for BRATS. Schadeva et al. [33]
improved segmentation and brain tumor classi�cation accuracy using an active contour model that
focused on the area of interest; features were extracted, reduced by principal component analysis,
and classi�ed using an automated neural network. The classi�cation accuracy was 91%. Mohsen
et al. [34] used deep learning for brain tumor classi�cation. MRI scans were segmented using
the fuzzy c-means approach and discrete wavelet transformation was applied to extract features.
A deep neural network performed the classi�cation with an accuracy of 96.97%. The linear
discriminant analysis (LDA) accuracy was 95.45% and that of sequential minimal optimization
(SMO) was 93.94%. The deep learning network resembled a CNN, but required less hardware and
was much faster.

Problem Statement: The major challenges in brain tumor classi�cation are as follows: (i) man-
ual evaluation is dif�cult and time-consuming; (ii) tumor resolution is low and irrelevant features
may be highlighted; (iii) redundant features cause classi�cation errors; and; (iv) tumors grades
I–IV look relatively similar. To resolve these issues, we present an automated classi�cation method
using deep learning and an improved particle swarm optimization (IPSO) algorithm.

Contributions: The major contributions of this study are as follows: (i) MRI scan contrast is
improved using an evolutionary approach, i.e., ant colony optimization (ACO); (ii) a pretrained
VGG-19 model is �ne-tuned via TL; (iii) features are extracted from two different dense layers
and fused into one matrix; and, (iv) the IPSO is combined with a bisection method for optimal
feature selection.
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The remainder of this manuscript is organized as follows. The ACO, improvement of the
original image contrast, TL -based �ne-tuning, serial feature fusion, and IPSO are discussed in
Section 2, the HGG and LGG results are presented in Section 3, and the conclusions are provided
in Section 4.

2 Proposed Methodology

We used deep learning for multimodal classi�cation of brain tumors. The contrast of the
original images was improved by ACO, and the images were used to train a CNN. TL of brain
images was used to enhance a pretrained model. Features computed by different layers were
aggregated, and the IPSO was used to select optimal features that were then classi�ed using a
one-against-all multiclass SVM (MSVM) classi�er. The overall architecture is shown in Fig. 1.

Figure 1: Proposed architecture diagram of multimodal brain tumor classi�cation using
deep learning

2.1 Contrast Enhancement
Contrast enhancement is very important because unenhanced images exhibit low contrast,

noise, and very poor illumination [29]. Several enhancement techniques are available; we used an
ACO-based approach.

Initial Ant Distribution—The number of ants is calculated as:

AN =
√
l×w (1)

where l is the length of the image, w is the width, and AN is the number of ants randomly placed
in the image (one pixel= one ant).

Decision-based on Probability—The probability that ant n moves from pixel (e, f) to pixel (g, h)
is given by:

Pef =
(ρef )a(ωef )buef (1)∑
f ∈Q(ρef )a(ωef )buef (1)

(2)

When e, f ∈�
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Here, all pixel locations are written e, f ∈ �. ρef is the pheromone level. ωef the visibility,
and is calculated as follows:

ωef =Hef (3)

The probability equation shows that 1-plus re�ects the stepwise directional �uctuation:

1= 0, π/4, π/2, 3π/4, π (4)

where u(1) is the weight function. Together with the function above, the weight function ensures
that sharp turns by ants are less frequent than gentle ones, which we refer to as “probabilistic
forward bias.”

Rule of Transition—Mathematically, the rule of transition is expressed as:

s=
{

arg
{
maxj∈Q

[
(ρij)a(ωij)buij(1)

]}}
, when q< q◦ (5)

where ij is the pixel location, from which ants can travel to pixel (k, l). If q> q◦ , an ant can visit
the next pixel [see Eq. (2)].

Updating Pheromone Levels—An ant can move from pixel ij to pixel (k, l), as stated above,
and the pheromone trajectory is given by:

ρij= (1− η) .ρij+ η.1ρij (6)

1ρij=ωij (7)

A new trajectory is obtained after each iteration, as follows:

ρij= (1−2) .ρij+2.ρ◦ (8)

where 2(0 < 2 < 1) is the proportion of pheromone that evaporates and ρ◦ is the initial
pheromone concentration [35]. Applying the above steps to all image pixels yields an enhanced
image (Fig. 2).

Figure 2: Visual description of contrast stretching results on original images
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2.2 Convolutional Neural Network
A CNN is a type of deep neural network that can be used for image recognition and

classi�cation, and object detection [36]. A CNN requires minimal preprocessing. During training
and testing, images pass through kernel layers, and are pooled and then fully connected; this
is followed by Softmax classi�cation. Probability values range from 0 to 1. Several pretrained
CNN models are available, including VggNet and AlexNet [37]. VggNet has valuable medical
applications [38]. We used a pretrained VGG-19 model [39] which includes 16 convolutional layers
(local features), 3 fully connected layers, and max-pooling and ReLu layers (Fig. 3).

C2-1 R C4-1C3-4 RC2-2 R P C3-1 R C3-2 R C3-3 R PR PC1-2RC1-1

C5-4 R

R C4-3R

C5-3 RC5-2R C5-1

prc4-4RC4-2

P RFC6RDFC8 FC7RD

Input

Output Softmax

Figure 3: VGG-19 architecture

2.3 VGG-19

VGG-19 contains N fully connected layers, where N = 1–3. The PN units of the Nth layers
are NRW

= 224, Nc
= 224 and Nch

= 3. The dataset is represented by α, and the training sample
by Wb

a εα. Each Wb
a is a real number R:

ω(1) = r
(
n(1)Wb

a + γ
(1)
)
εR(1) (9)

where ω(1) is the �rst weight matrix, r( ) is the Relu activation function, RW the number of rows,
c the number of columns, and ch the number of channels. γ (1) is the bias vector and n(1) is the
weight of the �rst layer, de�ned as:

n(1)εRN(1)×q (10)

The output of the �rst layer becomes the input of the second layer; this step is repeated
as follows:

ω(2) = r
(
n(2)ω(1)+ γ (2)

)
εR(2) (11)

ω(3) = r
(
n(3)ω(2)+ γ (3)

)
εR(3) (12)
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ω(4) = r
(
n(4)ω(3)+ γ (4)

)
εR(4) (13)

ω(5) = r
(
n(5)ω(4)+ γ (5)

)
εR(5) (14)

Here, by way of example, ω(2) and ω(3) are the second and third weight matrices, respectively.
n(2)εRN(2)×N(1) and n(2)εRN(2)×N(1). ω(Z) represents the last fully connected layer used for high-
level feature extraction. Mathematically:

ωh(W
b
a )=ω

(19)
= r

(
n(19)ω(18)

+ γ (19)
)
εR(19) (15)

A(e) =
M∑
cl=1

B(0b,cl) log(p(0b,cl)) (16)

where A(e) is the cross-entropy function, B is the total number of classes cl, and ob and p the
predicted probabilities.

2.4 Transfer Learning
TL occurs when a system acquires knowledge and skills by solving a speci�c problem, and

then uses that knowledge to solve another problem [40]. We used TL to further train, and improve

the performance, of a pretrained model. The input was Ip =
{
(ap1,bp1), . . . , (a

p
i,b

p
i ), . . . ,

(
apn,b

p
n
)}

,

and the original learning task can be described as: ld , lp,(a
p
m,b

p
m)εR. The target was To ={

(ao1,bo1), . . . , (a
o
i,b

o
i ), . . . ,

(
aom,bom

)}
; and the new learning task can be written as lt, (aon,b

o
nεR, (m, n) ,

where n«m and bI1andb
o
1 are the training data labels (Fig. 4).

Feature Extraction and Fusion: After TL, activation is required for feature extraction. We
extracted features from FC layers 6 and 7. The feature vector of FC layer 6 had dimensions of
N × 4, 096, and that of FC layer 7 4,096. Mathematically, the vectors are expressed as FVN

k1 and

FVN
k2; both FVN

k1 and FVN
k2 ∈R. We then fused the vectors into a single matrix to derive optimal

tumor data. This can be done using serial, parallel, and correlational techniques. We used the
lengths of extracted features and no features were discarded. Mathematically, the fused matrix can
be expressed as:

FVN
k3 =

FVN
k1

FVN
k2


N×(k1+k2)

(17)

where FVN
k3 is a fused matrix with dimensions of k1× k2. N is the number of images used for

training and testing. k1 and k2 both have a value of 4,096. The fused vector includes a few
irrelevant/redundant features, which were removed by IPSO.
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Figure 4: Transfer learning based retraining a model for multimodal brain tumor classi�cation

2.5 Features Selection and Classi�cation
It is important to select appropriate features for classi�cation, because irrelevant features

reduce classi�cation accuracy and increase the computational time [41]. However, it is not easy
to identify the most important features because of their complex interactions. A good feature
vector is required; in this study we used the IPSO algorithm. The original PSO [42] was a global
search algorithm using evolutionary computation. PSO, as a population-based algorithm inspired
by �ocks of birds and schools of �sh, is more effective than a general algorithm [43] in terms of
convergence speed. Particles are initially placed randomly, and their velocities and positions are
iteratively updated. The current and updated particle locations are referred to as pbest and gbest,
respectively. The IPSO reduces the number of iterations required by including a “stop” condition
based on a bisection method (BsM). The selected values are approximated and the algorithm
is then terminated; the accuracy of each iteration is approximately the same as the previous
one. Assuming that the position of the nth particle is Yi = yi1,yi2, . . . ,yiM and the velocity is
Vi = Vi1,Vi2, . . . ,ViM , the local best particle is Li = li1, li2, . . . , lin and the global best particle is
Gb = gb1,gb2, . . . ,gbM . The updated position of the ith particle is calculated as:

Vij (s+ 1)= x.Vij (s)+ a1.R1. (lim (s)− yim (s))+ a2.R2. (gbm (s)− yim (s)) (18)

yim (s+ 1)= yim (s)+Vij (s+ 1) (19)
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where −= 1, 2, 3, . . . ,N, m= 1, 2, 3, . . .M, S is the number of iterations, N is the size of the swarm,
R1 and R2 are random numbers [0, 1], a1 and a2 are acceleration coef�cients, and x is the inertial
weight. A linear value of x that varies with time is calculated as:

x (s)= xmax =
xmax−xmin

T
.s (20)

Here, T is the maximum iteration time,xmax is the upper limit, and xmin is the lower limit.
During feature selection, every solution is a subset of features. Each set of particles is denoted as
a binary vector, and every particle has a speci�c position. The Mth feature is de�ned by the Mth
position. Features are selected by the IPSO, which begins with a random solution and then moves
toward the best global solution (represented by a new subset of features). Each feature is linked
to a dataset that occupies a search space. If the Mth position is 1, the Mth feature is considered
informative, while if the Mth position is 0, the Mth feature is not informative. If the Mthposition
is −1, the Mth feature is not added to the set.

Fitness Function: Each solution yielded by the selection algorithm was tested in terms of �tness
within every generation. If accuracy improved, the current solution was the best one. The solution
with maximum �tness is the best one overall. We used the �ne KNN classi�er and BsM. The
starting accuracy was 90.0 (t̃), and the �nal accuracy is expressed as t. The midpoint of t̃ and t
was computed and the root was found. If the root was equal to zero, the algorithm terminated;
otherwise, the next iteration started and the root between t and t+ 1 was found. If the interval
was not zero, the midpoint of t and t+1 was determined, and the following criteria were checked:

Criteria=
{
if f (mid)× f (t+ 1) < 0 then Update t=mid
Elsewhere t+ 1=mid (21)

Thus, the values were updated until two successive iterations became very similar. We initially
selected 100 iterations, but the algorithm stopped between 10 and 20 iterations, yielding a N ×
1, 875 vector containing approximately 40% of all features that were �nally classi�ed using the
one-against-all SVM.

Consider an N-class problem with B training samples, (s1, t1), . . . , (sn, tn), where siεRa is an
n-dimensional feature vector and tiε {1, 2, . . . ,N}. The method builds N binary SVM classi�ers,
and each classi�er separates all classes. Training of the i-th SVM uses all samples with i − th-
positive labels and the remaining negative labels di (S)= x

p
i ∅ (S)+ ei:

Minimize K(x.∃ij =
1
2
‖xi‖2+F

n∑
l=1

∃
i
j (22)

Subject to: t,j
(
xpi ∅

(
sj
)
+ ei

)
≥ 1−∃ij,∃

i
j ≥ 0 (23)

t,j= 1 if tj = i, and t,j=−1 otherwise.

Sample s is classi�ed into the class i∗, the d∗ of which is the highest during classi�cation:

i∗ = arg maxdi (s)= argmax(xpi ∅ (s)+ ei), i= 1, 2, . . . , Ai= 1, 2, . . . , (24)

3 Experimental Results and Comparison

We analyzed the BRATS 2018 dataset [44], which contains HGG and LGG data. In total,
70% of the data were used for training and 30% for testing (Fig. 5). We evaluated multiple
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classi�ers in terms of accuracy, sensitivity, precision, the F1-score, the area under the curve (AUC)
the false-positive rate (FPR), and computational time. All simulations were run on Matlab 2019a
(MathWorks, Natick, MA, USA) using a Core i7 processor, 16 GB of RAM, and an 8 GB
graphics card.

Figure 5: Proposed testing process

3.1 Testing Results of HGG Images Data
We �rst classi�ed HGG images (30% of all test images). The results obtained via fusion of the

original feature vectors are shown in Tab. 1. The highest accuracy was 99.9%, for the MSVM, with
a sensitivity of 99.25%, precision of 99.50%, F1-score of 99.3%, FPR of 0.00, and AUC of 1.00.
The other accuracies were as follows: �ne tree, 89.20%; linear SVM, 98.70%; coarse Gaussian,
95.80%; �ne KNN, 99.70%; medium KNN, 97.70%; cubic KNN, 97.0%; weighted KNN, 99.20%;
ensemble-boosted tree, 96.40%; and ensemble-bagged tree, 98.0%. Thus, the MSVM performed
best. The confusion matrix is shown in Fig. 6; the accuracy rate always exceeded 99%. The
computational times are listed in Tab. 1. The medium KNN had the shortest computational time,
at 28.52 s but the accuracy was only 97.75%. The receiver operator characteristic (ROC) curves
are shown in Fig. 7.

Table 1: Classi�cation results for the proposed method using original fused feature vectors

Classi�er Evaluation protocols

Sensitivity (%) Precision (%) F1 score (%) FPR AUC Accuracy (%) Time (sec)

Fine tree 89.00 89.25 89.1 0.030 0.94 89.20 37.78
MSVM 99.25 99.50 99.3 0.000 1.00 99.90 56.81
Linear SVM 98.50 98.50 98.50 0.005 1.00 98.70 54.66
CG SVM 95.75 95.75 95.70 0.012 1.00 95.80 85.85
Fine KNN 99.50 99.50 99.40 0.000 1.00 99.70 28.60
Medium KNN 97.75 97.50 97.60 0.010 1.00 97.70 28.52
Cubic KNN 97.50 97.5 97.60 0.010 1.00 97.70 383.39
W KNN 99.00 99.00 99.0 0.002 1.00 99.20 28.54
E-Bst tree 96.25 96.50 96.30 0.012 1.00 96.40 577.68
E-Bg tree 98.00 98.25 98.10 0.005 1.00 98.00 50.81



1108 CMC, 2021, vol.68, no.1

Figure 6: Confusion matrix for MSVM using original fused feature vectors

The optimized HGG features are listed in Tab. 2 (HGG). The highest accuracy was 99.9%,
for the MVSM, followed by 85.20% for the �ne tree classi�er, 98.75% for the linear SVM, 95.50%
for the course Gaussian, 99.60% for the �ne KNN, 97.30% for the medium KNN, 97.50% for the
cubic KNN, 99.20% for the weighted KNN, 93.30% for the ensemble-boosted tree, and 97.60% for
the ensemble-bagged tree. Thus, the MSVM showed the best performance; the confusion matrix
is shown in Fig. 8. The computational times are listed in Tab. 2. The coarse Gaussian SVM had
the shortest computational time (6.17 s), but the accuracy was only 95.70%, i.e., lower than that
of the MSVM. The ROC curves are shown in Fig. 9.

Figure 7: ROC plots of MSVM using original fused feature vectors
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Table 2: Classi�cation results after employing proposed optimal features

Classi�er Evaluation protocols

Sensitivity Precision F1 score FPR AUC Accuracy Time (Sec)

Fine tree 85.20 85.50 85.30 0.040 0.92 85.20 21.21
MSVM 99.50 99.50 99.40 0.000 1.00 99.90 12.94
Linear SVM 98.75 98.75 98.70 0.002 1.00 98.80 25.74
CG SVM 95.25 95.50 95.30 0.0150 1.00 95.50 12.89
Fine KNN 99.00 99.25 98.90 0.000 1.00 99.60 7.57
Medium KNN 97.50 97.50 97.50 0.007 1.00 97.30 7.00
Cubic KNN 97.50 97.50 97.50 0.010 1.00 97.50 91.32
W KNN 98.75 98.75 98.70 0.002 1.00 99.20 6.17
E-Bst tree 93.25 93.25 93.20 0.022 0.99 93.30 152.40
E-Bg tree 97.75 97.50 97.60 0.010 1.00 97.60 21.17

Flair T1CE T1 T2

100%Flair

>99% <1%T1CE

<1% >99%T1

T2 100%

Predicted Class

True
class

Figure 8: Confusion matric of MSVM after employing optimal feature selection

3.2 Testing Results of LGG Images Data
The original feature vectors for the LGG images were fused (Tab. 3). The highest accuracy

(99.1%) was achieved by the MSVM, with a sensitivity of 99.00%, precision of 99.00%, F1-score
of 99.00%, FPR of 0.002, and AUC of 1.00. The other accuracies were as follows: �ne tree,
78.30%; SVM, 93.40%; coarse Gaussian, 82.60%; �ne KNN, 98.00%; medium KNN, 91.90%;
cubic KNN, 91.90%; weighted KNN, 96.50%; ensemble-boosted tree, 87.10%; and ensemble-
bagged tree, 94.10%. In the confusion matrix shown in Fig. 10; the accuracy rate always exceeded
99%. The computational times are listed in Tab. 3 (last column). The �ne KNN had the shortest
computational time (27.56 s), but the accuracy was only 98.00%, i.e., less than that of the MSVM.
The longest computational time was 356.66 s. The MSVM ROC curves are provided in Fig. 11.

The optimized LGG features are listed in Tab. 4. The MSVM showed the best classi�cation
performance, with an accuracy of 99.3%, sensitivity of 99.25%, precision of 99.25%, F1-score
of 99.25%, FPR of 0.000, and AUC of 1.00. The computational time required was 11.92 s;
however, the best time was in fact 6.25 s. The other accuracies were as follows: �ne tree, 78.00%;
linear SVM, 93.30%; coarse Gaussian, 85.40%; �ne KNN, 98.20%; medium KNN, 93.30%; cubic
KNN, 93.20%; weighted KNN, 97.30%; ensemble-boosted tree, 83.90%; and ensemble-bagged tree,
93.90%. The confusion matrix is illustrated in Fig. 12; the accuracy rate always exceeded 99%.
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The MSVM ROC curves are shown in Fig. 13. The use of optimal selected features improved
classi�cation accuracy and signi�cantly reduced computational times.

Figure 9: ROC plots of MSVM for the veri�cation of AUC

Table 3: Classi�cation results of LGG by employing a fused feature vector

Classi�er Evaluation protocols

Sensitivity Precision F1 score FPR AUC Accuracy Time (Sec)

Fine tree 78.25 78.25 78.25 0.075 0.885 78.30 44.85
MSVM 99.00 99.00 99.00 0.002 1.00 99.10 61.65
Linear SVM 93.50 93.25 93.37 0.022 0.99 93.40 61.82
CG SVM 86.50 86.25 86.12 0.45 0.97 82.60 109.85
Fine KNN 98.00 97.75 97.80 0.007 0.98 98.00 27.56
Medium KNN 91.75 92.00 91.80 0.027 0.99 91.90 30.36
Cubic KNN 91.75 92.00 91.80 0.027 0.99 91.90 356.66
W KNN 96.50 96.75 96.37 0.012 0.99 96.50 27.64
E-Bst tree 87.25 87.50 87.37 0.425 0.97 87.10 596.15
E-Bg tree 94.00 94.25 94.12 0.022 0.99 94.10 57.49
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Figure 10: Confusion matric of MSVM using fused feature vector

Figure 11: ROC plots of MSVM using fused feature vector

Table 4: Classi�cation results of the proposed method of LGG data after optimal feature selection

Classi�er Evaluation protocols

Sensitivity Precision F1 score FPR AUC Accuracy Time (Sec)

Fine tree 77.75 78.00 77.87 0.075 0.87 78.00 13.30
MSVM 99.25 99.25 99.25 0.000 1.00 99.30 11.92
Linear SVM 93.25 93.25 93.25 0.022 0.99 93.30 11.01
CG SVM 85.50 85.75 85.49 0.047 0.97 85.40 15.46
Fine KNN 97.75 98.00 97.87 0.007 0.98 98.20 6.60
Medium KNN 93.25 93.50 93.37 0.022 0.99 93.30 7.77
Cubic KNN 93.50 93.25 93.37 0.022 0.99 93.20 91.24
W KNN 97.00 97.25 97.12 0.007 1.00 97.30 6.25
E-Bst tree 83.75 84.25 83.99 0.052 0.96 83.90 151.25
E-Bg tree 94.00 94.00 94.00 0.022 0.99 93.90 18.75
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Figure 12: Confusion matrix of MSVM on LGG data after employing optimal features

Figure 13: Confusion matrix of MSVM on LGG data after employing optimal features

3.3 Comparison with Existing Techniques
Comparison with the existing techniques is also conducted to validate the proposed method

(can be seen in Tab. 5). This table shows that the best accuracy previously achieved on the
Brats2018 dataset was 98% [44]. In that approach, the authors used the LSTM approach. Amin
et al. [45] achieved the second-best accuracy of 93.85%. In more recent work, Khan et al. [46]
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achieved an accuracy of 92.5% using a deep learning framework. Our proposed method is also
deep learning-based. We have tested on both HGG and LGG brain images and achieved an
accuracy of 99.9% and 99.3%, respectively. The main strength of this work is the selection of the
optimal features using an improved PSO algorithm. Moreover, the proposed labeled results are
also given in Fig. 14.

Table 5: Comparison of the proposed method results with existing techniques for the
BRATS2018 dataset

Reference Year Dataset Accuracy (%)

Irfan et al. [2] 2019 BRATS 2018 92.5
Amin et al. [44] 2019 BRATS 2018 98
Narmatha et al. [45] 2020 BRATs 2018 93.85
Khan et al. [46] 2020 BraTS 2018 92.5
Proposed 2020 Brats 2018 (HGG) Brats 2018 (LGG) 99.999.30

Figure 14: Prediction results of the proposed method in the form of corresponding labels

4 Conclusion

A new automated technique is proposed in this article for brain tumor classi�cation using
deep learning and the IPSO algorithm. The contrast of original MRI scans is enhanced using
the ACO approach to learn a better CNN model. This step not only enhances the tumor region
but also extracts more relevant features. Later, fusion of two-layer features improves the original
accuracy of classi�cation. A few redundant features are also added in the fusion process for
classi�cation, which does not yield the target accuracy. Therefore, another algorithm called the
IPSO is proposed to improve the system’s accuracy and minimize computational time. Hence,
we conclude that the most optimum features give better classi�cation accuracy and decrease the
system prediction time. The major limitation of this work is the proposed stopping criterion. There
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is a chance that the features after the stopping condition may perform well. In future, we aim
to try to enhance this stopping criterion and will perform experiments on the BraTs2019 dataset
as well.

Funding Statement: This research was supported by Korea Institute for Advancement of Tech-
nology (KIAT) grant funded by the Korea Government (MOTIE) (P0012724, The Competency
Development Program for Industry Specialist) and the Soonchunhyang University Research Fund.

Con�icts of Interest: The authors declare that they have no con�icts of interest to report regarding
the present study.

References
[1] A. Tiwari, S. Srivastava and M. Pant, “Brain tumor segmentation and classi�cation from magnetic

resonance images: Review of selected methods from 2014 to 2019,” Pattern Recognition Letters, vol. 131,
no. 9, pp. 244–260, 2019.

[2] M. I. Sharif, J. P. Li, M. A. Khan and M. A. Saleem, “Active deep neural network features selection for
segmentation and recognition of brain tumors using MRI images,” Pattern Recognition Letters, vol. 129,
no. 10, pp. 181–189, 2020.

[3] J. Amin, M. Sharif, N. Gul, M. Yasmin and S. A. Shad, “Brain tumor classi�cation based on DWT
fusion of MRI sequences using convolutional neural network,” Pattern Recognition Letters, vol. 129,
pp. 115–122, 2020.

[4] M. Sharif, J. Amin, M. Raza, M. A. Anjum, H. Afzal et al., “Brain tumor detection based on extreme
learning,” Neural Computing and Applications, vol. 32, no. 20, pp. 15975–15987, 2020.

[5] A. M. Molinaro, S. Hervey-Jumper, R. A. Morshed, J. Young, S. J. Han et al., “Association of
maximal extent of resection of contrast-enhanced and non-contrast-enhanced tumor with survival
within molecular subgroups of patients with newly diagnosed glioblastoma,” JAMA Oncology, vol. 4,
no. 4, pp. 495–503, 2020.

[6] Y. D. Zhang, Z. Dong, S. H. Wang, X. Yu, X. Yao et al., “Advances in multimodal data fusion in
neuroimaging: Overview, challenges, and novel orientation,” Information Fusion, vol. 64, no. Suppl 3,
pp. 149–187, 2020.

[7] Y. D. Zhang, S. C. Satapathy, S. Liu and G. R. Li, “A �ve-layer deep convolutional neural network with
stochastic pooling for chest CT-based COVID-19 diagnosis,” Machine Vision and Applications, vol. 32,
no. 1, pp. 1–13, 2020.

[8] M. A. Khan, S. Kadry, M. Alhaisoni, Y. Nam, Y. Zhang et al., “Computer-aided gastrointestinal
diseases analysis from wireless capsule endoscopy: A framework of best features selection,” IEEE
Access, vol. 8, pp. 132850–132859, 2020.

[9] M. A. Khan, I. U. Lali, A. Rehman, M. Ishaq, M. Sharif et al., “Brain tumor detection and classi�-
cation: A framework of marker-based watershed algorithm and multilevel priority features selection,”
Microscopy Research and Technique, vol. 82, no. 6, pp. 909–922, 2019.

[10] S. H. Wang, V. V. Govindaraj, J. M. Górriz, X. Zhang and Y. D. Zhang, “Covid-19 classi�cation
by FGCNet with deep feature fusion from graph convolutional network and convolutional neural
network,” Information Fusion, vol. 67, pp. 208–229, 2020.

[11] S. H. Wang and Y. D. Zhang, “DenseNet-201-based deep neural network with composite learn-
ing factor and precomputation for multiple sclerosis classi�cation,” ACM Transactions on Multimedia
Computing, Communications, and Applications, vol. 16, pp. 1–19, 2020.

[12] U. Nazar, M. A. Khan, I. U. Lali, H. Lin, H. Ali et al., “Review of automated computerized methods
for brain tumor segmentation and classi�cation,” Current Medical Imaging, vol. 16, no. 7, pp. 823–
834, 2020.



CMC, 2021, vol.68, no.1 1115

[13] B. Kaur, M. Sharma, M. Mittal, A. Verma, L. M. Goyal et al., “An improved salient object detection
algorithm combining background and foreground connectivity for brain image analysis,” Computers &
Electrical Engineering, vol. 71, no. 11, pp. 692–703, 2018.

[14] M. A. Khan, M. Sharif, T. Akram, S. A. C. Bukhari and R. S. Nayak, “Developed Newton–
Raphson based deep features selection framework for skin lesion recognition,” Pattern Recognition
Letters, vol. 129, no. 4/5, pp. 293–303, 2020.

[15] M. A. Khan, S. Rubab, A. Kashif, M. I. Sharif, N. Muhammad et al., “Lungs cancer classi�cation
from CT images: An integrated design of contrast based classical features fusion and selection,” Pattern
Recognition Letters, vol. 129, pp. 77–85, 2020.

[16] M. A. Khan, M. S. Sarfraz, M. Alhaisoni, A. A. Albesher, S. Wang et al., “StomachNet: Optimal
deep learning features fusion for stomach abnormalities classi�cation,” IEEEAccess, vol. 8, pp. 197969–
197981, 2020.

[17] D. J. Hemanth, J. Anitha and M. Mittal, “Diabetic retinopathy diagnosis from retinal images using
modi�ed hop�eld neural network,” Journal of Medical Systems, vol. 42, no. 12, pp. 247, 2018.

[18] M. A. Khan, M. Qasim, H. M. J. Lodhi, M. Nazir, K. Javed et al., “Automated design for recognition
of blood cells diseases from hematopathology using classical features selection and ELM,” Microscopy
Research and Technique, vol. 2, pp. 1–21, 2020.

[19] M. A. Khan, M. A. Khan, F. Ahmed, M. Mittal, L. M. Goyal et al., “Gastrointestinal diseases
segmentation and classi�cation based on duo-deep architectures,” Pattern Recognition Letters, vol. 131,
pp. 193–204, 2020.

[20] A. Mittal, D. Kumar, M. Mittal, T. Saba, I. Abunadi et al., “Detecting pneumonia using convolutions
and dynamic capsule routing for chest x-ray images,” Sensors, vol. 20, no. 4, pp. 1068, 2020.

[21] S. Dash, B. R. Acharya, M. Mittal, A. Abraham and A. Kelemen, “Deep learning techniques for
biomedical and health informatics,” in Studies in Big Data. vol. 68. Cham: Springer, 2020.

[22] M. Mittal, L. M. Goyal, S. Kaur, I. Kaur, A. Verma et al., “Deep learning based enhanced tumor
segmentation approach for MR brain images,” Applied Soft Computing, vol. 78, no. 10, pp. 346–
354, 2019.

[23] D. Abirami, N. Shalini, V. Rajinikanth, H. Lin and V. S. Rao, “Brain MRI examination with varied
modality fusion and chan-vese segmentation,” in Intelligent Data Engineering and Analytics. Cham:
Springer, pp. 671–679, 2020.

[24] V. Rajinikanth, A. N. Joseph Raj, K. P. Thanaraj and G. R. Naik, “A customized VGG19 network with
concatenation of deep and handcrafted features for brain tumor detection,” Applied Sciences, vol. 10,
no. 10, pp. 3429, 2020.

[25] R. Pugalenthi, M. Rajakumar, J. Ramya and V. Rajinikanth, “Evaluation and classi�cation of the brain
tumor MRI using machine learning technique,” Journal of Control Engineering and Applied Informatics,
vol. 21, pp. 12–21, 2019.

[26] S. L. Fernandes, U. J. Tanik, V. Rajinikanth and K. A. Karthik, “A reliable framework for accurate
brain image examination and treatment planning based on early diagnosis support for clinicians,”
Neural Computing and Applications, vol. 32, no. 20, pp. 15897–15908, 2020.

[27] N. Arunkumar, M. A. Mohammed, S. A. Mostafa, D. A. Ibrahim, J. J. Rodrigues et al., “Fully
automatic model-based segmentation and classi�cation approach for MRI brain tumor using arti�cial
neural networks,” Concurrency and Computation: Practice and Experience, vol. 32, no. 1, pp. e4962, 2020.

[28] N. Arunkumar, M. A. Mohammed, M. K. Abd Ghani, D. A. Ibrahim, E. Abdulhay et al., “K-means
clustering and neural network for object detecting and identifying abnormality of brain tumor,” Soft
Computing, vol. 23, no. 19, pp. 9083–9096, 2019.

[29] M. K. Abd Ghani, M. A. Mohammed, N. Arunkumar, S. A. Mostafa, D. A. Ibrahim et al., “Decision-
level fusion scheme for nasopharyngeal carcinoma identi�cation using machine learning techniques,”
Neural Computing and Applications, vol. 32, no. 3, pp. 625–638, 2020.

[30] O. I. Obaid, M. A. Mohammed, M. Ghani, A. Mostafa and F. Taha, “Evaluating the performance of
machine learning techniques in the classi�cation of wisconsin breast cancer,” International Journal of
Engineering & Technology, vol. 7, pp. 160–166, 2018.



1116 CMC, 2021, vol.68, no.1

[31] M. A. Mohammed, K. H. Abdulkareem, S. A. Mostafa, M. K. A. Ghani, M. S. Maashi et al., “Voice
pathology detection and classi�cation using convolutional neural network model,” Applied Sciences,
vol. 10, no. 11, pp. 3723, 2020.

[32] T. Saba, A. S. Mohamed, M. El-Affendi, J. Amin and M. Sharif , “Brain tumor detection using
fusion of hand crafted and deep learning features,” Cognitive Systems Research, vol. 59, no. 1,
pp. 221–230, 2020.

[33] J. Sachdeva, V. Kumar, I. Gupta, N. Khandelwal and C. K. Ahuja, “Segmentation, feature extraction,
and multiclass brain tumor classi�cation,” Journal of Digital Imaging, vol. 26, no. 6, pp. 1141–
1150, 2013.

[34] H. Mohsen, E. S. A. El-Dahshan, E. S. M. El-Horbaty and A. B. M. Salem, “Classi�cation using deep
learning neural networks for brain tumors,” Future Computing and Informatics Journal, vol. 3, no. 1,
pp. 68–71, 2018.

[35] U. N. Hussain, M. A. Khan, I. U. Lali, K. Javed, I. Ashraf et al., “A uni�ed design of ACO
and skewness based brain tumor segmentation and classi�cation from MRI scans,” Journal of Control
Engineering and Applied Informatics, vol. 22, pp. 43–55, 2020.

[36] M. Rashid, M. A. Khan, M. Alhaisoni, S. H. Wang, S. R. Naqvi et al., “A sustainable deep learning
framework for object recognition using multi-layers deep features fusion and selection,” Sustainability,
vol. 12, no. 12, pp. 5037, 2020.

[37] W. Rawat and Z. Wang, “Deep convolutional neural networks for image classi�cation: A comprehensive
review,” Neural Computation, vol. 29, no. 9, pp. 2352–2449, 2017.

[38] S. Dutta, B. Manideep, S. Rai and V. Vijayarajan, “A comparative study of deep learning models for
medical image classi�cation,” IOP Conference Series: Materials Science and Engineering, vol. 263, no. 4,
pp. 42097, 2017.

[39] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,”
in Int. Conf. on Learning Representations, 2015.

[40] K. Weiss, T. M. Khoshgoftaar and D. Wang, “A survey of transfer learning,” Journal of Big Data,
vol. 3, no. 1, pp. 1–9, 2016.

[41] N. Naheed, M. Shaheen, S. A. Khan, M. Alawairdhi and M. A. Khan, “Importance of features
selection, attributes selection, challenges and future directions for medical imaging data: A review,”
Computer Modeling in Engineering & Sciences, vol. 125, pp. 314–344, 2020.

[42] B. Xue, M. Zhang and W. N. Browne, “Particle swarm optimization for feature selection in classi�ca-
tion: A multi-objective approach,” IEEETransactions onCybernetics, vol. 43, no. 6, pp. 1656–1671, 2012.

[43] M. M. Kabir, M. Shahjahan and K. Murase, “A new local search based hybrid genetic algorithm for
feature selection,” Neurocomputing, vol. 74, no. 17, pp. 2914–2928, 2011.

[44] L. Weninger, O. Rippel, S. Koppers and D. Merhof, “Segmentation of brain tumors and patient
survival prediction: Methods for the BraTS, 2018 challenge,” in International MICCAI Brainlesion
Workshop. Cham: Springer, pp. 3–12, 2018.

[45] J. Amin, M. Sharif, M. Raza, T. Saba, R. Sial et al., “Brain tumor detection: A long short-
term memory (LSTM)-based learning model,” Neural Computing and Applications, vol. 32, no. 20,
pp. 1–9, 2019.

[46] C. Narmatha, S. M. Eljack, A. A. R. M. Tuka, S. Manimurugan and M. Mustafa, “A hybrid fuzzy
brain-storm optimization algorithm for the classi�cation of brain tumor MRI images,” Journal of
Ambient Intelligence and Humanized Computing, vol. 7, no. 10, pp. 1–9, 2020.


