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Abstract: This paper presents a novel metaheuristic algorithm called Rock
Hyraxes Swarm Optimization (RHSO) inspired by the behavior of rock
hyraxes swarms in nature. The RHSO algorithm mimics the collective behav-
ior of Rock Hyraxes to find their eating and their special way of looking
at this food. Rock hyraxes live in colonies or groups where a dominant
male watch over the colony carefully to ensure their safety leads the group.
Forty-eight (22 unimodal and 26 multimodal) test functions commonly used
in the optimization area are used as a testing benchmark for the RHSO
algorithm. A comparative efficiency analysis also checks RHSO with Parti-
cle Swarm Optimization (PSO), Artificial-Bee-Colony (ABC), Gravitational
Search Algorithm (GSA), andGreyWolf Optimization (GWO). The obtained
results showed the superiority of the RHSO algorithm over the selected algo-
rithms; also, the obtained results demonstrated the ability of the RHSO in
convergence towards the global optimal through optimization as it performs
well in both exploitation and exploration tests. Further, RHSO is very effec-
tive in solving real issues with constraints and new search space. It is worth
mentioning that the RHSO algorithm has a few variables, and it can achieve
better performance than the selected algorithms in many test functions.

Keywords: Optimization; metaheuristic; constrained optimization; rock
hyraxes swarm optimization; RHSO

1 Introduction

Nature is full of social behaviors that work to accomplish many different tasks. Naturally, all
these behaviors coexist in different environments, and their main goal is to survive, but there is
what makes them work in the form of swarms, groups, flocks, and colonies because of hunting
and mobility and defend themselves. The food search is also essential for social interactions that
allow them to complete their lives and reproduction. Another reason for the swarm for some crea-
ture is navigation. Birds are the best examples of such behaviors, which migrate intercontinental
in flocks appropriately [1,2].
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Metaheuristic optimization techniques are used extensively to solve most of the problems;
this made it very common to be used as primary methods of acquiring the optimum results of
optimization problems. Especially, few of them like Genetic Algorithm (GA) [3], Grey Wolf Opti-
mization (GWO) [4], Ant Colony Optimization (ACO) [5], Slap Swarm Optimization (SSO) [6],
Artificial-Bee-Colony (ABC) [7] and Particle Swarm Optimization (PSO) [8] are very known
and used in broad distinct fields. Metaheuristics have become very common for several reasons:
metaheuristics are very clear. They are fundamentally inspired by physical phenomena, animal
behaviors, or evolutionary concepts. Metaheuristics are easy to use, which allow researchers to
mimic natural behavior, enhance or produce new metaheuristics and hybridize more than one
metaheuristics. Furthermore, this simplicity helps scientists to acquire information rapidly and
adapt them for problems solving. Also, flexibility indicates the applicability of metaheuristics to
various problems without notable changes in the algorithm’s structure. Metaheuristics can be easily
applied to various problems. Thus, all a designer need is knowing and understanding how to
represent his problems. Also, most metaheuristics have derivation-free mechanisms. In inequality to
gradient-based optimization approaches, metaheuristics enhance problems randomly. Metaheuris-
tics deals with problems stochastically. The optimization process starts with random solutions,
and there is no need to calculate the derivative of search spaces to find the optimal solution.
Finally, metaheuristics are more capable than classical optimization strategies in managing local
optima. This is due to the random nature of metaheuristics, which permit them to overcome local
solutions inactivity and widely search the whole search area.

Swarm Intelligence (SI) was proposed in 1993 [9] and has been defined by Bonabeau et al. [3]
as “the emergent collective intelligence of groups of simple agents”. The SI inspiration techniques
are created primarily from natural habitations, herds, and flock. There are many examples of SI
popular techniques, such as PSO [8], ABC [7], and ACO [5].

Regardless of the variation among metaheuristics, usually, they have a common trait, which is
dividing the search process into the exploration and exploitation phases [10–12]. The exploration
phase indicates the investigating process of search space as widely as possible. An algorithm must
have the stochastic operators globally and randomly search within the search space to support
this phase. In contrast, exploitation indicates local search capability about the concerned regions
taken from the previous phase (exploration). The appropriate balance of these phases is seen
as a challenging task because of the metaheuristics stochastically nature. This paper introduces
a new SI technique that is inspired by the behavior of Rock Hyraxes swarms. This algorithm
has few parameters that make it easy to implement; the proposed algorithm can also balance
between exploration and exploitation phases, making it appropriate for solving many optimization
problems. The rest of the paper is organized as follows: Section 2 shows the relevant works.
Section 3 presents the Rock Hyraxes Swarm Optimization (RHSO) Algorithm inspiration and
mathematical model. Section 4 presents the results and discussion of test functions. Finally,
Section 5 concludes the work and suggests several future research directions.

2 Literature Review

There are three major categories of metaheuristics; those are Evolutionary Algorithm (EA),
Physics-Based (PB), and Swarm Intelligence (SI) algorithms. EAs, which inspired by the genetic
and evolutionary behaviors of creatures. In this branch, the most popular algorithm is the Genetic
Algorithm (GA). GA was proposed by Holland in 1992 [13] to simulate Darwinian evolution
concepts. Goldberg [14] extensively investigated the engineering applications of GA. Typically,
the development is finished by evolving associate initial random solution in EAs. Each new
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population is created by the cross over and mutation of the previous generation solutions. Since
the best solution can higher generate the new population, which most likely creates this new
population higher than the population within the previous generation(s), this may make the
initial random population converges to the best solutions over generations. An example of EAs
are Differential Evolution (DE) [15], Evolutionary Programming (EP) [16], Evolution Strategy
(ES) [17,18], Genetic Programming (GP) [19] and Biogeography Based Optimizer (BBO) [20].
Simon initially produced the BBO algorithm rule in 2008 [20]. The elemental set up of this
algorithm program is galvanized by biology science that refers to biological organisms’ study in
geographical distribution.

In physics-based techniques, the development algorithms generally simulate the physical rules.
Among the physics-based metaheuristic algorithms are Gravitated Native Search (GLSA) [21], Big
Bang Big Crunch (BBBC) [22], Gravitated Search Algorithm (GSA) [23], Charged System Search
(CSS) [24], Artificial Reaction Improvement Rule [25], Part rule [26], Ray improvement [27] rule,
Small World improvement rule [28], Galaxy based Search Algorithm (GbSA) [29] and arced area
improvement [30]. Those algorithms’ method is completely unlike EAs as it uses a random set of
search spaces that can communicate and move throughout search space per physical rules. This
movement is enforced, for instance, exploitation gravitation, inertia force, magnetic force, weights,
ray casting, and many others.

GSA is an example of a physics-based algorithm rule at that its basic physical theory is
impressed by Newton’s law of universal gravitation. The GSA performs a search by employing
a group of agents with lots of proportional to the value of fitness performance. Throughout
iteration, the gravitated forces between them interest the masses in each another [23].

Mirjalili et al. [4] propose a new metaheuristic called Grey Wolf Optimizer (GWO) inspired
by grey wolves’ behavior. The GWO algorithmic simulates the leadership hierarchy and looking
mechanism of grey wolves in nature. Four grey wolves, such as alpha, delta, beta, and omega, are
used to simulate the leadership hierarchy. Additionally, GWO implements three significant steps
of looking; those are hunting, attacking prey, and peripheral prey.

SI methods are algorithms that simulate the social behavior of flocks, herds, swarms, or other
creatures. The mechanism is near to the performance of the physics-based mostly rule; but the
search agents explore looking space and simulate creatures’ collective and social intelligence. PSO
proposed by Kennedy and Eberhart [8] is one of the famous SI techniques samples. PSO is
inspired by the birds flocking social behavior. PSO uses multiple particles that follow the most
effective particle’s position and their own to data best-obtained positions.

The last example of SI is the Bees’ swarming. Artificial Bee Colony Algorithm introduced
by Dervis Karaboga et al. [31] in (2007), ABC is an associate optimization algorithm supported
the intelligent behavior of bee swarm. ABC testing on tests and compare it with different
algorithms like PSO and GA. The results showed that the ABC algorithm outperforms the
opposite algorithms.

From all the above, it can be seen that no one metaheuristics algorithm can solve all kinds
of problem domains; therefore, there is always a need for new algorithms that can address many
types of problem domains.

3 Rock Hyraxes Swarm Optimization (RHSO)

The mathematical model of the proposed method, together with its inspiration, is discussed
in this section.
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3.1 Inspiration
Rock hyrax (Procavia capensis) is a small furry mammal that lives in rocky landscapes across

sub-Saharan Africa and along the Arabian Peninsula coast. These mammals live in colonies
usually dominated by a single male who aggressively defends his territory; the colonies sometimes
up to 50 individuals. They sleep together, look for food together, and even raise their babies
together (who then all play together). There are three types of hyrax, two are known as the rock
(or bush) hyrax and the third as tree hyrax. In the field, it is sometimes difficult to differentiate
between them [32,33].

Rock hyraxes live in areas that vary widely in ambient temperatures and provide adequate
water and feed. Low metabolic rates and transparent body temperatures may have contributed to
the successful extraction of the rocky protrusions isolated through their distribution [34].

The rock hyrax feeds every day in a circle formation, with their head pointing to the outside
of the circle to keep an eye out for predators, such as leopards, hyenas, jackals, servals, pythons,
and the Verreaux’s eagle and black eagle. When the group is feeding or basking, either the
breeding male or a female (Leader) will keep a lookout from a high rock or branch and will give
a sharp alarm or call if danger threatens, at which point the group will scurry for cover [35].

3.2 Mathematical Model and Algorithm
Rock hyraxes start taking solar baths for several hours and sharing places to live together;

they looking for food together in a distinctive way: forming a circle with different dimensions and
angles to get their food. When they find food, the Leader takes a higher place to find food and
protect each other from predatory animals.

To mathematically model the Rock hyrax swarm, the population first consists of Leader and
members. As mentioned above, the Leader chooses the higher and best place to observe the rest
of the group.

The Leader then updates his location based on his old location using the following equation:

Leader= r1 ∗ x
(
Leaderpos, j

)
(1)

where r1 refers to a random number between [0,1], x refers to the previous position of Leader,
Leaderpos represent “old position of the leader” and j refers to “refers to each diminution.” After
updating the leader position, all members (or search agents) update their position based on their
position.

x (i, j)= (x (i, j)− (circ ∗x (i, j)+Leader)) (2)

where circ refers to circular motion and try to mimic the circle system, it is calculated as:

n1 = r2 ∗ cos (ang)
n2 = r2 ∗ sin (ang)

circ= sqrt
(
n1

2̂+ n2
2̂
)

where r2 refers to the radius, and it is a random number between [0, 1], ang is a random number
between [0, 360], and it refers to the angle of a move. The ang also updated in every generation,
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and this update depending on the lower and upper bounds of the variables, where lb and ub are
the lower and upper bands of the random number generation.

dalta= random [lb,ub] (3)

ang= ang+ dalta (4)

The angle (ang) can be kept within the specified range by making it either equal to 360 if
the value of the output becomes greater than 360, or equal to 0 if it becomes less than 0.

The pseudo-code of the RHSO algorithm is shown in Algorithm 1. The RHSO starts
optimization by creating random solutions in the explorative mode and calculating their fitness.
Depending on their fitness, it identifies the best fitness as Leader; this represents switching from
explorative mode to local exploitation mode that focuses on the promising regions when global
optimal may be in a close place. Later, the Leader represents the best solution for optimization
problems. The search agents start again with another set of explorative moves and subsequent
turn into a new exploitation stage. The Leader updates his position based on Eq. (1), while the
remaining members update their positions according to the Leader’s position, as shown in Eq. (2).
Calculating the fitness of each search agent and selecting the best one as a leader. This process
will continue throughout iterations; when reaching the stopping condition, the process returned
the Leader as the best approximation for the optimization problem’s best solution.

Algorithm 1: Rock Hyrax Swarm Optimization
Initialize the population of Rock Hyrax N member.
Calculate the fitness of each search agent.
Leader= the best search agent.
t= 1.
While (t < Max number of iterations)

Update Leader position, according to Eq. (1).
Update the position of each search agent, according to Eq. (2).
Calculate the fitness of each search agent.
Select the best member of the population as a Leader.
Update the angle, according to Eqs. (3) and (4).
t= t+ 1.

End while
Return Leader as the best solution.

4 Results and Discussion

RHSO algorithm is evaluated by using 48 benchmark functions. Some of those functions are
standard functions that are used in researches. These functions are chosen to be able to show
the performance of RHSO and also to compare it with some known algorithms. The selected 48
test functions are shown in Tabs. 1 and 2, where D means the function’s dimension, range is the
function’s search space limits, and Opt is the optimal value. The selected functions are unimodal
or multimodal benchmark minimization functions. Unimodal test functions have a single optimum
value; thus, they can benchmark an algorithm’s convergence and exploitation. While multimodal
test functions have more than one optimum value, making them more challenging than unimodal.
An algorithm should avoid all the local optima to approach and approximate the global optimum.
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So, exploration and local optima avoidance of algorithms can be benchmarked by multimodal
test functions.

Table 1: Unimodal benchmark functions

Equation Test name D Range Opt

f1 (x)=
n∑
i=1

x2i Sphere 30 100, −100 0

f2 (x)=
n∑
i=1

|xi | +
n∏
i=1

|xi| Schwefel 2.22 2 100, −100 0

f3 (x)=maxi {|xi| , 1≤ i≤ n} Schwefel 2.21 2 100, −100 0

f4 (x,y)=−200e −0.2
√
x2+ y2 Ackley 2 2 32, −32 −200

f5 (x)= x1
2 + x2

2− 0.3cos (3πx1)− 0.4cos (4πx2)+ 0.7 Bohachevskyn N.1 2 100, −100 0

f6 (x)= (x1+ 2x2− 7)2 + (2x1+x2 − 5)2 Booth 2 10, −10 0

f7 (x)=
n∑
i=1

x2i +
⎛
⎝ n∑
i=1

0.5ixi

⎞
⎠
2

+
⎛
⎝ n∑
i=1

0.5ixi

⎞
⎠
4

Zakharov 2 5.12, −5.12 0

f8 (x)= 0.26
(
x1

2 + x2
2
)
− 0.48x1x2 Matyas 2 10, −10 0

f9 (x)=
n∑
i=1

x10i Schwefel 2.23 2 100, −100 0

f10 (x)=
n∑
i=1

|xi| Schwefel 2.20 2 100, −100 0

f11 (x)= 0.5+
sin2

(
x21− x22

)2− 0.5[
1+ 0.001

(
x21− x22

)]2 Schaffer N1 2 100, −100 0

f12 (x)=
d∑
i=1

[(
d∑
j=1

xij)− bi ]
2 Power sum 4 4, 0 0

f13 (x)= 0.5+
sin2

(
x21− x22

)
− 0.5[

1+ 0.001
(
x21− x22

)]2 Schaffer 2 2 100, −100 0

f14 (x)=

⎡
⎢⎢⎢⎢⎣e

−
n∑
i=1

(
xi
β

)2m
− 2e

−
n∑
i=1

xi
2

⎤
⎥⎥⎥⎥⎦ .
∏n
i=1 cos

2xi,m= 5 Xin-She Yang 3 30 20, −20 −1

f15 (x)=
d∑
i=1

ix2i Sum Squares 2 10, −10 0

f16 (x)=−
1+ cos(12

√
x21+ x22

0.5
(
x21+ x22

)
+ 2

DroupWave 2 5.12, −5.12 −1

f17 (x)=
d
4∑
i=1

(
x4i−3 + 10x4i−2

)2 + 5
(
x4i−1 −x4i

)2 Powell 2 4, −5 0

+ (x4i−2 − x4i−1
)4 + 10

(
x4i−3 + 10x4i

)4
f18 (x)=

d∑
i=1

|xi|i+1 powell_sum 2 1, −1 0

f19 =
d∑
i=1

i∑
j=1

x2j Rotated hyper-ellipsoid 2 65.536, −65.536 0

f20 = x21− x1x2+ x22 Rotated ellipse 2 2 500, −500 0

f21 =
d∑
i=1

εi |xi|i Xin-She Yang 1 2 5, −5 0

f22 = 0.5+
sin2

(
x21x

2
2

)
− 0.5[

1+ 0.001
(
x21x

2
2

)]2 schaffer2 2 100, −100 0
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Table 2: Multimodal benchmark functions

Equation Test name Type D Range Opt

f23 (x)=−20exp

⎛
⎝ −0.2

√√√√ n∑
i=1

xi
2

⎞
⎠− exp

⎛
⎝1
n

n∑
i=1

cos (2πxi)

⎞
⎠+ 20+ e Ackley N 2 10, −10 0

f24 (x)=
n∑
i=1

ix4i + random [0, 1) Quartic N 10 1.28, −1.28 0

f25 (x)= (4− 2.1x21+
x41
3

)x21+ x1x2+ (−4+ 4x22)x
2
2 Six-Hump camel N 2 5, −5 −1.0316

f26 (x)= a(x2− bx21+ cx1− r)2+ s(1− t)cos(x1)+ s Branin 2 15, −5 0.3979

f27 = 10d +
d∑
i=1

x2i − 10cos (2πxi) Rastrigin N 2 5.12, −5.12 0

f28 (x)=−
4∑
i=1

ciexp

⎛
⎝− 3∑

j=1

aij
(
xj − pij

)2⎞⎠ Hartmann 3-D F 3 1, 0 −3.8628

f29 (x)= 2x21− 1.05x41 +
x61
6

+x1x2+ x22 Three-Hump camel N 2 5, −5 0

f30 (x)=−200e−0.2
√
x2+y2 + 5ecos(3x)+sin(3y) Ackley 3 2 32, −32 −195.629

f31 (x)= x21+ 2x22− 0.3cos (3πx1) cos (4πx2)+ 0.3 Bohachevskyn N.2 N 2 10, −10 0

f32 (x)= sin (x) e(1−cos(y))2 + cos (x)e(1−sin(x))2 + (x− y)2 Brid N 2 2 pi, −2 pi −106.7645

f33 (x)=
⎛
⎝
∣∣∣∣∣∣sin (x1) sin (x2) exp

⎛
⎝
∣∣∣∣∣∣100−

√
x21+ x22

π

∣∣∣∣∣∣
⎞
⎠
∣∣∣∣∣∣+ 1

⎞
⎠
0.1

Cross in tiny N 2 10, −10 −2.06261

f34 (x)=− sin2(x−y) sin2(x+y)√(
x2+y2) Keane N 2 10, 0 −0.6737

f35 (x)=−
d∑
i=1

(xi − 1)2−
d∑
i=2

xixi−1 Trid F 6 36, 36 −50

f36 (x)= sin(10πx)
2x

+ (x− 1)4 Gramacy & Lee F 1 2.5, 0.5 −0.869

f37 =
∣∣∣x21+ x22+ x1x2

∣∣∣+ | sin (x1) |+| cos (x2)| Bartels Conn N 2 500, −500 1

f38 (x)=−
d∑
i=1

sin (xi) sin
2m

(
ix2i
π

)
Michalewics N 2 2.21, 1.57 −1.8013

f39 (x)=
d∑
i=1

x2i
4000

−
d∏
i=1

cos
(
xi√
i

)
+ 1 Griewank N 30 600, −600 0

f40 (x)=

⎛
⎜⎜⎜⎜⎝

n∑
i=1

sin2 (xi)− e

−
n∑
i=1

xi
2

⎞
⎟⎟⎟⎟⎠ e

−
n∑
i=1

sin2
√
|xi|

Xin-She Yang 4 N 30 10, −10 −1

f41 (x)=
n∑
i=1

|xi sin (xi)+ 0.1xi | Alpine 1 N 30 10, −10 0

f42 (x)= x21+ 2x22− 0.3 cos (3πx1+ 4πx2)+ 0.3 Bohachevsky 3 F 2 100, −100 0

f43 (x)= x21+ 2x22+ 25
[
sin2 (x1)+ sin2 (x2)

]
EggCrate F 2 5, −5 0

f44 (x)= 1+ sin2 (x1)+ sin2 (x2)− 0.1e

(
−x21−x22

)
Price 2 F 2 10, −10 0.9

f45 (x)=
(
2x31x2− x32

)2 + (6x1− x22+ x2
)2

Price 4 F 2 50, −50 0

f46 (x)=−3803.84− 138.08x1 − 232.92x2 + 128.08x21 Quadratic F 2 10, −10 −3.8737e + 03

+203.64x22 + 182.25x1x2

f47 =
(
x21+ x22− 2x1

)2+ 0.25x1 Zett1 F 2 5, −1 −3.80E−03

f48 = 1− cos

⎛
⎝2π

√√√√ d∑
i=1

x2i

⎞
⎠+ 0.1

√√√√ d∑
i=1

x2i Salomon N 2 100, −100 0
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Table 3: Results of unimodal benchmark functions

Function RHSO ABC PSO

Average Std Average Std Average Std

F1 0 0 1.252987E−03 8.111558E−04 2.540288E−08 7.983156E−08
F2 0 0 2.537476E−04 1.524380E−04 1.053400E−55 5.146430E−55
F3 0 0 1.662766E−03 1.098175E−03 2.028025E−51 1.100532E−50
F4 −200 0 −199.9998 1.017095E−04 −200 0
F5 0 0 1.422351E−05 1.412759E−05 1.665335E−16 5.887396E−16
F6 0 0 4.518208E−07 5.788988E−07 6.968271E−30 2.475261E−29
F7 0 0 1.841699E−09 1.699341E−09 4.08255E−104 2.08070E−103
F8 0 0 1.329306E−07 1.364219E−07 6.774106E−66 3.710326E−65
F9 0 0 2.946184E−31 9.239415E−31 0 0
F10 0 0 5.618590E−04 2.780385E−04 9.143568E−46 5.008138E−45
F11 0 0 1.064245E−05 8.705436E−06 1.332268E−16 5.701448E−16
F12 0 0 2.044922E−02 1.080113E−02 1.863431E+03 6.520088E+03
F13 0 0 5.264393E−09 7.659223E−09 6.96E−16 2.23E−15
F14 −1 0 N\A N\A 0 0
F15 0 0 3.818312E−02 2.676411E−02 3.656060E−08 6.556170E−08
F16 −1 0 -9.996790E−01 2.197546E−04 −1 0
F17 0 0 1.360744E−04 8.183569E−05 2.664735E−02 8.517967E−02
F18 0 0 2.044922E−02 1.080113E−02 1.863431E+03 6.520088E+03
F19 0 0 3.666030E−12 3.523984E−12 6.480774E−125 1.449142E−124
F20 0 0 1.412541E−05 1.480976E−05 1.929200E−118 9.910730E−118
F21 0 0 2.282842E−06 1.836692E−06 5.553268E−17 3.041121E−16
F22 0 0 3.645288E−06 6.075621E−06 0 0

Function GSA GWO

Average Std Average Std

F1 2.144713E−17 5.63657E−18 8.32056E−62 2.010429E−61
F2 9.310383E−11 5.16071E−11 8.7402E−216 0
F3 6.019471E−11 2.99343E−11 1.2596E−189 0
F4 −200 0 −200 0
F5 0 0 0 0
F6 1.852208E−20 1.43471E−20 1.540984E−07 1.113923E−07
F7 3.111632E−20 4.0912E−20 0 0
F8 1.569579E−21 1.18655E−21 8.417520E−204 0
F9 1.716123E−99 4.23303E−99 0 0
F10 1.522578E−10 6.4698E−11 3.205995E−214 0
F11 2.015060E−02 3.19937E−02 0 0
F12 2.839994E−02 3.32043E−02 1.068024E−01 2.613230E−01
F13 5.33E−03 6.96E−03 0 0
F14 3.39E−32 1.85E−31 1.56E−121 8.53E−121
F15 9.227673E−16 3.484625E−16 1.150598E−59 3.745600E−59
F16 −9.873900E−01 1.254131E−02 −9.957467E−01 1.618658E−02
F17 7.384492E−05 5.667909E−05 4.948649E−07 6.098266E−07
F18 2.839994E−02 3.320435E−02 1.068024E−01 2.613230E−01
F19 6.915319E−21 8.073127E−21 0 0
F20 1.280693E−20 1.039699E−20 0 0
F21 1.258348E−07 2.934570E−07 1.057100E−44 5.789975E−44
F22 1.148131E−02 3.443370E−02 0 0
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Table 4: Results of multimodal benchmark functions

Function RHSO ABC PSO

Average Std Average Std Average Std

F23 8.88E−16 2.07883E−31 3.463270E−04 1.776345E−04 1.953996E−15 1.655893E−15
F24 4.22E−02 0.029420356 8.927490E−03 2.970026E−03 6.950133E−01 7.717305E−01
F25 −1.0316 2.34056E−16 −1.0316 6.775215E−16 1.575971E+01 9.146534E+01
F26 0.3979 0 0.39789 1.693804E−16 4.824710E−01 4.632838E−01
F27 0 0 2.562660E+01 4.714264E+00 1.401837E+01 2.396753E+01
F28 −3.7358 0.078818249 −3.8628 3.161767E−15 −3.862782 1.355043E−15
F29 0 0 2.496393E−09 2.058588E−09 2.27125E−100 8.66813E−100
F30 −195.629 2.99591E−14 −1.95629E+02 5.781517E−14 −1.95629E+02 3.566230E−05
F31 0 0 3.184262E−05 2.956543E−05 2.960595E−17 5.782380E−17
F32 −106.7645 0 −106.7645 7.226896E−14 −103.1151 1.998874E+01
F33 −2.06249565 0.000329985 −2.0626 1.355043E−15 −2.062339 1.496152E−03
F34 −0.6737 1.17028E−16 −0.67367 0 −0.6737 1.129203E−16
F35 −50 0 −49.9974 7.226896E−14 −50 0
F36 −0.869 1.36324E−06 −2.8739 9.033621E−16 −0.625 0
F37 1 0 1 0 1 0
F38 −1.8013 0 −1.878847 7.842049E−02 −1.801087 3.598212E−04
F39 0 0 8.444203E−01 1.298731E−01 6.81E−03 8.86E−03
F40 −1 0 3.291594E−10 1.683678E−10 1.25E−20 3.80E−20
F41 0 0 2.838598E+01 2.624794E+00 4.52E−04 8.97E−04
F42 0 0 3.562694E−05 3.280962E−05 0 0
F43 0 0 9.717305E−07 1.067286E−06 4.90E−123 1.66E−122
F44 0.9 0 9.019100E−01 2.128623E−03 9.17E−01 3.79E−02
F45 0 0 3.498900E−08 6.222377E−08 5.92E−11 1.04E−10
F46 −3.87E+03 0 −3.873700E+03 2.312607E−12 −3.87E+03 1.85E−12
F47 −3.80E−03 0.00E+00 −3.791200E−03 1.764379E−03 −3.80E−03 1.32E−18
F48 0 0 5.815390E−03 5.973223E−03 2.967771E−61 5.970806E−61

Function GSA GWO

Average Std Average Std

F23 1.70832E−10 1.074615E−10 8.881800E−1 4.011733E−31
F24 4.47052E−03 2.057632E−03 9.716878E−04 9.025188E−04
F25 −1.0316 6.775215E−16 −1.03162 4.310840E−09
F26 0.3979 0 3.978879E−01 5.976276E−07
F27 3.117547E+00 1.325468E+00 0 0
F28 −3.862797 1.825742E−05 −3.862081 1.938044E−03
F29 6.25209E−21 7.707694E−21 0 0
F30 −195.629 5.781517E−14 −195.629 2.850603E−08
F31 0 0 0 0
F32 −106.7645 7.226896E−14 −1.061161E+02 3.551734
F33 −2.0626 1.355043E−15 −2.062612 3.302682E−09
F34 −0.6708967 4.172280E−03 −6.737000E−01 1.129203E−16
F35 −50 0 −4.999989E+01 8.030116E−05
F36 −0.869 1.129203E−16 −8.690000E−01 1.129203E−16
F37 1 0 1 0
F38 −1.8013 6.775215E−16 −1.8013 6.775215E−16
F39 3.71E+00 1.86E+00 3.379921E−03 7.16E−03
F40 3.94E−29 1.75E−29 2.87E−16 2.04E−16
F41 8.000533E−05 4.381770E−04 1.08E−04 2.70E−04
F42 0 0 0 0
F43 3.21E−19 2.98E−19 0 0
F44 9.18E−01 1.86E−02 9.13E−01 3.46E−02
F45 5.88E−06 9.54E−06 5.25E−12 9.11E−12
F46 −3.87E+03 1.85E−12 −3.87E+03 2.31E−12
F47 −3.80E−03 1.32E−18 −3.79E−03 1.76E−18
F48 2.089000E−02 1.933088E−02 0 0
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For each benchmark function, the RHSO algorithm and the compared algorithms are per-
formed in the experiments under the condition of the same number of iterations (1000), indepen-
dent runs for 30 times, and the population size is set to 50. The statistical results (average and
standard deviation) are showed in Tabs. 3 and 4. For verifying the results, the RHSO algorithm
is compared with ABC [7], PSO [8], GSA [23], and GWO [4].

4.1 Exploitation Analysis
The results in Tab. 3 demonstrated that RHSO is better than the selected algorithms in all

unimodal test functions. Unimodal functions test the exploitation of an algorithm. The obtained
results showed RHSO superiority in exploiting the optimal value, so RHSO provides excellent
exploitation ability.

4.2 Exploration Analysis
For testing the exploration strength of an algorithm, the multimodal functions are used as

the number growing exponentially with dimension such types of functions. The results in Tab. 4
demonstrated that RHSO is better than the selected algorithms on most multimodal functions.
The obtained results show the superiority of the RHSO algorithm in terms of exploration.

The multimodal results presented in Tab. 4 demonstrated the exploitation of the proposed
algorithm. Those results show the efficiency and strength of RHSO as compared to the other
algorithms that are adopted for comparison. RHSO is tested on 26 multimodal test functions,
at which RHSO is better and more efficient than the other algorithms. Also, RHSO can control
exploitation better than other algorithms.

Based on the results in Tab. 3, the RHSO algorithm obtained the optimal value in all
test functions; Therefore, RHSO has surpassed the selected algorithms, and this makes the
RHSO algorithm better than they do in exploitation convergence. Those results demonstrated the
accuracy, efficiency, and flexibility of the proposed algorithm.

According to the results in Tab. 4, the RHSO algorithm obtained the optimal value in 23 test
functions; also, it is very close to the optimal value and better than the values of the selected
algorithms for the same test functions in three test functions (F23, F24, and F28).

5 Conclusions and Future Work

This paper proposed a new optimization algorithm inspired by Rock hyrax’s behavior; RHSO
is proposed as an alternative technique for solving optimization problems. In the proposed RHSO
algorithm, the updating of position makes the solutions move towards or outwards the goal to
guarantee the search space exploitation and exploration. Forty-eight test functions are used to
test the performance of RHSO in terms of exploitation and exploration. The obtained results
demonstrated that RHSO was able to outperform ABC, PSO, GSA, and GWO. The obtained
unimodal test functions result demonstrated RHSO algorithm exploitation superiority. After that,
RHSO exploration ability is shown by the obtained multimodal test functions result. RHSO
algorithm is characterized by having few variables than the other algorithms, making it easy
to understand and implement. RHSO can solve various optimization problems (like scheduling,
maintenance, parameters optimization, and many others). Future studies can recommend several
directions, such as solving various optimization problems and developing a multi-objective version
of the RHSO algorithm as RHSO is currently a single objective optimization algorithm.
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