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Abstract: The main purpose of the current article is to develop a novel
boundary element model for solving fractional-order nonlinear generalized
porothermoelastic wave propagation problems in the context of temperature-
dependent functionally graded anisotropic (FGA) structures. The system of
governing equations of the considered problem is extremely very difficult or
impossible to solve analytically due to nonlinearity, fractional order diffusion
and strongly anisotropic mechanical and physical properties of considered
porous structures. Therefore, an efficient boundary element method (BEM)
has been proposed to overcome this difficulty, where, the nonlinear terms were
treated using the Kirchhoff transformation and the domain integrals were
treated using the Cartesian transformation method (CTM). The generalized
modified shift-splitting (GMSS) iteration method was used to solve the linear
systems resulting from BEM, also, GMSS reduces the iterations number and
CPU execution time of computations. The numerical findings show the effects
of fractional order parameter, anisotropy and functionally graded material on
the nonlinear porothermoelastic stress waves. The numerical outcomes are in
very good agreement with those from existing literature and demonstrate the
validity and reliability of the proposed methodology.

Keywords: Boundary element method; fractional-order; nonlinear
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1 Introduction

The fractional order calculus (FOC) is the branch of mathematical analysis dealing with
non-integer order calculus and its applications. The essential viewpoints are sketched out for
fractional calculus theory in [1] and for fractional calculus applications in [2–6]. FOC is nowadays
extremely popular due to its applications in different fields such as diffusion equation, quantum
mechanics, nanotechnology, solid mechanics, continuum mechanics, biochemistry, wave propaga-
tion theory, polymers, robotics and control theory, finance and control theory, electrochemistry,
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electrical engineering, fluid dynamics, signal and image processing, biophysics, electric circuits,
viscoelasticity, electronics, field theory, group theory, etc.

Several researchers have contributed to the background of fractional calculus [7–9]. Recently,
Yu et al. [10] introduced new definitions of fractional derivative in the context of thermoe-
lasticity. Research on generalized thermo-elasticity theories [11] has attracted much attention
from many scientists, among which are research in magneto-thermoelasticity [12], visco-
thermoelasticity [13,14] and micropolar-thermoelasticity [15,16].

Because of computational complexity in solving complex fractional thermoelasticity problems
not having any general analytical solution, computational techniques should be used to solve such
problems. Among these computational techniques are the boundary element method (BEM) that
has been used for magneto thermoviscoelasticity [17,18], computerized engineering models [19,20],
and design sensitivity and optimization [21,22] and nonlinear problems [23–26]. The BEM presents
an attractive alternative numerical method to the domain methods for the investigation of ther-
moelastic wave propagation problems, like finite element method (FEM) [27–29] and finite volume
method (FVM) [30–32]. The main feature of BEM over the domain type methods is that it
requires boundary-only discretization of the domain under consideration. This feature has signif-
icant importance for solving complex thermoelastic problems with fewer elements, and requires
very little computational cost, much less preparation of input data, and therefore easier to use.

In the present paper, we introduce a new boundary element model for solving fractional-
order nonlinear generalized porothermoelastic wave propagation problems. The nonlinear terms
are treated using the Kirchhoff transformation. The domain integrals were treated using the
Cartesian transformation method. In the proposed BEM technique, the temperature and displace-
ment distributions were calculated using a partitioned semi-implicit predictor–corrector coupling
algorithm. Then, we can obtain the propagation of porothermoelastic stress waves in temperature-
dependent FGA structures. Numerical results demonstrate the validity, accuracy and efficiency of
our proposed model and technique.

2 Formulation of the Problem

The geometry of the considered problem is depicted in Fig. 1. The governing equations for
fractional-order nonlinear generalized porothermoelastic wave propagation problems in the context
of FGA structures can be written as [33]

σij, j+ρFi = ρüi+φρF v̈i (1)

where σij is the mechanical stress tensor, ρ is the bulk density, ρF is the fluid density, Fi is the bulk
body forces, φ is the porosity, ui is the solid displacement and vi is the fluid–solid displacement.

ζ̇ + qi, i =Ci (2)

where ζ is the variation of the fluid volume per unit reference volume, q is the instantaneous flux
and Ci is the source term.

The fractional nonlinear heat conduction equation can be expressed in non-dimensionless
form as

Da
τT (x, t)= ξ∇ [λ (T)∇T (x, t)]+ ξh (x,T , t) , ξ = 1

ρ (T) c (T)
(3)
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in which

σij = (x+ 1)m
[
Cijkleδij−Aδijp−βij

(
T + τ1Ṫ

)]
(4)

qi =−k (x+ 1)m
(
p, i+ρF üi+ ρ0+φρF

φ
v̈i

)
, ζ =

[
Auk,k+

φ2

R
p

]
(5)

where εij = 1
2

(
ui, j+ uj, i

)
, e= εii and A= φ

(
1+ Q

R

)
.

in which the heat source function h (X ,T , t) can be written as

h (x,T , t)= h (x,T , t)− δ2nλṪ, ij+βijT0
[
Åδ1nu̇i, j+ (τ0+ δ2n) üi, j

]+ρcα [(τ0+ δ1nτ2+ δ2n) T̈] (6)

where T is the temperature,λ is the thermal conductivity, Cijkl is the constant elastic moduli, A is
the Biot’s effective stress coefficient, p is the fluid pressure, βij is the stress-temperature coefficients,

k is the permeability, T0 is the reference temperature, Å is a unified parameter that introduces all
generalized thermoelasticity theories into a unified system of equations, Q and R are solid–fluid
coupling parameters, τ0, τ1, and τ2 are relaxation times, ρ0 = ηφρF and η is the shape factor.

Figure 1: Geometry of the considered problem

According to finite difference scheme of Caputo at times (f + 1)Δτ and fΔτ , we obtain [34]

Da
τT

f+1+Da
τT

f ≈
k∑

J=0

Wa,J

(
Tf+1−J (x)−Tf−J (x)

)
(7)

where

Wa, 0 = (Δτ )−a

� (2− a)
andWa,J =Wa, 0

(
(J+ 1)1−a− (J− 1)1−a

)
(8)

On the basis of Eq. (7), the fractional heat conduction Eq. (3) can be expressed as

Wa, 0Tf+1 (x)−λ (x,T)Tf+1
, ii (x)−λ, i (x,T)Tf+1

, i (x)=Wa, 0Tf (x)−λ (x)Tf
, ii (x)

−λ, i (x,T)Tf
, j (x)−

f∑
J=1

Wa,J

(
Tf+1−J (x)−Tf−J (x)

)
+ hf+1

m (x,T , τ )+ hfm (x,T , τ ) (9)

where J = 1, 2, . . . ,F and f = 0, 1, 2, . . . ,F .
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3 BEM Implementation for Temperature Field

By using the transformation of Kirchhoff �= ∫ TT0

λ(T)
λ0

dT, Eq. (3) can be written as [35]

∇2�(x, t)+ 1
λ0
h (x,�, t)= ρ (�) c (�)

λ (�)

∂�(x, t)
∂t

(10)

The decomposition of the right-hand side of (10) into linear and nonlinear sections, yields

∇2�(x, t)+ 1
λ0
h (x,�, t)= ρ0c0

λ0

∂�(x, t)
∂t

+Nl
(
x,�, �̇

)
(11)

The nonlinear section can be written as

Nl
(
x,�, �̇

)= [ρ (�) c (�)
λ (�)

− ρ0c0
λ0

]
�̇ (12)

Based on [24], we can write (11) into the following form

∇2�(x, t)+ 1
λ0
hNl
(
x,�, �̇, t

)= ρ0c0
λ0

∂�(x, t)
∂t

(13)

where

hNl
(
x,�, �̇, t

)= h (x,�, t)+
[
ρ0c0− λ0

λ (�)
ρ (�) c (�)

]
�̇ (14)

Now, by using the fundamental solution of (9), we can write the boundary integral equation
corresponding to (13) as [36]

C (P)�(P, tn+1)+ a0

∫
�

∫ tn+1

tn
�(Q, τ )q∗ (P, tn+1;Q, τ )dτd�

= a0

∫
�

∫ tn+1

tn
q (Q, τ )�∗ (P, tn+1;Q, τ )dτd�+ a0

λ0

∫
�

∫ tn+1

tn
hNl
(
Q,�, �̇, τ

)
�∗ (P, tn+1;Q, τ )dτd�

+
∫
�

�(Q, tn)�∗ (P, tn+1;Q, tn)d�, a0 = λ0

ρ0c0
(15)

By substituting of �(P, tn+1)= 2�
(
P, tn+(1/2)

)−�(P, tn) in (15), we get

2C (P)�
(
P, tn+(1/2)

)− 1
2π

∫
�

�
(
Q, tn+(1/2)

)
r

exp

[
−r2
4a0Δt

]
∂r
∂n
d�

= 1
4π

∫
�

q
(
Q, tn+(1/2)

)
Ei

(
r2

4a0Δt

)
d�+ 1

4πλ0

∫
�

hNl
(
Q,�n+(1/2), �̇n+(1/2), tn+(1/2)

)
Ei

(
r2

4a0Δt

)
d�

+ 1
4πa0Δt

∫
�

�(Q, tn) exp

(
−r2
4a0Δt

)
d�+C (P)�(P, tn) (16)

where �n+(1/2)= �n+�n+1
2 , tn+(1/2)= tn+tn+1

2 , and �̇n+(1/2)= �n+1−�n
Δt
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Now, the domain integrals in Eq. (16) can be computed using CTM. Thus, the unknown
boundary values can be calculated from the following system

H�� =GQ� +F +FNl (17)

where �� and Q� are M′ dimension vectors, and H and G are M′ ×M′ dimension matrices.

Thus, the unknown internal values can be calculated from the following system

�� = ĜQ� − Ĥ�� + F̂ + F̂Nl (18)

If we have assumed that the time step size is constant, then, H, G, Ĥ, and Ĝ can be computed
at all time steps. Also, F , FNl, F̂ , and F̂Nl can be computed at all time steps using CTM.

3.1 CTM Evaluation of the Domain Integrals with Irregularly Spaced Data Kernels
Now, we are considering the following regular domain integral [37,38]

I =
∫
�

p (x1,x2)d� (19)

Based on Khosravifard et al. [39], we can write the domain integral (19) as follows

I =
∫
�

(∫ x1

α

p
(
x′1,x2

)
dx′1

)
dx2 (20)

where

α = x1min+x1max
2

(21)

By applying the composite Gaussian quadrature method to (19), we obtain

I =
K∑
k=1

∫
�k

∫ x1

α

p
(
x′1,x2

)
dx′1dx2 (22)

which can be written as

I =
K∑
k=1

Jk
N∑
i=1

wi
L∑
l=1

Jl
J∑
j=1

wjp
(
x1
(
ηj
)
,x2 (ηi)

)
(23)

By implementing the radial point interpolation method (RPIM) [40], we can write

p (x1,x2)=
M∑
i=1

φi (x1,x2)pi =�TP (24)

where M equals the summation of boundary nodes M′ and internal points M′′.
Based on [40], the function p (x1,x2) may be described as

p (x)=
n∑
i=1

αiψi (x)+
m∑
j=1

bjuj (x)=�T (x)a+ uT (x)b= [�T (x)uT (x)
]{a

b

}
(25)
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To build the RPIM shape functions, we applied the following Gaussian radial basis function

ψi (x)= exp

[
−ac

(
Ri
dc

)2
]

(26)

where αi and bj are unknown coefficients which can be computed from the following system

n∑
i=1

αiψi (xi)+
m∑
j=1

bjuj (xi)= p (xi) , i= 1, 2, . . . ,n (27)

and the following m conditions

n∑
i=1

αiuj (xi)= 0, j= 1, 2, . . . ,m (28)

By using Eqs. (27) and (28), we can express αi and bj as{
a
b

}
=BP (29)

Thus, based on [40], and using (29), we can write Eq. (25) in the following form

p (x)= [ψT (x) uT (x)
]
BP= φTP (30)

Thus, we have

I =
K∑
k=1

Jk
N∑
i=1

wi
L∑
l=1

Jl
J∑
j=1

wj
M∑
r=1

prφr
(
x1
(
ηj
)
,x2 (ηi)

)
(31)

which can be written as

I =
M∑
q=1

γqpq= γ Tp (32)

where p contains boundary and internal p values.

3.2 CTM Evaluation of the Domain Integrals with Regularized Kernels
We now consider the following domain integrals that appear in the integral Eq. (16)

I1 =
∫
�

hNI
(
Q,�n+(1/2), �̇n+(1/2), tn+(1/2)

)
Ei

(
r2

4a0Δt

)
d� (33)

I2 =
∫
�

�(Q, tn)exp

[
−r2
4a0Δt

]
d� (34)

where Ei (x)=−0.57721566+∑∞
n=1 (−1)n−1 xn

n.n! − ln (x)
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According to [25], the weakly singular in (33) can be regularized to obtain

I1 = γT (p1+p2)+ I′ (P) (35)

where

I ′ (P)= 2hNI
(
P,�n+(1/2), �̇n+(1/2), tn+(1/2)

)
D1 (P) (36)

and

D1 (P)=
∫
�

[
ln
(
1
r

)
dx1

)]
dx2 =

∫
�

[
−r1lnr− r2tan

−1
(
r1
r2

)
+ r1

]
dx2 (37)

Also, the domain integral in (34) can be regularized to obtain

I2 = γ Tp3+ I ′′ (P) (38)

where

I ′′ (P)=�(P, tn)D2 (P,Δt) (39)

and

D2 (P,Δt)=
∫
�

∫
exp

[
−r2
4a0Δt

]
dx1dx2

=
√
πa0Δt

∫
�

exp

(
− r22
4a0Δt

)
erf
(

r1
2
√
a0Δt

)
dx2, erf (a)= 2√

π

∫ α

0
exp

(
−x2

)
dx (40)

Hence, from (18) we get

aX =b (41)

where a is an unknown matrix, while X and b are known matrices.

4 BEM Implementation for Displacement Field

Based on the weighted residual technique, we can write Eqs. (1) and (2) as follows∫
R

(
σij, j+Ui

)
u∗i dR= 0 (42)∫

R

(
qi, i+ ζ̇i−Ci

)
p∗i dR= 0 (43)

where

σij, j = (x+ 1)m
[
Cijkluk, lj−Aδijp, j−βij

(
T, j+ τ1Ṫ, j

)]++ m
x+ 1

σij

qi, i =−k (x+ 1)m
(
p, ii+ρF üi, i+ ρ0+φρF

φ
v̈i, i

)
+ m
x+ 1

qi

in which Ui = ρFi−ρüi−φρF v̈i, and u∗i and p∗i are weighting functions.
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On using integration by parts for the first term of Eqs. (42) and (43), we get

−
∫
R
σiju∗i, jdR+

∫
R
Uiu∗i dR=−

∫
S2
λiu∗i dS (44)

−
∫
R
qp∗i, jdR+

∫
R
ζ̇ip∗i dR−

∫
R

Cip∗i dR=−
∫
S4
Lip∗i dS (45)

Based on Fahmy [24], elastic stress can be expressed as∫
R
σ ∗
ij, juidR=−

∫
S
u∗i λidS−

∫
S
p∗i LidS+

∫
S
λ∗i uidS+

∫
S
L∗
i pidS (46)

which can be expressed as

Cnqn =−
∫
S
p∗qdS+

∫
S
q∗pdS+

∫
S
a∗pdS+

∫
S
b∗ ∂p
∂n
dS (47)

where

Cn=
[
C11 C12

C21 C22

]
, q∗ =

⎡⎢⎢⎢⎣
u∗11 u∗12 ω∗

13

u∗21 u∗22 ω∗
23

u∗∗31 u∗∗32 ω∗∗
33

⎤⎥⎥⎥⎦ , p∗ =

⎡⎢⎢⎢⎣
λ∗11 λ∗12 μ∗

13

λ∗21 λ∗22 μ∗
23

λ∗∗31 λ∗∗32 μ∗∗
33

⎤⎥⎥⎥⎦
q=

⎡⎣u1u2
ω3

⎤⎦ , p=
⎡⎣λ1λ2
μ3

⎤⎦ , a∗ =
⎡⎣a∗

1
a∗
2
0

⎤⎦ , b∗ =
⎡⎣b∗

1
b∗
2
0

⎤⎦
Now, we consider the following definitions

q=ψqj,p=ψpj,p=ψ0p
j,
∂p
∂n

=ψ0

(
∂p
∂n

)j
(48)

Substituting above definitions into (47), we get

Cnqn=
Ne∑
j=1

[
−
∫
�j

p∗ψd�

]
qj+

Ne∑
j=1

[∫
�j

q∗ψd�

]
pj+

Ne∑
j=1

[∫
�j

a∗ψ0d�

]
pj+

Ne∑
j=1

[∫
�j

b∗ψ0d�

](
∂p
∂n

)j
(49)

which after integration can be written as

Ciqi =−
Ne∑
j=1

Ĥijqj +
Ne∑
j=1

Ĝijpj+
Ne∑
j=1

âijpj+
Ne∑
j=1

b̂ij
(
∂p
∂n

)j
(50)

where

Hij =
⎧⎨⎩Ĥij if i �= j

Ĥij+Ci if i= j
(51)
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Now, we can write (50) as

Ne∑
j=1

Hijqj =
Ne∑
j=1

Ĝijpj +
Ne∑
j=1

âijpj+
Ne∑
j=1

b̂ij
(
∂p
∂n

)j
(52)

which can be expressed as follows

HQ=GP+ai+bj (53)

where the vectors Q, P, i, and j are displacements, tractions, pore pressure, and pore pressure
gradients, respectively.

Substituting the boundary conditions into (54), we obtain the following system of equations

AX= B (54)

in which A represents unknown matrix, while X and B represent known matrices.

According to Breuer et al. [41], a robust and efficient partitioned semi-implicit predictor–
corrector coupling algorithm was implemented with GMSS [42] for solving the resulting linear
Eqs. (41) and (54) arising from the boundary element discretization, where poro-thermo-elastic
coupling is considered instead of fluid-structure-interaction coupling.

5 Numerical Results and Discussion

The proposed BEM technique which is based on the coupling algorithm [41], should
be applied to a wide variety of fractional-order nonlinear porothermoelastic wave propaga-
tion problems.

In the present paper, we considered the temperature-dependent properties of anisotropic
porous copper material, where the specific heat and density are tabulated in Tab. 1 [43].

Table 1: Temperature-dependent specific heat and density of porous copper material

T (◦K) 0 100 300 500 700 900

c (J/kg ◦K) 385 397 417 433 451 480
ρ
(
kg/m3) 8930 . . . . . . 8686 . . . 8458

The thermal conductivity is given by

λ= 400
(
1− T

6000

)
The domain boundary of the current problem has been discretized into 42 boundary elements

and 68 internal points as depicted in Fig. 2.

Figs. 3–5 illustrate the propagation of nonlinear thermal stress waves σ11, σ12, and σ22 for
different values (a= 0.4, 0.7 and 1.0) of the fractional order parameter (FOP). It can be seen from
these figures that the FOP has a great influence on the nonlinear thermal stress waves of FGA
porous structures.

According to the relationship of elastic constants for anisotropic, isotropic, and orthotropic
materials [44]. We therefore considered these three materials in the current study.
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Figure 2: Boundary element model of the considered problem

Figure 3: Propagation of the nonlinear thermal stress σ 11 waves with time t for different values
of the fractional-order parameter

Figs. 6–8 show the propagation of nonlinear thermal stress waves σ11, σ12, and σ22 for
anisotropic, isotropic and orthotropic functionally graded porous structures. It can be shown from
these figures that the effects of anisotropy are very pronounced.

Figs. 9–11 display the propagation of nonlinear thermal stress waves σ11, σ12, and σ22 for
homogeneous (m = 0) and functionally graded (m= 0.4 and 0.7) porous structures. It can be
shown from these figures that the effect of functionally graded material is very pronounced.

The effectiveness of our proposed approach has been established through the use of the
GMSS which doesn’t need the entire matrix to be stored in the memory and converges quickly
without the need for complicated calculations. During our treatment of the considered problem,
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we implemented GMSS, Uzawa-HSS, and regularized iteration methods [45]. Tab. 2 displays the
number of iterations (IT), processor time (CPU), relative residual (RES), and error (ERR) of the
considered methods computed for different fractional order values. It can be noted from Tab. 2
that the GMSS needs the lowest IT and CPU times, which means that GMSS method has better
performance than Uzawa-HSS and regularized methods.

Figure 4: Propagation of the nonlinear thermal stress σ 12 waves with time t for different values
of the fractional-order parameter

Figure 5: Propagation of the nonlinear thermal stress σ 22 waves with time t for different values
of the fractional-order parameter
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Figure 6: Propagation of the nonlinear thermal stress σ 11 waves with time t for isotropic,
orthotropic and anisotropic porous materials

Figure 7: Propagation of the nonlinear thermal stress σ 12 waves with time t for isotropic,
orthotropic and anisotropic porous materials

For comparison purposes with other methods, we only considered the one-dimensional special
case. Therefore, the time distribution results of the nonlinear thermal stress σ11 are plotted in
Fig. 12 for the proposed BEM and compared with the FDM results obtained by Awrejcewicz
et al. [46] and FEM results obtained by Shakeriaski et al. [47], it can be shown from Fig. 12 that
the BEM outcomes are in very good agreement with the FDM and FEM outcomes. Thus, the
validity, accuracy, and usefulness of the proposed BEM have been demonstrated.



CMC, 2021, vol.68, no.1 71

Figure 8: Propagation of the nonlinear thermal stress σ 22 waves with time t for isotropic,
orthotropic and anisotropic porous materials

Figure 9: Propagation of the nonlinear thermal stress σ 11 waves with time t for homogeneous and
functionally graded porous materials
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Figure 10: Propagation of the nonlinear thermal stress σ 12 waves with time t for homogeneous
and functionally graded porous materials

Figure 11: Propagation of the nonlinear thermal stress σ 22 waves with time t for homogeneous
and functionally graded porous materials

Table 2: Numerical results for the tested iteration methods

Method FOP a IT CPU RES ERR

GMSS 0.4 40 0.0235 2.35e–07 2.54e–09
Uzawa-HSS 70 0.0678 6.58e–07 2.78e–07
Regularized 80 0.0843 7.98e–07 3.57e–06
GMSS 0.7 50 0.0654 1.19e–06 3.05e–08
Uzawa-HSS 100 0.2354 2.76e–05 5.59e–06
Regularized 120 0.3876 2.15e–05 1.48e–05
GMSS 1.0 60 0.1875 3.26e–05 2.92e–07
Uzawa-HSS 270 0.8053 2.89e–04 4.86e–05
Regularized 290 0.9064 2.28e–03 5.78e–04
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Figure 12: Propagation of the nonlinear thermal stress σ 11 waves with time t for a special case
and different methods

6 Conclusion

The main objective of the current paper is to develop a new boundary element model for
solving fractional-order nonlinear generalized porothermoelastic wave propagation problems in
FGA structures, which are difficult or impossible to solve analytically. Therefore, an efficient
numerical procedure based on BEM has been proposed to overcome this challenge. The Kirchhoff
transformation is first used to treat the nonlinear terms. Then, the Cartesian transformation
method (CTM) has been applied to transform the domain integration into boundary integration,
As a result, the computational complexity of integration and CPU computing time are signifi-
cantly reduced. The memory requirements and Processing time are also reduced by applying the
GMSS method which does not need that the entire matrix is stored in the memory, and it is
rapidly converging without the need for complicated calculations. The numerical outcomes are
presented graphically to show the effects of fractional parameter, anisotropy, and functionally
graded material on the nonlinear thermal stress waves. The numerical outcomes also show very
good agreement with the earlier work in the literature as a special case. These outcomes also
confirm the validity, accuracy, and effectiveness of the proposed methodology.
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