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Abstract: In high-density gatherings, crowd disasters frequently occur despite
all the safety measures. Timely detection of congestion in human crowds
using automated analysis of video footage can prevent crowd disasters. Recent
work on the prevention of crowd disasters has been based on manual analysis
of video footage. Some methods also measure crowd congestion by esti-
mating crowd density. However, crowd density alone cannot provide reliable
information about congestion. This paper proposes a deep learning frame-
work for automated crowd congestion detection that leverages pedestrian
trajectories. The proposed framework divided the input video into several
temporal segments. We then extracted dense trajectories from each temporal
segment and converted these into a spatio-temporal image without losing
information. A classification model based on convolutional neural networks
was then trained using spatio-temporal images. Next, we generated a score
map by encoding each point trajectory with its respective class score. After
this, we obtained the congested regions by employing the non-maximum
suppression method on the score map. Finally, we demonstrated the pro-
posed framework’s effectiveness by performing a series of experiments on
challenging video sequences.
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1 Introduction

Public gatherings, such as concerts, political and religious processions, festivals and sports,
etc., are commonly observed in human societies. Often, thousands of participants end up gath-
ering in a limited space. Although these public gatherings are organized for peaceful purposes,
crowd disasters occur frequently. For example, during the Hajj in 2015, a stampede killed more
than 700 people died. A similar event happened during the Love Parade in 2010 and at a religious
procession in Baghdad in 2005 [1].
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It is imperative to monitor the crowded scene to prevent disasters. For this, hundreds of
surveillance cameras are installed in different places to cover the area efficiently. Crowd man-
agement’s current practice is based on manual analysis that requires tremendous human effort
to review incoming video streams to identify potential abnormal situations [2]. Such manual
analysis of the crowd is tedious and leads to errors due to limited human capabilities. The
other complementary approach is based on experiments. Researchers manually analyze recorded
videos and employ different models to simulate pedestrians’ behaviour [3,4], particularly to identify
and predict choke points. Such empirical studies are always useful and result in infrastructure
improvements [5]. However, these models suffer from the following limitations: (1) Simulations
cannot simultaneously cover different real-time crowd situations. (2) These models cannot provide
precise results: They provide only limited responses to other input parameters.

An alternative approach is to automatically analyze crowded scenes in real-time by employing
computer vision and machine-learning techniques. Several methods and techniques have been pro-
posed for automated analysis [6]. This has numerous applications, such as anomaly detection [7,8],
panic detection [9,10], counting [11,12], density estimation [13,14], and tracking [15,16]. Generally,
during the past few years, each of these applications has attracted considerable attention from
the research community, and various algorithms and methods have been proposed. However,
congestion detection in high-density crowded videos has not received adequate attention in the
existing literature.

Congestion is a prolonged temporal situation wherein many people cannot move at their
desired speeds [17]. Timely detection of congested regions is essential for efficient crowd manage-
ment systems. If congestion is not addressed well in time, it may cause a cascading effect and lead
to disasters. Despite its importance, only a limited amount of work [1,18,19] has been reported
in the literature that automatically detects regions in high density crowded scenes. Significantly,
none of these studies has explored crowd congestion detection using pedestrian trajectories with
deep learning.

In this paper, we propose a deep learning framework for detecting congestion in crowds. The
pipeline of the proposed framework is shown in Fig. 1. First, we divided the input video stream
into multiple overlapped video segments. We extracted dense trajectories from each part and
generated a spatio-temporal image that effectively characterizes relative motion in the respective
video segment. Then, we employed a Convolutional Neural Network (CNN) to extract hierarchical
features from the fully connected layer and learn more about the influence representation of
trajectories. CNN classifies each spatio-temporal image into two classes, i.e., ‘congested’ and
‘normal’. After classification, we generated a score map by encoding them with their respective
class scores. We followed this by applying the non-maximum suppression method on the score
map to obtain a congested region(s) in the given video segment.

Comparison and Differences with other methods

We summarize the differences between the proposed framework and other existing methods
in the following manner:

a. State-of-the-art primarily adopted unsupervised machine-learning approaches for classifying
the scene into two categories, i.e., ‘congested’ and ‘normal’ [1,18]. We discard the tradi-
tional machine-learning techniques and propose a convolutional neural network that our
empirical studies have shown to be a better counterpart.
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Figure 1: Illustrates the pipeline of proposed framework

b. The previous methods use holistic approaches to extract hand-crafted [19] features from
the whole image. In contrast, our network undertakes a robust and compact representation
of trajectories by learning hierarchical features from spatio-temporal images.

c. The previous methods cannot deal with complex scenes since they were trained for limited
scenarios due to datasets’ unavailability. We introduced our model on a large dataset that
enhanced its discriminative power of detecting congestion in complex scenes.

Contribution

a. This paper has proposed a novel approach to detect and localize congested regions in
videos using spatio-temporal images.

b. Instead of extracting hand-crafted [19] features from trajectory data, we achieved effective
representation of the trajectory using 2-D spatio-temporal images and shifted the problem
to image classification.

c. We are amongst the first to create and build a dataset of spatio-temporal images generated
from trajectory data.

d. We performed an extensive evaluation of the proposed framework in different scenarios,
thereby confirming its effectiveness.

2 Literature Review

Crowd management is a significant area of research wherein scholars have been working
for several years. Numerous techniques have been used to analyze crowds, like simulation and
modelling or Computer Vision techniques. Computer Vision is a relatively new technique for
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analyzing gatherings and has produced marvellous results in the last decade. The essential analysis
activities are counting individuals, tracking, and exploring the crowd’s behavior. Several methods
from different fields have been applied to the problem of crowd management. Examples include
disaster risk reduction and crowd simulation [6,20]. Simulation is one of the most used methods to
analyze crowds. Zhan et al. [21] and Jacques et al. [22] describe crowd analyses using simulation.

Computer Vision (CV) has played an essential role in crowd management for the past many
years. The evaluation of these techniques is highly dependent on the dataset used during exper-
imentation. Vision-based crowd analysis focuses on four significant aspects, as shown in Fig. 2:
(i) Counting, (ii) Tracking, (iii) Behaviour, and (iv) Congestion Detection.

Figure 2: Vision-based crowd analysis
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Computer Vision-based Crowd Counting uses multiple approaches to count people in a
scene. Crowd Counting can be achieved via direct methods, such as-detecting faces or body
parts. Indirect detection can be done by estimating crowd density ranges. Along with traditional
approaches [23], some advanced techniques—object density map, regression techniques, mono-
lithic, part-based, pixel-based, texture-based, and deep learning-based methods—are also used for
crowd counting.

Crowd Counting—using density maps—bypasses all the difficulties arising from image occlu-
sion. Lempitsky et al. [24] proposed a crowd counting method based on density maps. Similarly,
some other researchers [25,26] found object density maps effectively for crowd counting. Kang
et al. [27] provided a comprehensive comparison of crowd counting using density maps, wherein
density values were calculated from low-level features, even as information location was main-
tained. Lempitsky et al. [24] introduced a linear model that predicts the pixel’s density value from
the extracted part. Kang et al. [28] proposed a computer vision-based framework to count the
people in Tawaf.

Regression-based methods work more efficiently as compared to tracking-based and detection-
based methods. Regression-based counting uses image features for counting. Idress et al. [29] used
multiple sources like SIFT, heat detector confidence, and frequency domain analysis. They found
that a single source is not enough for counting in distorted and severe occlusion datasets. One of
the drawbacks of this technique is the lack of location information; hence, it cannot be used for
object localization [30]. Arteta et al. [25] used ridge regression (RR) for the interactive counting
of people.

Regression-based methods can be improved by applying the Convolutional Neural Net-
work (CNN). These methods use density maps generated from images. Zhang et al. [31] proposed
a CNN model that uses switchable alternative learning for crowd counting and density maps. They
presented a Multi-column Convolutional Neural Network (MCNN) trained to estimate crowd
density in still images. Sindagi et al. [32] proposed the Contextual Pyramid CNN (CP-CNN) that
created good quality density images by incorporating contextual information with a density map.
Xiong et al. [33] proposed Convolutional LSTM (convLSTM) to improve count accuracy using
spatial and temporal information.

Advancement in deep learning improves results significantly in people-detection, counting, and
tracking. Deep CNN is a model in which features are extracted from the lower-level layers up to
the final layer. Nowadays, faster R-CNN [34] algorithms are used widely to count the crowd.

People tracking in videos is crucial for Computer Vision. The tracking algorithm is useful
in video surveillance. Tracking can be done using multiple cameras or a single camera. State-
of-the-art approaches for multi-view [35–37] uses multiple cameras to monitor the object, while
the single-view method [38–40] uses a single camera but provides lesser information. Khanloo
et al. [41] combined motion and colour features to track people.

The behaviour of the crowd is an essential feature in video analytics. Studies discuss a lot of
approaches to analyze crowd behaviour in real-time and offline videos. Some of the most common
approaches are optical flow [42,43], particle flow [44], streaklines flow [45,46], spatio-temporal
features [47,48], and tracklets [49,50]. These approaches determine the collective behaviour of the
crowd. Saqib et al. [51] developed a framework that took multiple snapshots from videos of the
moving Haram crowd and extracted crowd density and directional flow information by applying
an unsupervised hierarchical clustering algorithm.
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Crowd congestion-detection is another area where computer vision can play an influential
role. Unfortunately, very little work has been done on congestion-detection and prediction using
computer vision. Khan et al. [52] proposed a computer vision-based framework that estimates
crowd density, detects congestion-levels, and identifies dominant patterns using videos from the IP
cameras installed in Masjid al-Haram. They also proposed a congestion-detection mechanism [19]
using multiple overlapping temporal segments of equal duration. The trajectories extracted from
these segments are used to calculate the oscillation map to identify critical congestion areas
in videos.

Another challenging task is anomaly detection to sense any casualty in crowded scenes.
Initially, the anomaly is detected using hand-crafted features and object trajectories [53,54].
Abnormal courses are obtained from the motion of humans that serve as features. Due to the
advancement of deep neural networks, feature extraction has become more representative than
hand-crafting.

Similarly, Yang et al. [55] proposed an anomaly detection approach based on the deep
learning generative model. Hasan et al. [56] used convolutional AEs on spatio-temporal frames
to detect anomalies. The LSTM based CAEs are also based on convolutional AEs used to detect
anomalies [57].

Our proposed framework discards traditional machine-learning approaches and recommends
a Convolutional Neural Network (CNN). In contrast to holistic approaches to extract hand-
crafted features from the whole image, our network learns a robust and compact representation
of trajectories by extracting hierarchical features from spatio-temporal images. Moreover, we have
trained the model on a large dataset that has enhanced its discriminative power of detecting
congestion in complex scenarios.

3 Proposed Methodology

3.1 Motion Extraction
The input to the proposed framework is a video sequence. The framework divides this

sequence into several overlapping temporal segments, where the length of each part is L.
Let V represent an input video sequence. We divided the video sequence V into n number of
pieces as S1,S2, . . . ,Sn. The size of each temporal segment L represents the number of frames
per segment. We then extracted spatio-temporal information in the form of trajectories from each
temporal segment Si.

To better understand pedestrians’ behaviour, it is vital to obtain accurate, long, and dense
trajectories. Such trajectories help capture the pedestrians’ local motion and provide full coverage
of the global context. Conventionally, trajectories are extracted by detecting and tracking each
individual in the scene. We observed that the performance of this tracking method depends upon
the accuracy of a detector. While this works fine in low-density crowds, where half/full pedestrians’
bodies are visible, it is not satisfactory in high-density crowds. This phenomenon explains why
researchers tend to avoid this method to understand the dynamics of high-density groups and,
instead, adopt holistic approaches by gathering global information [19].

We group the holistic approaches into two categories: (1) Interest point tracking and (2) dense
optical flow tracking. In the first category, interest points—for example, corner points, edges of
SIFT features—are extracted from the initial frame of a video sequence and tracked through
subsequent frames. The trajectories obtained by this method are sparse and cannot provide full
coverage of motion in the scene since a limited number of features are generated for tracking.
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In the second category, the optical flow field is computed between every consecutive frame of the
video sequence. Since the flow vector is calculated for every pixel, it provides better coverage of
moving crowds in the scene. However, a small change in illumination causes a significant difference
in the flow vector. Thus, the trajectories obtained by this method are unreliable.

Accordingly, we have used both the techniques mentioned above and employed KLT [58],
Particle Video (PV) [59], Large displacement optical flow method [60], and particle advection [61]
techniques to extract motion information from the video. Among these methods, the particle
advection approach produces denser trajectories than KLT or Particle Video. It has been widely
used in many applications for extracting dense and reliable global motion information. From
empirical evidence, we observed that particle advection produces more plausible trajectories, and
we adopted this approach in the proposed framework.

The first step is to compute dense optical flow between each consecutive frame of the video
sequence to obtain trajectories using the particle advection approach. We employed a popular
optical flow technique [62], which calculates the optical flow vector for every pixel using gradient
and brightness consistency constraints. Since the flow vector is computed for every pixel of an
image, the trajectories obtained by this approach are dense. Generally, dense flow tracking can
cause substantial computational costs. To reduce the computation cost, we sampled anchor points
from a uniform grid G overlaying the initial frame of the video sequence. Let anchor point
i ∈ G be uniquely represented by fi = (x, y,�x,�y) where (x, y) are the spatial coordinates and
(�x,�y) is the flow vector. Then F = {f1, f2, . . . , fn} represents the optical flow field that contains
n number of anchor points. Each anchor points i in G initiated a trajectory in the current frame
and formed a long course by concatenating matched points in the subsequent frames. A ‘set of
trajectories’ �= {t1, t2, . . . , tn} was obtained. It described the motion in the given video sequence.
Generally, in structured crowds (where pedestrians’ flow was unique), we got reliable trajectories
using the particle advection approach. However, in unstructured gatherings (where the pedestrians
moved in arbitrary directions), this approach produced unreliable courses due to the following
reasons: (1) Frequent occlusions and (2) ambiguous optical flow at the boundaries of two opposite
flows [63]. As such, the anchor point might drift from the original path and become part of
some other motion. We avoided this problem by terminating the tracking process when the anchor
point ceased its authentic way. To achieve this, we computed a circular distance d [27] between
the circular angle of anchor point at frame t and t+ 1. We defined a threshold λ and terminated
the tracking process for anchor point i in case λ ≤ d. Furthermore, we removed the occluded
trajectories and those that could not find a match in the subsequent frames. If the displacement
vector in the warped vector field was too small, the path was regarded as noise and removed.
After pruning noisy ones, the final set � was considered to be a compressed representation of
video sequence Si over a temporal domain.

3.2 Spatio-Temporal Image Generation and Classification
Trajectory analysis and classification have played a vital role in object classification and

recognition tasks [64–66] and, therefore, obtained considerable importance from the research
community. A trajectory can generally be classified using two different ways: (1) Unsupervised
clustering and (2) supervised machine-learning. Unsupervised clustering is a data-driven approach,
where the trajectories are clustered into other groups based on the similarity measure. This
approach finds similar patterns in the input data without using labels that make it impossible
to assign a pre-defined class trajectory. Inversely, supervised machine-learning requires labelled
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samples for training the algorithm that assigns given courses to a pre-defined class. In this paper,
we have employed supervised machine-learning for classifying trajectories.

We presented Algorithm 1 that converts the input set of trajectories into corresponding spatio-
temporal images. Our method consisted of two steps. In the first step, we reverse the range of lines
to fixed-size images. It is vital because trajectory data extracted from different scenes have differing
spatial degrees depending on the video frame’s resolution. Generally, CNN requires images of a
fixed size. Therefore, we first converted all trajectories to spatio-temporal pictures to the extent
that fits the CNN requirement. We then pre-processed each image by subtracting it from the image
mean. The input to Algorithm 1 is a set of trajectories represented by �= {t1, t2, . . . , tn} and the
output is Im that represents a set of normalized spatio-temporal images. Fig. 3 shows the pipeline
of the proposed method.

Algorithm 1: Generating spatial-temporal images from trajectories
Input: Trajectories (�,wi,hi,wo,ho)
Output: List of spatio-temporal images Is
1: Begin
2: Foreach trajectories tk in � do
3: Initialize I ∈R

woxho← 1
4: Foreach point p in t do

5: x̂= p ·x
wi

wo

6: ŷ= p · y
hi

ho

7: If 0≤ x̂≤wo and 0≤ ŷ≤ ho then
8: I(x̂, ŷ)← 0
9: EndIf
10: EndFor
11: insert I in Is
12: EndFor
13: Initialize Imean ∈R

woxho← 0

14: Imean←
∑
Is

N
//compute mean of image set Is

15: Foreach image M in Is do
16: d← Imean−M
17: insert d in Im
18: EndFor
19: return Im
20: End

Proposed spatio-temporal images are binary images that contain the connected coordinates
of corresponding trajectories’ data, as shown in Fig. 3 and have a white background with black
pixels corresponding to the trajectory data. From Fig. 3, it is also apparent that the resultant
spatio-temporal images are significantly different from other natural RGB images in the following
ways: (1) Natural RGB images are more complex than spatio-temporal pictures since they have
three colour channels; (2) RGB images contain creamy texture and high-frequency components
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while spatio-temporal images lack texture information and most of the image is blank; (3) Due to
the lack of texture and colour information, spatio-temporal images belonging to different classes
appear similar. Therefore, spatio-temporal images have extensive intraclass similarities compared
to natural RGB images.

Figure 3: Pipeline of spatial-temporal images generation method

We introduced a simple yet effective CNN architecture to classify spatio-temporal images.
Generally, the architecture of CNN is composed of convolutional, pooling, and fully connected
layers. Even though different CNN architectures have been proposed in studies that address
distinct recognition and classification tasks, it is still uncertain if CNN can be designed to classify
spatio-temporal images. Since spatio-temporal images lack texture and appearance information,
we kept the architecture of CNN shallow. Our proposed CNN architecture is similar to VGG-M,
consisting of six convolution layers and two fully connected layers. However, due to the unique-
ness of spatio-temporal images, we modified the architecture and tuned it accordingly in the
following ways:

1. We enhanced the receptive field of VGG-M by increasing the filter size of the first convo-
lution layer. This modification was made to incorporate more context in spatio-temporal
images. A small patch from spatio-temporal images may contain only a little information
about the trajectory, and most of the image is blank.

2. The original VGG-M accepts 3-channel RGB images, while spatio-temporal images are
binary and have only one channel. To make them fit the input size of CNN, we modified
the pictures from a single track to a three-channel by copying each image three times.

Due to many network parameters and limited training data, overfitting can be a common
problem. We adopted the dropout technique [67] to avoid this problem. Generally, a dropout
value of 0.5 is considered optimum for most classification problems. However, in our experiments,
we kept the dropout value to 0.6 in layers 6 and 7 (fully connected layers). Since we have two
classification classes, the last fully connected layer had two outputs. The overall architecture of
the proposed CNN is shown in Tab. 1. The stochastic gradient descent learned the weights of
different CNN filters with a momentum of 0.6. We limited the batch size of training images
to 64. Let Im = {i1, i2, . . . , in} is the set of spatio-temporal images for trajectories �= {t1, t2, . . . , tn}
and S= {S1,S2, . . . ,Sn} is the list of scores assigned to spatio-temporal images after classification.
We then utilized this information to detect congested regions in the scenes.
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Algorithm 2: Generating score map Ψ

Input: List of Trajectories �= {t1, t2, . . . , tn}
Classification scores S= {S1,S2, . . . ,Sn}

Output: Score map Ψ

1: Begin
2: Initialize Ψ ∈R

wixhi← 0
3: Foreach trajectories tk in � do
4: Foreach point (xi,yi) in trajectories tk do
5: Ψ (xi,yi)← 0
6: EndFor
7: EndFor
8: End

Table 1: Architecture of proposed convolutional neural network

Layers L1 L2 L3 L4 L5 L6 L7 L8

Type Conv Pooling Conv Pooling Conv Conv Conv Pooling FC FC FC

No. of filters 96 256 512 512 512 4960 4960 2
Kernel size 11 ∗ 11 3 ∗ 3 5 ∗ 5 3 ∗ 3 3 ∗ 3 3 ∗ 3 3 ∗ 3 3 ∗ 3 6 ∗ 6 1 ∗ 1 1 ∗ 1
Kernel stride 2 ∗ 2 2 ∗ 2 2 ∗ 2 2 ∗ 2 1 ∗ 1 1 ∗ 1 1 ∗ 1 2 ∗ 2 1 ∗ 1

3.3 Congestion Region Detection
For detecting congested regions in the scene, we utilized trajectory information � =

{t1, t2, . . . , tn} and their corresponding scores S = {S1,S2, . . . ,Sn} to generate a score map, repre-
sented by Ψ. We developed the score map Ψ using Algorithm 2.

Input to the algorithm is a set of trajectories � and their corresponding scores S. The
resolution of Ψ is equal to the resolution of the original video frame, i.e., R

wixhi . The score map is
generated by assigning a score value to each point of the trajectory (line 5 of Algorithm 2). The
score map values vary from 0 to 1, where ‘0’ represents a normal, and ‘1’ illustrates a congested.

Our score map Ψ is similar to the oscillation map in [19]. However, there is one fundamental
difference. The oscillation map is generated by statistically computing the oscillation value of each
trajectory. In contrast, in our case, each value of score Ψ represents the confidence score obtained
through the classification of spatio-temporal images by CNN.

Fig. 4a shows the score map with the colour bar. We encoded the higher score with red colour
to represent congested and blue to represent non-congested trajectories. After we obtained the
score map Ψ, we applied the non-maximum suppression (NMS) method to suppress low score
values. In our experiments, we fixed the threshold value to 0.6. Since we wanted to identify
congested locations, we kept the points with a score value of ≥ 0.6 and suppressed all those points
with scores lower than 0.6. Fig. 4b shows the score map obtained after applying NMS. After
NMS, we used a 2-D Gaussian filter with σ is 1 and size 15×15 pixels. Small blobs appeared after
applying the Gaussian filter, as shown in Fig. 4c. Since they belonged to congested regions, they
were clustered together using the mean-shift method [36]. The resultant areas were the crowded
regions in the scene. Fig. 4d illustrates congested overlaid places over the image.
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Figure 4: (a) Shows the score map obtained by Algorithm 2. (b) Shows score map obtained after
applying non-maximum suppression. (c) Shows blobs appear after applying Gaussian filter which
are then clustered to obtain final congested regions in (d). (best view in zoom in)

4 Experiment Results

This section will discuss the dataset’s details and the different schemes adopted to evaluate
and compare the proposed approach with other state-of-the-art methods.

To evaluate the proposed approach’s effectiveness, we performed experiments on the dataset
presented in [19]. The dataset contained fifteen video sequences that covered different scenarios.
It discussed other crowd behaviours that lead to congestion, including evacuation, jostling,
conflict, and blockage.

During an evacuation, people try to leave through a single and narrow exit that causes
congestion. Generally, this phenomenon is commonly observed at train stations. While jostling,
people try to push each other to make their way out. Congestion arises when two or more large
groups of people come face to face in a narrow passage. In such a situation, people confront each
other to make their way out. Blocking happens when the movement of one large group of people
is obstructed.

We followed the convention adopted by [19] in the experimental setup and divided the videos
into two sets, i.e., test and train. The train set contained nine video sequences, while the remaining
six video sequences were used for testing, as shown in Tab. 2.

The Trajectory Annotation elaborates the method we used. A typical annotation process
involves the coder watching the video for several hours, manually tracking each individual, and
generating a trajectory. Since we are dealing with high-density crowds, with over 2000 people in
a scene, this process consumes a lot of human effort and is usually prone to errors. Another way
to annotate trajectories is to employ an unsupervised clustering algorithm that can cluster them
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into groups. The prominent (big cluster) groups are regarded as ‘normal’, while those belonging
to sets containing a smaller number are considered congested trajectories. Although this process
necessitates additional annotation, it reduces the cost of manual labelling significantly. Therefore,
we adopted this strategy to cluster trajectories into groups, and then, through visual observation
of the clusters, we assigned labels to clusters. We observed that the annotation process still requires
further refinement as similar trajectories may be transferred to two different classes. This problem
cannot be detected through visual observations. Therefore, we employed t-SNE [68] to further
refine the training data by visualizing the distribution of trajectories in a low-dimension space. In
the visualization plane, similar orbits close to each other, and we manually inspected them that
lay farther away from the class. After preparing the data, we trained the model and reported the
test set’s classification and localization accuracy.

Table 2: Splitting of the dataset into training and testing sets. Each video is represented by its
name, behaviour, and number of frames

Train Test

Video Behaviour No. of frames Video Behaviour No. of frames

Station1 Evacuation 2570 Seq30 Evacuation 4630
Penn station Evacuation 16500 Station2 Evacuation 6010
Concert Evacuation 29770 Hseq10 Blockage 26874
Hseq04 Blockage 21600 Hseq01 Jostling 10800
Hseq08 Jostling+Blockage 30245 Hseq05 Jostling+Conflict 14750
Hseq02 Jostling 36000 Hseq07 Evacuation 25412
Hseq06 Jostling+Conflict 10182
Hseq03 Conflict 17700
Hseq09 Jostling+Conflict 45010

We also evaluated and compared the performance of other existing methods:

a. Krausz et al. [1] proposed the first method that automatically detects congestion in crowded
scenes to the best of our knowledge. The authors evaluated their proposed framework
on a single video. They offered a framework that automatically detects congestion in
videos, computes the optical flow field from the input video sequence, and generates a 2-D
histogram of magnitude and orientation. The framework identifies congestion by detecting
a small magnitude along the central axis of the histogram.

b. Huang et al. [18] proposed a vision-based approach that detects congestion in videos using
entropy, commonly used to measure a closed system’s stability. The authors used velocity
entropy to measure velocity vectors’ dispersion, which serves as an indicator of congestion.

c. Bek et al. [69] proposed a framework that extracts trajectories from the video. Using this,
they computed track density and local inertia, which are then combined to estimate the
scene’s congestion level.

d. Most recently, Khan et al. [19] proposed a framework that detects and localizes congestion
in the scene. They extracted point trajectories from the video and used them to determine
the oscillation feature leading to the generation of an oscillation map, which is then quan-
tized and used to identify the scene’s congested regions. Moreover, the authors proposed a
novel dataset that contains 15 video sequences to evaluate the congestion detection models.
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e. We also trained a binary SVM classifier. For this, we extracted spatio-temporal features
from each video using a 3-D convolutional neural network [70]. At the same time, the
linear classifier was trained based on the extracted features. We created small clips by trim-
ming congested segments from each video and treated ‘congested’ and ‘normal’ as separate
classes. During testing, binary classifiers provided the class score for each video segment.

To evaluate the proposed method’s performance, we used conventional evaluation metrics,
i.e., Region of Convergence (ROC) and Area Under Curve (AUC). These are some of the
standard metrics used to evaluate binary classifiers. For evaluating the classification performance,
we used frame-level classification. A frame is considered ‘congested’ if intersection-over-union
(IoU) between the predicted region and the ground truth is ≥0.4. Quantitative results in terms of
ROC and AUC are reported in Fig. 5 and Tab. 3. From the quantitative results, it is evident that
the proposed approach outperforms other state-of-the-art methods by a significant margin.

Figure 5: Performance comparison of different methods in terms of ROC. Krausz et al. [1] in
green, Huang et al. [18] in blue, Bek et al. [69] in red, baseline in magenta and proposed in
black colour

Table 3: Performance comparison of different methods in terms of Area Under Curve (AUC).
Large values represent superior performance

Method AUC

Krausz et al. [1] 54.08
Huang et al. [18] 64.75
Bek et al. [69] 75.27
Baseline 51.36
Proposed 92.34
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The results can be safely concluded that a binary SVM classifier achieves lower performance
than the other methods and cannot be used for congestion detection in videos. It is primarily due
to datasets containing long, untrimmed video sequences where most video frames are usual, and
congestion occurs only for a short duration. Therefore, a binary SVM classifier could not learn
enough discriminative features to distinguish congestion. A two-dimensional histogram (magnitude
and directions) obtained by K-mean clustering in [1] was not robust enough to classify congestion
accurately. Furthermore, we observed that this method produced a low classification score for both
‘congested’ and ‘normal’ temporal segments since it relied on a weak feature, i.e., the optical flow,
which is easily affected by simple changes illumination. Bek et al. [69] achieved a comparable
performance, but their method misclassified regular patterns as congested patterns and produced
a high congestion score.

We also analyzed the proposed framework’s false alarm rate because a large portion of the
video sequence is non-congested in the real world. Ideally, a robust congestion detector’s goal is
to produce zero false alarm rate on standard video sequences. Therefore, we evaluated the perfor-
mance of the proposed method and other reference methods on regular video sequences. We set
the threshold value to 0.5 and reported results of the false alarm rate in Fig. 6. As demonstrated
in Tab. 3, we can conclude that the proposed method produces relatively fewer false alarms than
other reference methods.

Figure 6: Performance comparison of different methods in terms of false alarm rate

To demonstrate the proposed framework’s robustness, we used an additional video sequence
covering the Shibuya Crossing in Japan, duly downloaded from YouTube. Shibuya Crossing
happens to be one of the world’s busiest crossings. It is especially famous for its scramble crossing.
Even though Shibuya Crossing’s density is usually high during peak times, no congestion situation
was reported. We manually analyzed the video sequence and learned that there was, in fact, no
congestion in the entire series. We then tested the proposed framework by providing it as an
input to the framework. The framework’s output is illustrated in Fig. 7. The algorithm detects no
congestion in all temporal segments of the video, indicating that the proposed system is robust in
distinguishing the congestion from original video segments.
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Figure 7: Temporal segments of Shibuya crossing, where T1, T2, T3 and T4 are different temporal
segments, where no congestion is detected

We observed that the model learned more discriminative features when trained with ‘normal’
and ‘congested’ video segments from empirical studies. Further, it was observed that the net-
work could accurately learn to localize the congested region by training it with many positive
and negative samples. We also observed that the network learns to discriminate congestion and
standard patterns at a high number of training iterations. For example, at 500 iterations, the
validation error of the network is increased. After 1,000 iterations, the network starts to learn
discriminative features and produces a high score for congested and a low score for regular
segments. As the network analyses more video samples and the number of iterations increase, its
precision also increases.

To quantify the performance of the proposed framework, we used three evaluation metrics,
i.e., Detection Accuracy (DA), Localization Accuracy (LA), and Missed Rate (MR). DA is cal-
culated by the number of correct predictions/total number of predictions. We regard a frame as
congested if the area of the congested region is more significant than a threshold λ. In all our
experiments, we fixed the value of λ= 1

8 of foreground pixels. LA is the Intersection-over-Union

(IoU) between the detected region and the ground truth. IoU is calculated by C
max(N,M)

, Where

C is the number of common points among detection and ground truth region, N is the number
of points in the detected area, whereas M is the number of points in the ground truth region.
We computed missed detection by (MR) number of missed detections (in frames)/total number of
frames in the given temporal segment.

The performance of the proposed framework in terms of the three evaluation metrics can
be seen in Tab. 4, where DA, MR, and LA are computed for all video sequences. Our proposed
method detected congestion with an average 0.90 detection accuracy in almost all the video
sequences except Hseq01 and Hseq02, where the framework achieved comparatively lower values
as the framework did not detect some frames. In these frames, relatively small blobs (congested
areas) were produced, filtered out by the threshold λ.

The proposed framework’s effectiveness has been demonstrated qualitatively in Figs. 8 and 9.
Fig. 8 shows the output of the framework at independent temporal segments of Station1 video
sequence. This sequence demonstrates growing congestion, where the area of the congested region
increases with time. This video sequence exhibits evacuation behaviour, where people from differ-
ent entrances try to leave from a single narrow exit. Fig. 8 illustrates different temporal segments
of the video, where people’s density is less in the first temporal segment T1 compared to T4.
Therefore, the area of the congested region in the temporal segment T1 is less. With time, more
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people join, and a crowd starts forming crowded regions in other temporal segments. The output
of our framework was then compared with the ground truth.

Table 4: Performance of the proposed framework in DA, MR, and IoU for all video sequences

Video DA MR IoU

Station1 0.92 0.27 0.74
Station2 0.95 0.21 0.93
Penn station 0.91 0.17 0.96
Seq30 0.97 0.10 0.96
Concert 0.93 0.16 0.82
Hseq01 0.61 0.37 0.67
Hseq02 0.87 0.42 0.84
Hseq03 0.94 0.23 0.69
Hseq04 0.93 0.18 0.94
Hseq06 0.96 0.26 0.80
Hseq07 0.89 0.34 0.96
Hseq08 0.92 0.29 0.89
Hseq09 0.90 0.29 0.67
Hseq10 0.93 0.24 0.82
Average 0.90 0.25 83.21

Figure 8: Comparison of the proposed framework with the ground truth in Station1 video
sequence. The first row shows the ground truth, where the red blobs show the congested
regions in different temporal segments. The second row shows the crowded areas detected by the
proposed framework
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Figure 9: Comparison of the proposed framework with the ground truth in Hseq01 video
sequence. The first row shows the ground truth, and the second row shows the congested regions
detected by the proposed framework in different temporal segments of the video

Fig. 9 shows congestion in the Hseq01 video sequence. We can observe dynamic congestion in
this sequence when congestion is produced at different regions of the scene at multiple temporal
segments. In this video sequence, a large group of people circumambulate the Kaaba to perform
obligatory rituals. Another group of people blocks their way for cleaning purposes. This small
group of pedestrians move orthogonal to the main flow and stop the other group’s path. As the
small group penetrates forward, they choke the people’s movement at different spatial-temporal
segments, as shown in the video. Fig. 9 compares the performance of the proposed framework
with the ground truth. The proposed framework accurately localized the congested region in all
temporal segments of the video, as shown in Figs. 8 and 9.

5 Conclusion and Future Work

In this work, we have proposed a practical framework for detecting congestion in crowds.
The framework generates spatio-temporal images from pedestrian trajectories and introduces CNN
to learn the representation. A CNN classifies each spatio-temporal image into two classes, i.e.,
‘normal’ and ‘congested.’ The framework then generates a score map by embedding each point of
trajectory with its respective class score. Congested regions are obtained after employing the non-
maximum suppression algorithm. The proposed framework achieves state-of-the-art performance
on challenging video sequences and outperforms other reference methods by a significant margin.
This superior performance is because CNN efficiently learns hierarchical features from spatio-
temporal images. Empirical studies suggest that the proposed framework is adaptable, and the
proposed CNN classifier can be easily replaced with other classifiers.

In the future, we plan to validate our framework on multiple video sequences, including those
recorded from various cameras, scenarios from camera feed, or simulation videos taken from
different angles. We also plan to optimize our framework to run on low-end hardware and provide
analytics in real-time.



722 CMC, 2021, vol.68, no.1

Acknowledgement: The authors extend their appreciation to the Deputyship for Research & Inno-
vation, Ministry of Education in Saudi Arabia, for funding this research work through Project
Number 0909.

Funding Statement: This research work is supported by the Ministry of Education in Saudi Arabia
(Grant Number 0909).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

References
[1] B. Krausz and C. Bauckhage, “Loveparade 2010: Automatic video analysis of a crowd disaster,”

Computer Vision and Image Understanding, vol. 53, no. 3, pp. 307–319, 2012.
[2] G. K. Still, Introduction to Crowd Science, Boca Raton, Florida, United States: CRC Press, 2014.

[Online]. Available: https://www.routledge.com/Introduction-to-Crowd-Science/Still/p/book/9781466579644.
[3] D. Helbing and P. Molnar, “Social force model for pedestrian dynamics,” Physical Review E, vol. 51,

no. 5, pp. 4282–4286, 1995.
[4] C. Burstedde, K. Klauck, A. Schadschneider and J. Zittartz, “Simulation of pedestrian dynamics using

a two-dimensional cellular automaton,” Physica A: Statistical Mechanics and Its Application, vol. 295,
no. 3, pp. 507–525, 2001.

[5] D. Helbing, A. Johansson and H. Z. Al-Abideen, “Dynamics of crowd disasters: An empirical study,”
Physical Review E, vol. 75, no. 4, pp. 46109, 2007.

[6] T. Li, H. Chang, M. Wang, B. Ni, R. Hong et al., “Crowded scene analysis: A survey,” IEEE
transactions on Circuits and Systems for Video Technology, vol. 25, no. 3, pp. 367–386, 2015.

[7] X. Zhang, D. Ma, H. Yu, Y. Huang, P. Howell et al., “Scene perception guided crowd anomaly
detection,” Neurocomputing, vol. 414, no. 5, pp. 291–302, 2020.

[8] W. Sultani, C. Chen and M. Shah, “Real-world anomaly detection in surveillance videos,” in Proc.
IEEE Conf. on Computer Vision and Pattern Recognition, Salt Lake City, USA, pp. 6479–6488, 2018.

[9] X. Zhang, X. Shu and Z. He, “Crowd panic state detection using entropy of the distribution of
enthalpy,” Physica A: Statistical Mechanics and Its Application, vol. 525, no. 7, pp. 935–945, 2019.

[10] R. Mehran, A. Oyama and M. Shah, “Abnormal crowd behavior detection using social force model,”
in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Florida, USA, pp. 935–942, 2009.

[11] W. Liu, M. Salzmann and P. Fua, “Context-aware crowd counting,” in Proc. IEEE Conf. on Computer
Vision and Pattern Recognition, Long Beach, USA, pp. 5099–5108, 2019.

[12] J. Chen, W. Su and Z. Wang, “Crowd counting with crowd attention convolutional neural network,”
Neurocomputing, vol. 382, no. 3, pp. 210–220, 2020.

[13] G. Zhang, Y. Pan, L. Zhang and R. L. K. Tiong, “Cross-scale generative adversarial network
for crowd density estimation from images,” Engineering Applications of Artificial Intelligence, vol. 94,
pp. 103777, 2020.

[14] X. Ding, F. He, Z. Lin, Y. Wang, H. Guo et al., “Crowd density estimation using fusion of multi-layer
features,” IEEETransactions on Intelligent TransportationSystems, New York, United States: IEEE, 2020.
[Online]. Available: https://ieeexplore.ieee.org/document/9063540.

[15] S. Ali and M. Shah, “Floor fields for tracking in high density crowd scenes,” in Proc. European Conf.
on Computer Vision, Marseille, France, pp. 1–14, 2008.

[16] I. Ali and M. N. Dailey, “Multiple human tracking in high-density crowds,” Image and Vision
Computing, vol. 30, no. 12, pp. 966–977, 2012.

[17] L. Q. Xu and A. Anjulan, “Crowd behaviours analysis in dynamic visual scenes of complex environ-
ment,” in Proc. IEEE Int. Conf. on Image Processing, San Diego, USA, pp. 9–12, 2008.

https://www.routledge.com/Introduction-to-Crowd-Science/Still/p/book/9781466579644
https://ieeexplore.ieee.org/document/9063540


CMC, 2021, vol.68, no.1 723

[18] L. Huang, T. Chen, Y. Wang and H. Yuan, “Congestion detection of pedestrians using the velocity
entropy: A case study of love parade 2010 disaster,” Physica A: Statistical Mechanics and Its Application,
vol. 440, no. 10, pp. 200–209, 2015.

[19] S. D. Khan, “Congestion detection in pedestrian crowds using oscillation in motion trajectories,”
Engineering Applications of Artificial Intelligence, vol. 85, no. 10, pp. 429–443, 2019.

[20] J. M. Grant and P. J. Flynn, “Crowd scene understanding from the video: A survey,” ACMTransaction
on Multimedia Computing, Communications and Applications, vol. 13, no. 2, pp. 1–23, 2017.

[21] B. Zhan, D. N. Monekosso, P. Remagnino, S. A. Velastin and L. Q. Xu, “Crowd analysis: A survey,”
Machine Vision and Applications, vol. 19, no. 5, pp. 345–357, 2008.

[22] J. C. S. Jacques, S. R. Musse and C. R. Jung, “Crowd analysis using computer vision techniques,”
IEEE Signal Processing Magazine, vol. 27, no. 5, pp. 66–77, 2010.

[23] M. Rodriguez, I. Laptev, J. Sivic and J. Y. Audibert, “Density aware person detection and tracking in
crowds,” in Proc. IEEE Int. Conf. on Computer Vision, Barcelona, Spain, pp. 2423–2430, 2011.

[24] V. Lempitsky and A. Zisserman, “Learning to count objects in images,” in Proc. Int. Conf. on Neural
Information Processing, Vancouver, Canada, pp. 1324–1332, 2010.

[25] C. Arteta, V. Lempitsky, J. A. Noble and A. Zisserman, “Interactive object counting,” in Proc. European
Conf. on Computer Vision, Zurich, Switzerland, pp. 504–518, 2014.

[26] L. Fiaschi, R. Nair, U. Koethe and F. A. Hamprecht, “Learning to count with regression forest and
structured labels,” in Proc. Int. Conf. on Pattern Recognition, Tsukuba, Japan, pp. 2685–2688, 2012.

[27] D. Kang, Z. Ma and A. B. Chan, “Beyond counting: Comparisons of density maps for crowd
analysis tasks—Counting, detection, and tracking,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 29, no. 5, pp. 1408–1422, 2019.

[28] D. Kang, Z. Ma and A. B. Chan, “Beyond counting: Comparisons of density maps for crowd
analysis tasks—Counting, detection, and tracking,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 29, no. 5, pp. 1408–1422, 2019.

[29] H. Idrees, I. Saleemi, C. Seibert and M. Shah, “Multi-source multi-scale counting in extremely dense
crowd images,” in Proc. IEEEConf. on Computer Vision and Pattern Recognition, Portland, Oregon, USA,
pp. 2547–2554, 2013.

[30] A. B. Chan and N. Vasconcelos, “Counting people with low-level features and Bayesian regression,”
IEEE Transactions on Image Processing, vol. 21, no. 4, pp. 2160–2177, 2012.

[31] C. Zhang, H. Li, X. Wang and X. Yang, “Cross-scene crowd counting via deep convolutional neural
networks,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Boston, MA, USA, pp. 833–
841, 2015.

[32] V. A. Sindagi and V. M. Patel, “Generating high-quality crowd density maps using contextual pyramid
CNNS,” in Proc. IEEE Int. Conf. on Computer Vision, Venice, Italy, pp. 1879–1888, 2017.

[33] F. Xiong, X. Shi and D. Yeung, “Spatiotemporal modeling for crowd counting in videos,” in Proc.
IEEE Int. Conf. on Computer Vision, Venice, Italy, pp. 5161–5169, 2017.

[34] S. Ren, K. He, R. Girshick and J. Sun, “Faster R-CNN: Towards real-time object detection with
region proposal networks,” IEEE Transactions on Pattern Analysis andMachine Intelligence, vol. 39, no. 6,
pp. 1137–1149, 2017.

[35] A. Mittal and L. S. Davis, “M2tracker: A multi-view approach to segmenting and tracking people in
a cluttered scene,” International Journal of Computer Vision, vol. 51, no. 3, pp. 189–203, 2003.

[36] J. Kang, I. Cohen and G. Medioni, “Tracking people in crowded scenes across multiple cameras,” Proc.
Asian Conf. on Computer Vision, vol. 7, pp. 1–15, 2004.

[37] J. Black, T. Ellis and P. Rosin, “Multi view image surveillance and tracking,” in Proc. Workshop on
Motion and Video Computing, Motion and Video Computing, Orlando, USA, pp. 169–174, 2002.

[38] M. Han, W. Xu, H. Tao and Y. Gong, “An algorithm for multiple object trajectory tracking,” in Proc.
IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, Washington, USA, pp. I–
864, 2004.



724 CMC, 2021, vol.68, no.1

[39] M. Isard, J. MacCormick and Bramble, “A Bayesian multiple-blob tracker,” in Proc. The Eighth IEEE
Int. Conf. on Computer Vision, Vancouver, BC, Canada, pp. 34–41, 2001.

[40] D. Comaniciu, V. Ramesh and P. Meer, “Real-time tracking of non-rigid objects using mean shift,” in
Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Hilton, USA, pp. 142–149, 2000.

[41] B. Y. S. Khanloo, F. Stefanus, M. Ranjbar, Z.-N. Li, N. Saunier et al., “Max-margin offline pedestrian
tracking with multiple cues,” in Proc. IEEE Canadian Conf. on Computer and Robot Vision, Ottawa,
Canada, pp. 347–353, 2010.

[42] J. L. Barron, D. J. Fleet and S. S. Beauchemin, “Performance of optical flow techniques,” International
Journal of Computer Vision, vol. 12, no. 1, pp. 43–77, 1994.

[43] B. K. Horn and B. G. Schunck, “Determining optical flow,” Artificial Intelligence, vol. 17, no. 1–3,
pp. 185–203, 1981.

[44] S. C. Shadden, F. Lekien and J. E. Marsden, “Definition and properties of lagrangian coherent struc-
tures from finite-time lyapunov exponents in two-dimensional aperiodic flows,” Physica D: Nonlinear
Phenomena, vol. 212, no. 3, pp. 271–304, 2005.

[45] J. L. Helman and L. Hesselink, “Visualizing vector field topology in fluid flows,” IEEE Computer
Graphics and Applications, vol. 11, no. 3, pp. 36–46, 1991.

[46] J. J. Van Wijk, “Image based flow visualization,” ACMTransactions on Graphics, vol. 21, no. 3, pp. 745–
754, 2002.

[47] L. Kratz and K. Nishino, “Anomaly detection in extremely crowded scenes using spatiotemporal
motion pattern models,” in Proc. Computer Vision and Pattern Recognition, Miami, Florida, USA,
pp. 1446–1453, 2009.

[48] L. Kratz and K. Nishino, “Spatio-temporal motion pattern models of extremely crowded scenes,” in
Machine Learning for Vision-BasedMotion Analysis, London, UK: Springer, pp. 263–274, 2011. [Online].
Available: https://link.springer.com/chapter/10.1007/978-0-85729-057-1_10.

[49] B. Zhou, X. Wang and X. Tang, “Random field topic model for semantic region analysis in crowded
scenes from tracklets,” in Proc. IEEE Computer Vision and Pattern Recognition, Colorado Springs, CO,
USA, pp. 3441–3448, 2011.

[50] B. Zhou, X. Wang and X. Tang, “Understanding collective crowd behaviors: Learning a mixture model
of dynamic pedestrian-agents,” in Proc. Computer Vision and Pattern Recognition, Providence, Rhode
Island, pp. 2871–2878, 2012.

[51] M. Saqib, S. Daud Khan, N. Sharma and M. Blumenstein, “Extracting descriptive motion information
from crowd scenes,” in Proc. Int. Conf. on Image and Vision Computing, New Zealand, pp. 1–6, 2017.

[52] S. D. Khan, M. Tayyab, M. K. Amin, A. Nour, A. Basalamah et al., “Towards a crowd analytic
framework for crowd management in Majid-Al-Haram,” arXiv preprint, vol. 1709.05952, pp. 1–11,
2017. [Online]. Available: https://arxiv.org/abs/1709.05952.

[53] C. Piciarelli, C. Micheloni and G. L. Foresti, “Trajectory-based anomalous event detection,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 18, no. 11, pp. 1544–1554, 2018.

[54] F. Tung, J. S. Zelek and D. A. Clausi, “Goal-based trajectory analysis for unusual behaviour detection
in intelligent surveillance,” Image and Vision Computing, vol. 29, no. 4, pp. 230–240, 2011.

[55] B. Yang, J. Cao, R. Ni and L. Zou, “Anomaly detection in moving crowds through spatiotemporal
autoencoding and additional attention,” Advances in Multimedia, vol. 1, pp. 1–8, 2018.

[56] M. Hasan, J. Choi, J. Neumann, A. K. Roy-Chowdhury and L. S. Davis, “Learning temporal regularity
in video sequences,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Las Vegas, USA,
pp. 733–742, 2016.

[57] Y. S. Chongand and Y. H. Tay, “Abnormal event detection in videos using spatiotemporal autoen-
coder,” Advances in Neural Networks, vol. 10262, pp. 189–196, 2017.

[58] J. Shi and Tomasi, “Good features to track,” in Proc. IEEE Conf. on Computer Vision and Pattern
Recognition, Seattle, Washington, pp. 593–600, 1994.

[59] P. Sand and S. Teller, “Particle video: Long-range motion estimation using point trajectories,” Interna-
tional Journal of Computer Vision, vol. 80, no. 1, pp. 72–91, 2008.

https://link.springer.com/chapter/10.1007/978-0-85729-057-1_10
https://arxiv.org/abs/1709.05952


CMC, 2021, vol.68, no.1 725

[60] N. Sundaram, T. Brox and K. Keutzer, “Dense point trajectories by gpu accelerated large displacement
optical flow,” in Proc European Conf. on Computer Vision, Heraklion, Crete, Greece, pp. 438–451, 2010.

[61] S. Ali and M. Shah, “A lagrangian particle dynamics approach for crowd flow segmentation and
stability analysis,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Minneapolis, US,
pp. 1–6, 2007.

[62] T. Brox, A. Bruhn, N. Papenberg and J. Weickert, “High accuracy optical flow estimation based on
a theory for warping,” in Proc. European Conf. on Computer Vision, Prague, Czech Republic, pp. 25–
36, 2004.

[63] S. Khan, G. Vizzari, S. Bandini and S. Basalamah, “Detecting dominant motion flows and people
counting in high density crowds,” Journal of WSCG, vol. 22, no. 1, pp. 21–30, 2014.

[64] Y. Shi, Y. Tian, Y. Wang and T. Huang, “Sequential deep trajectory descriptor for action recognition
with three-stream cnn,” IEEE Transactions on Multimedia, vol. 19, no. 7, pp. 1510–1520, 2017.

[65] Y. Endo, H. Toda, K. Nishida and J. Ikedo, “Classifying spatial trajectories using representation
learning,” International Journal of Data Science and Analytics, vol. 2, no. 3, 4, pp. 107–117, 2017.

[66] S. K. Kumaran, D. P. Dogra, P. P. Roy and A. Mitra, “Video trajectory classification and anomaly
detection using hybrid CNN-VAE,” arXiv preprint, vol. 1812.07203, pp. 1–9, 2018. [Online]. Available:
https://arxiv.org/abs/1812.07203.

[67] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov, “Dropout: A simple way
to prevent neural networks from overfitting,” Journal of Machine Learning Research, vol. 15, no. 1,
pp. 1929–1958, 2014.

[68] L. V. D. Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal of Machine Learning Research,
vol. 9, pp. 2579–2605, 2008.

[69] S. Bek and E. Monari, “The crowd congestion level—A new measure for risk assessment in video-
based crowd monitoring,” in Proc. IEEE Global Conf. on Signal and Information Processing (GlobalSIP),
Washington, DC, USA, pp. 1212–1217, 2016.

[70] D. Tran, L. Bourdev, R. Fergus, L. Torresani and M. Paluri, “Learning spatiotemporal features with
3d convolutional networks,” in Proc. IEEE Int. Conf. on Computer Vision, Santiago, Chile, pp. 4489–
4497, 2015.

https://arxiv.org/abs/1812.07203

