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Abstract: The present work investigates the mechanically forced vibration
of the hydro-elasto-piezoelectric system consisting of a two-layer plate
“elastic+PZT”, a compressible viscous fluid, and a rigid wall. It is assumed
that the PZT (piezoelectric) layer of the plate is in contact with the fluid and
time-harmonic linear forces act on the free surface of the elastic-metallic layer.
This study is valuable because it considers for the first time the mechanical
vibration of the metal+piezoelectric bilayer plate in contact with a fluid. It
is also the first time that the influence of the volumetric concentration of
the constituents on the vibration of the hydro-elasto-piezoelectric system is
studied. Another value of the present work is the use of the exact equations
and relations of elasto-electrodynamics for elastic and piezoelectric materials
to describe the motion of the plate layers within the framework of the
piecewise homogeneous body model and the use of the linearized Navier-
Stokes equations to describe the flow of the compressible viscous fluid. The
plane-strain state in the plate and the plane flow in the fluid take place. For the
solution of the corresponding boundary-value problem, the Fourier transform
is used with respect to the spatial coordinate on the axis along the laying
direction of the plate. The analytical expressions of the Fourier transform
of all the sought values of each component of the system are determined.
The origins of the searched values are determined numerically, after which
numerical results on the stress on the fluid and plate interface planes are
presented and discussed. These results are obtained for the case where PZT-
2 is chosen as the piezoelectric material, steel and aluminum as the elastic
metal materials, and Glycerin as the fluid. Analysis of these results allows
conclusions to be drawn about the character of the problem parameters on
the frequency response of the interfacial stress. In particular, it was found that
after a certain value of the vibration frequency, the presence of the metal layer
in the two-layer plate led to an increase in the absolute values of the above
interfacial stress.
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1 Introduction

In the classical sense, the study of the dynamics of a piecewise homogeneous acoustic medium,
such as “plate+fluid” systems in the cases where the plate is made of conventional metal or polymer
materials, is necessary for various fields of modern industry, e.g., fluid transport, geophysical investi-
gations, biomedical device construction, submarine construction and sound insulation. The results of
these studies provide a theoretical basis for understanding the acoustic phenomena occurring in the
piecewise homogeneous acoustic medium. Consequently, these results provide opportunities for the
control and management of these phenomena.

In modern literature, the work of Lamb [1], completed a hundred years ago, is considered the
beginning of these studies. Since then, a lot of further research has been done. For a detailed review,
as well as some recent results, see the works of Amabili [2], Akbarov [3,4], Akbarov et al. [5–7], Guz
[8], Guz et al. [9], Paimushin et al. [10], Paimushin et al. [11], Shuaib et al. [12], Sorokin et al. [13],
Zamanov et al. [14] and many others listed therein.

Note that these investigations can be classified according to various aspects, such as the theories
applied to describe the motion of the plate (approximate plate theories, which are described, for
example in [1,2,10–12] and many other theories discussed in the work of Akbarov [3]); the exact
equations of elastodynamics discussed for example in [5–9]; and modeling of the plate material as
elastic, for example, in the work of Akbarov et al. [6] and many other works listed therein, or
viscoelastic, for example, in the works [7,14]. Moreover, these works can be classified according to
the type of dynamic problems considered (wave dispersion, free vibration, and forced vibration), the
modeling of the fluid (inviscid fluid, viscous fluid, compressible and incompressible fluid), and so on.

The aforementioned works serve not only their direct purpose but also provide the theoretical
basis for the study of the corresponding problems related to the cases in which the plate material
is intelligent, such as piezoelectric or piezomagnetic. It should be noted that the results of such
investigations have great importance for energy harvesting procedures (see, for example, references
[15–18] and others listed therein), and in hydroacoustic transducers that receive (or generate) acoustic
waves (see, for example references [19–21] and others listed therein).

Nevertheless, there has not been enough fundamental theoretical research in this field, to which
the present research is dedicated, in particular, to the mechanical forced vibration of the hydro-
piezoelectric system consisting of a two-layer “metal+PZT” plate, a compressible viscous fluid, and a
rigid wall. The research presented here is carried out in the framework of the piecewise-homogeneous
body model using the exact equations and relations of elastodynamics and electrodynamics in the
plane-strain state to describe the motion of the “metal+piezoelectric” plate and using the linearized
Navier-Stokes equations for the plane flow of the compressible viscous fluid.

To show the relevance and importance of the present work, let us consider a brief review of related
research and begin with the work of Belkourchia et al. [16], in which the algorithm is developed for the
numerical solution of the problem related to determination of the pressure exerted by ocean motion
waves on a vertical cantilever beam with piezoelectric patches where the motion of the cantilever
is described within the framework of the Euler-Bernoulli beam theory, but the flow of the fluid is
described by the Navier-Stokes equations for the incompressible viscous fluid. This does not take into
account the piezoelectricity of the patches, and it is assumed that determination of the fluid pressures
acting on the left and right sides of the cantilever allows for calculation of the electric potentials
occurring in the piezoelectric patches. In this way, extraction of the energy originating from the fluid
motion can be controlled. The work of Akaydin et al. [22] and others listed therein also use a similar
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approach, but the material of the cantilever is taken as a piezoelectric one. In addition, the Euler-
Bernoulli beam model is used in many studies listed in the conference book [23] on this topic.

The piezoelectric composite cantilever beam model is also used in the work of He et al. [24] to
determine the optimal thickness of the PZT layer in the piezoelectric energy harvesters (PEH) to
obtain the maximum electrical energy under static mechanical and external electrical excitation. FEM
(finite element method) is used in the framework of the exact relations of linear piezoelectricity to
obtain concrete numerical results on the influence of the volume fraction of the PZT material on
electrical energy. However, the approach developed in the work of He et al. [24] is not only related to
the cantilever beam model, but also to more general PEH models. In the work of Chen et al. [25], the
effect of geometric nonlinearity and flexoelectricity on the uniform and bimorph PEH under harmonic
mechanical excitation is analyzed. The model of a cantilever beam is also considered and the motion
of these beams is described in the framework of the Euler-Bernoulli beam theory. Hamilton’s principle
is used to obtain the equations of motion and these equations are solved using Galerkin’s method.

In contrast to the aforementioned work, the work by Amini et al. [15] attempts to use the
three-dimensional exact equations of motion of elasto-electrodynamics to describe the motion of the
piezoelectric cantilever. There are also many studies of the dynamics of intelligent systems that relate
to linear and nonlinear vibrations, and dispersion of the waves propagating therein. Examples of such
recent investigations can be found in the papers [26–28] and many others presented therein. Let us
consider briefly the subjects of these works and begin with the work of Jiang et al. [26] which presents
a nonlinear piezoelectric energy harvester with two degrees of freedom to improve the efficiency of
energy harvesting at low frequencies. An L-shaped piezoelectric cantilever beam is considered, and
this beam is assumed to be excited by nonlinear attractive forces of magnets attached to the end of
the cantilever and to the base. The dynamic equation for the PZT beam is derived from the magnetic
attraction force mentioned above. Under the harmonic excitation, this equation is solved numerically
and the range of change of the problem parameters is determined, which improves the harvesting
properties of the system.

The work of Nie et al. [27] investigates the dispersion of the propagating Rayleigh-type waves in
the system consisting of the piezoelectric layer and a semi-infinite dielectric substrate. The material
of the piezoelectric layer is assumed to be a cubic crystal and the contact conditions on the interface
of the constituents of the system are assumed to be mechanically perfect but electrically imperfect.
Dispersion relations for electrically open or short-circuited boundary conditions are obtained and
analyzed.

The paper by Qiao et al. [28] presents a theoretical analysis of the technology for vibration control
of wind turbine blades by using piezoelectric smart structures. Since the design of the blade structure
made of piezoelectric material is similar to a shallow shell structure, the equations of motion are
derived based on the theory of piezoelectric laminated shallow shells. Based on the solution of these
equations, it is found that the blade vibration under wind load can be reduced by applying control
voltage.

In all the above works dealing with hydro-piezoelectric systems, the fluid flow is described in the
framework of the incompressible viscous or inviscid Newtonian fluid model using the linear Navier-
Stokes equations. Moreover, in these works, the motion (or vibration) of the piezoelectric cantilevers
is considered with finite sizes, so such a model cannot discover the local electromechanical and hydro-
electromechanical coupling effects without the influence of the boundary conditions. Such an effect
related to the subject of the present work can be discovered in the framework of infinite two-layer
“metal+piezoelectric” plate and fluid systems.
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Note also that the above work does not investigate how the electromechanical coupling effect
of the piezoelectric material can affect the pressure at the interface between the fluid and the plate.
Since the energy generation in the energy harvesting piezoelectric systems comes from this pressure,
the above coupling effects must be considered in theoretical studies.

In order to address the above issues, Ekicioglu Kuzeci [29] carried out some investigations in this
field and studied the mechanically forced vibration of the hydro-piezoelectric system consisting of
the infinite piezoelectric plate and the compressible (barotropic) Newtonian viscous fluid with finite
depth. The flow of the fluid is described by the linearized Navier-Stokes equations, while the motion of
the plate is described by the exact equations of the theory of electroelasticity for piezoelectric materials.

In the present paper, an attempt is made to develop these investigations for the system consisting
of a two-layer “metal+piezoelectric” plate, a compressible viscous fluid, and a rigid wall. The motion
of the plate is described within the piecewise-homogeneous body model using the exact equations of
elasto-and electrodynamics for piezoelectric materials, and the flow of the fluid is described using the
linearized Navier-Stokes equations for a compressible viscous fluid.

The present work can also be considered as further development of the second author’s work from
the last decade dealing with the forced vibration of single-layer purely elastic or viscoelastic plates in
contact with a compressible viscous fluid (see, for example, the works [5–7]). A review of these works
can be found in the paper by Akbarov [3]. Note that a number of studies have also been carried out
on the problem of the dispersion of waves in hydro-elastic systems consisting of a single-layer purely
elastic plate and a compressible fluid. Their data and considerations are contained in the works of
Guz et al. [9] and Guz [8].

Thus, it is clear that the investigations on the subject of the present work were carried out for the
case where the plate is single-layered. Thus, the main difference of the present work from the previous
related works of the second author and his collaborators, as well as from the investigations described
in the works [8,9], is the two-layer nature of the plate and the piezoelectricity of the material of one of
the layers.

Note that in the formulation of the problem studied in this paper, we use the linearized Navier-
Stokes equations obtained from the corresponding nonlinear Navier-Stokes equations for compress-
ible barotropic viscous fluids. Linearization is one of the methods for solving nonlinear problems.
Many other methods for solving nonlinear physical-mechanical problems have been developed in
recent years. We briefly review some here and begin with the work of Mahdy et al. [30], in which the
reduced differential transform method is used to solve the nonlinear fractional model tumor-immune.
The same method is also used in the work of Gepreel et al. [31] to solve nonlinear biomathematical
problems related to the spread of viruses in a computer network and to the problem of susceptible
infected-recovered (SIR) childhood diseases.

Moreover, in a series of studies by Bazighifan et al. [32], Santra et al. [33], Bazighifan et al. [34],
Bazighifan et al. [35], Moaaz et al. [36], and many others listed therein, the nonlinear differential
equations of even order are studied with p-Laplacian-like operators, the results of which shed light
on the solution of the corresponding nonlinear problems in continuum mechanics. In the work of
Bazighifan [37], a new type of oscillation criterion is established for a neutral differential equation of
even order. In the work of Santra et al. [33], sufficient conditions for oscillation of all solutions of a
second-order functional differential equation are found. New results on the oscillation of solutions
of a class of advanced even-order differential equations with p-Laplacian-like operators are obtained
in the work of Bazighifan et al. [35]. The asymptotic peculiarities for a class of fourth order neutral
differential equations are studied in the work of Bazighifan et al. [34]. New sufficient conditions for the
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oscillation of fourth order neutral differential equations are found in the work of Moaaz et al. [36]. The
work of Moaaz et al. [38] deals with the oscillation of a class of third order nonlinear delay differential
equations with mean term and a new description of the oscillation of third order linear differential
equation without damping is proposed. Finally, in the work of Moaaz et al. [39], the general class
of differential equations is considered (the particular cases of which have been studied previously by
the authors of the related works mentioned above) and the corresponding general theorems for the
asymptotic behavior of the solution of these equations are established.

In this context, since the present study refers to coupling field problems, we refer to the recent
studies of Mahdy et al. [40], Mohammed et al. [41], Khamis et al. [42], Mahdy et al. [43] and
many others within these works, which also refer to coupling field problems. The novel model of
photothermoelasticity theory is studied in the work [40]. A novel mathematical model is proposed and
applied in [41] to study the micro stretch properties of an elastic semiconductor medium. In papers
[42,43], novel mathematical models are developed for the piezoelectric elastic semiconductor medium
and photothermoelasticity theory, respectively.

The remainder of this paper is organized as follows. The mathematical formulation of the problem,
the equation of motion of the metal/PZT plate and the equations of flow, as well as the corresponding
boundary, contact, and compatibility conditions are given in Section 2. The solution method for
the formulated boundary value problem and the algorithm for obtaining the numerical results are
explained in Section 3. The numerical results are presented and discussed in Section 4, and finally, the
results are summarized in Section 5.

2 Formulation of the Problem and Governing Field Equations and Relations

We consider the hydro-elastic-piezoelectric system shown in Fig. 1, which consists of a two-layer
“metal+piezoelectric” plate, a compressible barotropic viscous fluid, and a rigid wall that limits the
fluid depth. Associate the Cartesian coordinate system Ox1x2x3 with the upper surface plane of the
metal layer of the plate, according to which the metal and piezoelectric layers of the plate occupy the
regions {−∞ < x1 < +∞, −hm < x2 < 0, −∞ < x3 < +∞} and {−∞ < x1 < +∞, −hm − hp < x2 <

−hm, −∞ < x3 < +∞}, where h = (
hm + hp

)
is the plate thickness, hm (hp) is the thickness of the metal

(piezoelectric) layer of the plate, and the fluid occupies the region {−∞ < x1 < +∞, −h − hd < x2 <

−h, −∞ < x3 < +∞}, where hd is the fluid depth, i.e., the distance between the lower surface plane
of the plate and the rigid wall. Let us assume that the direction of the Ox3 axis is perpendicular to the
plane of Fig. 1. Since we consider the state of plane strain in the plate and the two-dimensional flow
of the fluid on the plane Ox1x2, this axis is not seen in Fig. 1. We also assume that under −∞ < x3 <

+∞, x1 = 0 and x2 = 0, uniformly distributed time-harmonic line forces with intensity P0 act on the
upper plane of the plate.

Figure 1: The sketch of the hydro-elastic-piezoelectric system
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In this framework, it is required to determine the mechanical and electrical fields in the above
hydro-elastic-piezoelectric system by using the appropriate exact field equations and relations. For
this purpose, we write these field equations and relations for each component of the system, using the
upper indices (m) and (p) to indicate the affiliation of the quantities to the metallic and piezoelectric
layers, respectively. According to the monograph by Yang [44], the equations of motion for the metal
and piezoelectric layers can be written as follows:

∂σ
(α)

11

∂x1

+ ∂σ
(α)

12
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= ρ(α)
∂2u(α)
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where (α) in (1) is (m) for the metal layer and (α) is (p) for the piezoelectric layer.

In addition, the following relations are:
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Electro–mechanical relations for the piezoelectric layer material when it is polarized along the Ox2

axis:
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)
(where (α) is (m) for the metal layer, and (α) is (p) for

the piezoelectric layer) are the components of the mechanical strain tensor and these components are
determined through the components of the displacement vectors by the following relations:
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In Eqs. (1)–(4), σ
(α)

11 , σ
(α)

12 , and σ
(α)

22 are the components of the mechanical stress tensor in the plane-
strain state; u(α)

1 and u(1)

2 are the components of the mechanical displacement vector; D(p)

1 and D(p)

2 are
the components of the electrical displacement vector; ϕ(p) is an electric potential; c(p)

11 , c(p)
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13 , and c(p)

44

are elastic constants; e(p)

31 , e(p)

33 and e(p)

15 are piezoelectric constants; ε
(p)

11 and ε
(p)

33 are dielectric constants;
and λ(m) and μ(m) are Lame constants of the metal layer material.

This completes the field equations and relations describing the motion of the two-layer
“metal+piezoelectric” plate. Now we try to write the field equations and relations for the compressible
(barotropic) viscous fluid flow. According to the monograph of Guz [8], the linearized equations of
the fluid flow for the considered case can be represented as follows:
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where the first equation of (5) is the continuity equation, but the last two equations of (5) are the
linearized Navier-Stokes equations, which must be provided with the linearized rheological relations
and the linearized equation of state given below:

T11 = −p(1) + λ(1)θ + 2μ(1)e11, T22 = −p(1) + λ(1)θ + 2μ(1)e22, T33 = −p(1) + λ(1)θ ,

T12 = 2μ(1)e12, p(1) = a2
0ρ
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0

∂ρ
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0
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In (5)–(7), the following notation is used: ρ
(1)

0 is the fluid density before perturbation; p(1)

0 is
the hydrostatic pressure before perturbation; ρ(1) is the perturbation of the fluid density; p(1) is the
perturbation of the hydrostatic pressure; V1 and V2 are the components of the fluid flow velocity vector
in the directions of the Ox1 and Ox2 axes, respectively; Tij and eij (ij = 11; 22; 33) are the components
of the stress and strain velocity tensors in the fluid; a0 is the sound velocity in the fluid; and λ(1) and
μ(1) are the coefficients of the fluid viscosity.

According to the monograph by Guz [8], we also add the following representations for the
velocities V1 and V2, and the pressure p(1) to the previous equations and relations:
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where the potentials ϕ(1) and ψ(1) satisfy the following equations:[(
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where ν(1) is the kinematic viscosity, i.e., ν(1) = μ(1)/ρ
(1)

0 . Supposing that p(1) = − (T11 + T22 + T33) /3,

then from the constitutive relations in (6), λ(1) = −2μ(1)/3. Thus, the field equations and relations for
describing the fluid flow are complete.

Now we try to formulate the corresponding boundary conditions at the x2 = 0 level; the
contact conditions between the metal and piezoelectric layers at the x2 = −hm level; the compatibility
conditions at the x2 = −h interface level between the plate and the fluid; and finally the impermeability
conditions on the rigid wall at x2 = −h − hd.

The boundary conditions on the upper face plane of the plate are:
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21
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22
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where δ (x1) is the Dirac delta function.

Perfect contact conditions on the plane between the metal and piezoelectric layers are:
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Compatibility conditions on the interface plane between the fluid and plate are:

∂u(p)

1
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The impermeability conditions on the rigid wall are:

V1|x2=−h−hd
= 0, V2|x2=−h−hd

= 0. (13)

We also add the boundary conditions on the planes x2 = −hm and x2 = −h with respect to the
electrical quantities of the piezoelectric layer to the foregoing ones. In the present work, we assume
that the following open-circuit conditions take place:

D(p)
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2
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This completes the formulation of the problems investigated in the present paper.

3 Method of Solution

The presence of piezoelectric components in composite materials complicates the analytical
solution of the corresponding problems. Therefore, it sometimes seems necessary to apply numerical
methods, as in the works of Aylikci et al. [45], Ray et al. [46] and in many other works listed therein,
to solve the corresponding problems. However, in the present case, the exponential Fourier transform
is successfully used to solve the corresponding boundary value problem in obtaining an analytical
expression for the transforms of the sought values whose originals are found numerically.

According to the definition of the time-harmonic oscillation, let us represent all the sought values
of the considered problem as (x1, x2, t) = g (x1, x2) eiωt. According to this statement, replacing the
derivatives ∂(·)/∂t and ∂2(·)/∂t2 with iω (·) and −ω2 (·), respectively in the foregoing equations, the
corresponding equations are obtained with the boundary, contact, compatibility and impermeability
conditions with respect to the amplitudes of the sought quantities. We omit the over-bar on the
amplitudes and we employ the exponential Fourier transform for the solution to these equations.

fF (s, x2) =
∫ +∞

−∞
f (x1, x2) eisx1dx1. (15)

According to which, the amplitudes can be presented as follows:

u(α)

1 = 1
2π

∫ ∞

−∞
u(α)

1F (s, x2) e−isx1ds, u(α)

2 = 1
2π

∫ ∞

−∞
u(α)

2F (s, x2) e−isx1ds,

σ (α)

11 = 1
2π

∫ ∞

−∞
σ (α)

11F (s, x2) e−isx1ds, σ (α)

22 = 1
2π

∫ ∞

−∞
σ (α)

22F (s, x2) e−isx1ds,

σ (α)

12 = 1
2π

∫ ∞

−∞
σ (α)

12F (s, x2) e−isx1ds, D(p)

1 = 1
2π

∫ ∞

−∞
D(p)

1F (s, x2) e−isx1ds,

D(p)

2 = 1
2π

∫ ∞

−∞
D(p)

2F (s, x2) e−isx1ds, ϕ(p) = 1
2π

∫ ∞

−∞
ϕ(p)

F (s, x2) e−isx1ds,
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ϕ(1) = 1
2π

∫ ∞

−∞
ϕ(1)

F (s, x2) e−isx1ds, ψ(1) = 1
2π

∫ ∞

−∞
ψ(1)

F (s, x2) e−isx1ds,

V1 = 1
2π

∫ ∞

−∞
V1F (s, x2) e−isx1ds, V2 = 1

2π

∫ ∞

−∞
V2F (s, x2) e−isx1ds,

T11 = 1
2π

∫ ∞

−∞
T11F (s, x2) e−isx1ds, T22 = 1

2π

∫ ∞

−∞
T22F (s, x2) e−isx1ds,

T12 = 1
2π

∫ ∞

−∞
T12F (s, x2) e−isx1ds. (16)

Now, we consider separately the determination of the Fourier transforms of the quantities related
to the metal and piezoelectric layers of the plate and related to the fluid.

3.1 Determination of the Fourier Transforms of the Quantities Related to the Elastic-Metal Plate

Substituting the expressions related to the metal layer given in (16) into the Eqs. (2) and (4), we
obtain the following equations of motion for the metal layer with respect to the displacement terms:

Au(m)

1F + B
du(m)

2F

dx2

+ d2u(m)

1F

dx2
2

= 0, Du(m)

2F + B
du(m)

1F

dx2

+ G
d2u(m)

2F

dx2
2

= 0 (17)

where

A = X 2 − s2 (λ/μ + 2) , B = −is (λ/μ + 1) ,

D = X 2 − s2, G = λ/μ + 2, X 2 = ω2h2/c2
2, c2 = √

μ/ρ (18)

and in (17) under x2, it must be understood that x2/h. Introducing the notation:

A0 = AG − B2 + D
G

, B0 = AD
G

, k1 =
√

−A0

2
+

√
A2

0

4
− B0, k2 =

√
−A0

2
−

√
A2

0

4
− B0 (19)

we can write the solution of the Eq. (17) as follows:

u(m)

2F = Z(m)

1 ek1x2 + Z(m)

2 e−k1x2 + Z(m)

3 ek2x2 + Z(m)

4 e−k2x2 ,

u(m)

1F = Z(m)

1 a1ek1x2 + Z(m)

2 a2e−k1x2 + Z(m)

3 a3ek2x2 + Z(m)

4 a4e−k2x2 . (20)

where

a1 = −D − Gk2
1

Bk1

, a2 = −a1, a3 = −D − Gk2
2

Bk2

, a4 = −a3. (21)

Using the relations (2), (4) and (20), we obtain the expressions for the Fourier transforms of the
stresses σ

(m)

11F , σ (m)

12F , and σ
(m)

22F , and to reduce the volume of the paper we do not give these expressions here.

3.2 Determination of the Fourier Transforms of the Quantities Related to the Piezoelectric Layer

Substituting the expressions in (16) into the foregoing equations and relations in (1), (3), and
(4) and doing the corresponding mathematical manipulations, we obtain the following system of the
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ordinary differential equations for u(p)

1F , u(p)

2F and ϕ
(p)

F :((
c(p)

)2

s2
− c̃(p)

11

)
u(p)

1F + d2u(p)

1F

d (sx2)
2 − i

(
1 + c̃(p)

13

) du(p)

2F

d (sx2)
− i

(
1 + ẽ(p)

31

) dϕ̃
(p)

F

d (sx2)
= 0,

−i
(
1 + c̃(p)

13

) du(p)

1F

d (sx2)
+

((
c(p)

)2

s2
− 1

)
u(p)

2F + c̃(p)

33

d2u(p)

2F

d (sx2)
2 − ϕ̃

(p)

F + ẽ(p)

33

d2ϕ̃
(p)

F

d (sx2)
2 = 0,

−i
(
1 + ẽ(p)

31

) du(p)

1F

d (sx2)
+ ẽ(p)

33

d2u(p)

2F

d (sx2)
2 − u(p)

2F + ε̃
(p)

11 ϕ̃
(p)

F − ε̃
(p)

33

dϕ̃
(p)

F

d (sx2)
= 0.

(22)

where(
c(p)

)2 = ω2h2

c(p)

44 /ρ(p)
, c̃(p)

11 = c(p)

11

c(p)

44

, c̃(p)

13 = c(p)

13

c(p)

44

, ẽ(p)

31 = e(p)

31

e(p)

15

, c̃(p)

33 = c(p)

33

c(p)

44

,

ẽ(p)

33 = e(p)

33

c(p)

44

, ϕ̃
(p)

F = e(p)

15

c(p)

44

ϕ
(p)

F , ε̃
(p)

11 = ε
(p)

11 c(p)

44(
e(p)

15

)2 , ε̃
(p)

33 = ε
(p)

33 c(p)

44(
e(p)

15

)2 .

(23)

We recall that in Eq. (22) under x2, it must be understood that x2/h. To find the solution to
the system of the ordinary differential equations in (22), we employ the well-known Euler method
according to which, the particular solution to this system can be represented as follows:

u(p)

1Fpar = iA(p)ebsx2 , u(p)

2Fpar = B(p)ebsx2 , ϕ̃(p)

Fpar = C(p)ebsx2 . (24)

In (24), the lower index par indicates the “particular” solution. Moreover, the constants A(p), B(p)

and C(p) are unknown constants, and in (24) through the symbol b, the unknown constant is also noted
and these unknowns will be determined in the solution procedure described below.

Thus, substituting the particular solutions in (24) into the system of equations in (22) and
employing the usual procedures, we obtain the following system of homogeneous linear algebraic
equations with respect to the unknown constants A(p), B(p) and C(p).(

b2 +
((

c(p)
)2

s2
− c̃(p)

11

))
A(p) − (

1 + c̃(p)

13

)
bB(p) − (

1 + ẽ(p)

31

)
bC(p) = 0,

(
1 + c̃(p)

13

)
bA(p) +

((
c(p)

)2

s2
− 1 + c̃(p)

33 b2

)
B(p) + (

ẽ(p)

33 b2 − 1
)

C(p) = 0,

(
1 + ẽ(p)

31

)
bA(p) + (

ẽ(p)

33 b2 − 1
)

B(p) + (
ε̃

(p)

11 − ε̃
(p)

33 b2
)

C(p) = 0.

(25)

According to the requirement of the existence of the non-trivial solution of the system of equations
in (25), we equate to zero the determinant of the coefficient matrices of this system and we obtain the
following bi-cubic equation for determination of the unknown constant b.

b3
1 + a4b2

1 + a2b1 + a0 = 0, (26)

where

b1 = b2, a4 = [
c̃(p)

33 ε̃
(p)

11 − ε̃
(p)

33 α22 − ε̃
(p)

33 α11c̃
(p)

33 − ẽ(p)

33 (α21α13 + α13α31) +
α13α31c̃

(p)

33 − ε̃
(p)

33 α12α21 − α11

(
ẽ(p)

33

)2 + 2 ẽ(p)

33

] (−ε̃
(p)

33 c̃(p)

33 − (
ẽ(p)

33

)2
)−1

,
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a2 = [
ε̃

(p)

11 α22 + ε̃
(p)

11 α11ε̃
(p)

33 − ε̃
(p)

33 α11α22 + α21α13 + α12α31+
α13α31α22 + ε̃

(p)

11 α12α21 − 2α11 ẽ(p)

33 − 1
] (−ε̃

(p)

33 c̃(p)

33 − (
ẽ(p)

33

)2
)−1

,

a0 = [
ε̃(p)

11 α11α22 − α11

] (−ε̃(p)

33 c̃(p)

33 − (
ẽ(p)

33

)2
)−1

. (27)

In (27), the notation given below is used.

α11 = (c(p))2

s2
− c̃(p)

11 , α12 = 1 + c̃(p)

13 , α13 = 1 + ẽ(p)

31 , α21 = 1 + c̃(p)

13 ,

α22 = (c(p))2

s2
− 1, α31 = 1 + ẽ(p)

31 .

(28)

We employ Vieta’s trigonometric formula for cubic equations in order to find the roots of
the Eq. (26), according to which, in the first step, the values of the following expressions must be
calculated.

Q = (
a2

4 − 3a2

)
/9, R = (

2a3
4 − 9a4a2 + 27a0

)
/54. (29)

In the next step, the values of the expression in (30) are calculated.

S = Q3 − R2 (30)

According to the sign of S, the cases are distinguished. So if S > 0, then the roots of Eq. (26) are
determined through the expressions:

b11 = −2 (Q)
1
2 cosϕ − a4

3
, b12 = −2 (Q)

1
2 cos

(
ϕ + 2π

3

)
− a4

3
,

b13 = −2 (Q)
1
2 cos (ϕ − 2π/3) − a4

3
, ϕ = arccos

(
R

Q3/2

)
/3.

(31)

However, if S < 0, then these roots are determined through the expressions:

b11 = −2sgn (R) |Q| 1
2 coshϕ − a4

3
, b12 = sgn (R) |Q| 1

2 coshϕ − a4

3
+ i (3 |Q|) 1

2 sinhϕ,

b13 = sgn (R) |Q| 1
2 coshϕ − a4

3
− i (3 |Q|) 1

2 sinhϕ, ϕ = arc cos h
( |R|

|Q|3/2

)
/3.

(32)

In this way, we determine the roots of the characteristic Eq. (26) and we can write the six roots of
the bi-cubic equation as follows:

b1 =
√

b11, b2 = −b1, b3 =
√

b12, b4 = −b3, b5 =
√

b13, b6 = −b5. (33)

According to the expressions in (24) and to the solution technique used, the general solution to
the system of ordinary differential equations in (22) is:

u1F = iA1eb1sx2 + iA2eb2sx2 + iA3eb3sx2 + iA4eb4sx2 + iA5eb5sx2 + iA6eb6sx2 ,

u2F = A1Y1eb1sx2 + A2Y2eb2sx2 + A3Y3eb3sx2 + A4Y4eb4sx2 + A5Y5eb5sx2 + A6Y6eb6sx2 ,

ϕF = A1Z1eb1sx2 + A2Z2eb2sx2 + A3Z3eb3sx2 + A4Z4eb4sx2 + A5Z5eb5sx2 + A6Z6eb6sx2 .

(34)
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where

Yk = − (bk + α11)
(
ε̃11 − ε̃33b2

k

) − α31α13b2
k

ẽ13bk

(
ẽ13b2

k − 1
) − α12bk

(
ε̃11 − ε̃13b2

k

) , Zk =
(
b2

k + α11

) (
ẽ13b2

k − 1
) + α31α12b2

k

ẽ13bk

(
ẽ13b2

k − 1
) − α12bk

(
ε̃11 − ε̃13b2

k

) . (35)

Substituting the expressions in (34) into the Fourier transform of the relations in (3) and (4),
we obtain the following expressions for the stresses and electrical displacement which enter into the
boundary, contact and compatibility conditions:

σ
(p)

12F = ic(p)

44

∑6

k=1 (bks − sYk − sZk) ebksx2A(p)

k ,

σ
(p)

22F = ∑6

k=1 (sc11 + c13bksYk + e13bksZk) ebksx2A(p)

k ,

D(p)

2F = ∑6

k=1

(
se13 + bkse33Yk − ε33

c44

e15

sbkZk

)
ebksx2A(p)

k .

(36)

Thus, the expressions of the Fourier transforms of the values related to the piezoelectric plate are
completely determined.

3.3 Determination of the Fourier Transforms of the Quantities Related to the Fluid

To determine the Fourier transforms of the quantities related to the fluid flow, first we consider
determination of ϕ

(1)

F and ψ
(1)

F in (8) from the equations in (9) through which the Fourier transforms
of the velocities and the pressure of the fluid will be determined. To simplify the mathematical
calculations and to introduce certain dimensionless numbers, we represent the Fourier transforms ϕ

(1)

F

and ψ
(1)

F as follows:

ϕ(1)

F = ωh2ϕ̃(1)

F , ψ(1)

F = ωh2ψ̃ (1)

F (37)

Substituting the expressions in (37) into the Fourier transform of the equations in (9), after some
mathematical manipulations, the following equations are obtained for the functions ϕ̃

(1)

F , and ψ̃
(1)

F :

d2ϕ̃
(1)

F

dx2
2

+
⎛
⎜⎝ �2

1

1 + i4
�2

1

(3N2
w)

− s2

⎞
⎟⎠ ϕ̃(1)

F = 0,
d2ψ̃

(1)

F

dx2
2

− (
s2 + iN2

w

)
ψ̃ (1)

F = 0. (38)

where

�1 = ωh
a0

, N2
w = ωh2

ν(1)
. (39)

Note that the dimensionless numbers �1 and N2
w characterize the influence of the fluid viscosity

and compressibility on the vibration of the system under consideration. Moreover, under obtaining
the equations in (38), the relation λ(1) = −2μ(1)/3 is taken into consideration.

Thus, according to the well-known solution technique of ordinary differential equations, the
solution to the equations in (38) can be presented as follows:

ϕ̃(1)

F = A7eδ1x2 + A8e−δ1x2 , ψ̃ (1)

F = A9eγ1x2 + A10e−γ1x2 (40)
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where A7, A8, A9 and A10 are unknown constants and

δ1 =
√√√√√s2 − �2

1

1 + i4
�2

1(
3N2

w

) , γ1 = √
s2 + iN2

w. (41)

Using the expressions in (37), (40), (8), (7), and (6), the following expressions are obtained for the
quantities related to the fluid flow:

V1F = ωh
[−A7sieδ1x2 − A8sie−δ1x2 + A9γ1eγ1x2 − A10γ1e−γ1x2

]
,

V2F = ωh
[
A7δ1eδ1x2 − A8δ1e−δ1x2 − A9iseγ1x2 − A10ise−γ1x2

]
,

T22F = μ(1)ω

[
A7

(
4
3
δ2

1 + 2
3

s2 − R0

)
eδ1x2 + A8

(
4
3
δ2

1 + 2
3

s2 − R0

)
e−δ1x2+ A92isγ1eγ1x2 − A102isγ1e−γ1x2 ] ,

T21F = −μ(1)ω
[
2isδ1A7eδ1x2 − 2isδ1A8e−δ1x2 − (

s2 + γ 2
1

)
A9eγ1x2− (

s2 + γ 2
1

)
A10e−γ1x2

]
,

p(1)

F = μ(1)ωR0 (A7eδ1x2 + A8e−δ1x2)
(42)

where

R0 = −4
3

�2
1(

1 + i4
(

�2
1

3N2
w

)) − iN2
w (43)

Finally, we obtain a system of 14 linear algebraic equations which contains 14 unknown constants
by substituting the expressions in (34), (36) and (42) into the Fourier transforms of the boundary
conditions in (10), contact conditions in (11), compatibility conditions in (12), and impermeability
conditions in (13). The explicit expressions of this system of equations are not written here to reduce
the volume of the paper.

3.4 On the Algorithm for Calculating the Inverse of the Fourier Transforms

Originals of the sought values, i.e., the integrals in (16) are calculated numerically with the use
of the algorithm which will now be briefly explained. Recall that the integrals in (16) are called
wavenumber integrals because, if we take the ratio ω/s as the velocity, then the determinant (denote it as
det ||anm|| where n; m = 1, 2, . . . , 14) of the coefficient matrix with components anm of the system of the
linear algebraic equations, which are obtained from the Fourier transforms of the conditions (11)–(14),
coincides with the left side of the corresponding dispersion equation of the wave propagating with the
velocity ω/s in the system under consideration. Because the unknown coefficients Xk (k = 1, 2, . . . , 14)

(where X5 = A(p)

1 , . . . , X10 = A(p)

6 , X11 = A7, . . . , X14 = A10) are found in the form:

Xk = det
∥∥bk

nm

∥∥
det ‖anm‖ (44)

where the matrix
(
bk

nm

)
is obtained from the matrix (anm), then by replacing the k−th column of the

latter with the column (0, −P0/μ
(m), 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T , the equation

det ‖anm‖ = 0 (45)

has a certain number of roots with respect to s for each selected ω. It should be noted that in the
cases where at least one of the materials of the constituents of the system is time-dependent, these
roots are complex numbers. Otherwise, these roots are real numbers which makes it significantly more
difficult for direct calculation of the wavenumber integrals in (16) with employing the corresponding
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well-known traditional algorithms. In such cases, the Sommerfeld contour method is employed, which
is also discussed and employed in the monograph by Akbarov [4] and the works reviewed in the paper
by Akbarov [3].

As in the case under consideration, the fluid is modelled as a viscous one, therefore, the integrals
in (16) can be calculated by employing the well-known Gauss integration algorithm. Under this
calculation procedure, we return to the relation g (x1, x2, t) = g (x1, x2) eiωt, and the originals of the
sought values are determined from the following relation:{
σ (α)

22 , σ (α)

12 , σ (α)

11 , D(p)

1 , D(p)

2 , ϕ(p), u(p)

1 , u(p)

2 , T22, T12, T11, V1, V2

} = 1
2π

Re{
eiωt

∫ +∞

−∞

[
σ (α)

22F , σ (α)

12F , σ (α)

11F , D(p)

1F , D(p)

2F , ϕ(p)

F , u(p)

1F , u(p)

2F , T22F , T12F , T11F , V1F , V2F

]
e−isx1ds} (46)

Note that under the calculation procedure, the improper integrals
∫ +∞

−∞ f (s) cos (sx1) ds and∫ +∞
−∞ f (s) sin (sx1) ds1, which follow from the integrals in (46), are replaced by the corresponding

definite integrals
∫ +S∗

1
−S∗

1
f (s) cos (sx1) ds and

∫ S∗
1

−S∗
1

f (s) sin ((s) x1) ds, respectively. The values of S∗
1 are

determined from the convergence requirement of the numerical results. After this replacement, the
integration interval

[−S∗
1 , S∗

1

]
is divided into a certain N number of shorter intervals which are used

in the Gauss integration algorithm. The values of the integrated expressions at the sample points are
calculated through the system of the linear algebraic equations which are obtained from the Fourier
transforms of the conditions (11)–(14). All these procedures are performed automatically with the PC
programs constructed by the authors in MATLAB. Thus, consideration of the calculation algorithm
is completed.

4 Numerical Results and Discussions

In the numerical investigations, steel and aluminum are selected as the metallic materials and PZT-
2 as the piezoelectric material. According to Yang [44], the values of the physical-mechanical constants
of these materials are given in Table 1. Glycerin is chosen as the fluid for which, according to Guz [8],
the coefficient of viscosity, the density, and sound velocity are μ(1) = 1, 393 kg/m.s, ρ

(1)

0 = 1260 kg/m3

and a0 = 1927 m/s, respectively.

Table 1: Elastic, piezoelectric and dielectric properties of selected materials

Properties of materials Materials
Aluminum Steel PZT-2

c44 × 1010
(
N/m2

)
2.60 7.75 2.22

c11 × 1010
(
N/m2

)
10.20 24.76 13.5

c13 × 1010
(
N/m2

)
5.0 9.26 6.81

c33 × 1010
(
N/m2

)
10.20 24.76 11.3

ρ
(
kg/m3

)
2700 7795 7600

e31

(
C/m2

)
- - −1.9

e33

(
C/m2

)
- - 9.0

(Continued)
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Table 1: Continued
Properties of materials Materials

Aluminum Steel PZT-2

e15

(
C/m2

)
- - 9.8

ε11 × 10−9 (F/m) - - 8.7615
ε33 × 10−9 (F/m) - - 3.9825
λ × 1010

(
N/m2

)
5.0 9.26 -

μ × 1010
(
N/m2

)
2.60 7.75 -

We consider the numerical results related to the frequency response of the dimensionless normal
stress T22h/P0 acting on the interface between the two-layer “metal+piezoelectric” plate and the fluid
in the case where the range of change of the frequency of the external force is “0 < ω ≤ 700”(rad/s).
Under calculation of the values of the stress T22, we assume that x1/h = 0 and ωt = 0. The main goal
of the presented numerical results is to investigate the influence of the ratios hm/h and hd/h on the
above-mentioned frequency response.

To begin, we consider the frequency response of the dimensionless interface stress T22h/P0

obtained for the cases in which the plate is made only of steel or only of PZT-2. This is because these
results provide some a priori information that allows us to estimate the influence of the contribution
of the metal layer (or piezoelectric layer) on the frequency response of the two-layer plate.

Let us now consider the graphs illustrated in Figs. 2–4 which show the frequency response of the
stress and are constructed in the cases where h = 0.1, 0.01, and 0.001 m, respectively. In these figures,
the results marked with the letter “a” (with the letter “b”) refer to the case where the plate is made of
piezoelectric (metallic) material only. Moreover, the results shown in the figures below are obtained in
the cases where hd/h = 2, 3, and 6, and it is assumed that N = 15 × 104 and S∗

1 = 5. The selection
criterion of the number will be discussed below.

Figure 2: The graphs of the frequency response constructed for the interfacial stress at h = 0.1 m for
the case where the plate consists only of the piezoelectric material (a) and for the case where the plate
consists only of metal (b)
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Figure 3: The graphs of the frequency response constructed for the interfacial stress at h = 0.01 m for
the case where the plate consists only of the piezoelectric material (a) and for the case where the plate
consists only of metal (b)

Figure 4: The graphs of the frequency response constructed for the interfacial stress at h = 0.001 m
for the case where the plate consists only of the piezoelectric material (a) and for the case where the
plate consists only of metal (b)

From analysis of the results shown in Figs. 2b, 3b and 4b, i.e., from the results related to the case
in which the plate is made only of metal, we can draw the following conclusions:

i. The graphs of the frequency response of the interfacial stress have a smooth character, and
the absolute values of this stress increase monotonically with the vibration frequency.

ii. An increase in the thickness of the plate leads to an increase in the absolute values of the
stress, and the character of the frequency responses constructed for different plate thicknesses
is the same.

iii. An increase in the values of the ratio hd/h (i.e., of the fluid depth) leads to a decrease in the
absolute values of the interface stress and this influence does not depend on the vibration
frequency in a qualitative sense.
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From analysis of the results illustrated by the graphs in Figs. 2a, 3a, and 4a which refer to the case
where the plate consists of only piezoelectric material, we can draw the following conclusions:

i. The character of the interface stress frequency response graphs depends significantly not only
on the plate thickness, but also on the fluid depth, i.e., on the ratio hd/h. At relatively large
values of the plate thickness (e.g., at h = 0.1, and 0.01 m), this dependence has a non-
monotonic character, but at relatively small values (e.g., at h = 0.001 m) the dependence
has a monotonic character and is qualitatively similar to the case of metal plates.

ii. For relatively large values of plate thickness, there is a low-frequency region of frequency
change (denote this diapason as ω ≤ ω∗

p, e.g., for the case where h = 0.1 m, this diapason
of frequency can be determined as ω∗

p ≈ 100 rad/s) where the graphs of frequency response
have parts, the shape of which can be described as “descent+relatively sharp rise+beginning
of the last descent” (let us call these parts of the graphs D+RSR+BLD). In fact, these parts
of the graphs related to the frequency response of the piezoelectric plate distinguish them in
the qualitative sense from the corresponding graphs of the metal plates, because for the metal
plate such parts are not observed.

iii. There is such a value of frequency ω (denote it as ω
′
p) where the absolute value of the amplitude

of the stress is zero, and in the cases where ω < ω
′
p (ω > ω

′
p), the stress amplitude has a positive

(negative) sign. However, in the metal plate case, the amplitude of the stress differs from zero
in all the considered ranges of change of the frequency and has a negative sign. We recall that
this and other conclusions concerning the sign of the stress amplitude refer to the case where
the vibration phase ωt is equal to zero.

iv. Increasing the thickness of the plate generally leads to an increase in the absolute values of the
stress.

v. For a relatively large plate thickness, a resonant frequency occurs for the considered hydro-
elastic system and the values of the resonant frequencies increase with the ratio as well as with
the plate thickness.

vi. The character of the influence of the ratio hd/h on the frequency responses depends strongly
on the vibration frequency and the plate thickness. Just as for relatively thick plates (e.g., for
the case h = 0.1 m), an increase in the values of hd/h in a certain low (high) change range of
the vibration frequency leads to an increase (decrease) in the absolute values of the interface
stress. However, for relatively thin plates (e.g., in the cases h = 0.01 and 0.001 m), an increase
in the ratio hd/h generally leads to a decrease in the absolute values of the interface stress.

vii. Comparison of the results for the metal plate case with the corresponding results for the
piezoelectric plate shows that the absolute values for the metal plate are significantly higher
than the corresponding values for the piezoelectric plate.

Consequently, piezoelectricity significantly complicates the frequency responses of the interfacial
stress, not only in a quantitative sense, but also in a qualitative sense.

Now the question arises of how the mixture of metal and piezoelectricity affects the above
frequency response. To answer this question, we consider and analyze the results presented in Figs. 5–7,
obtained for the case h = 0.1 m at different values of the ratios hm/h (where hm is the metal layer
thickness) and hd/h. It is obvious that the influence of the metal-piezoelectric mixture on the frequency
response of the interfacial stress can be characterized by the ratio hm/h. Accordingly, the results shown
in Figs. 5–7 are obtained in the cases where hm/h = 0.1, 0.2, and 0.3, respectively. In these figures, the
diagrams marked with the letters a, b, and c refer to the cases where hd/h = 2, 3 and 6, respectively.
Thus, analysis of the results suggests that for the same thickness of the plate, the existence of the metal
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layer leads to a reduction of the D+RSR+BLD zone and of the frequency ω∗
p that determines this

zone. Moreover, these results allow us to conclude that the presence of the metal layer in the plate
leads to a decrease in the value of the frequency ω′

p, where the stress amplitude is equal to zero. In
addition, an increase in the ratio hm/h leads to an increase in the magnitude of the above decrease in
the frequencies ω∗

p and ω
′
p.

Figure 5: The graphs of the frequency response of the interfacial stress obtained under h = 0.1 m and
hm/h = 0.1 for the cases where the plate consists only of the piezoelectric material and of the two-layer
“metal+piezoelectric” material in the cases where hd/h = 2 (a), 3 (b) and 6 (c)

We introduce the notation ω
′
mp for the vibration frequency at which the stress amplitude is zero,

and the notation ω∗
mp for the frequency that determines the D + RSR + BLD range, in the case of

the two-layer “metal+piezoelectric” plate. According to this notation, we can write ω∗
mp < ω∗

p and
ω

′
mp < ω

′
p, and the differences

(
ω∗

p − ω∗
mp

)
and

(
ω′

p − ω′
mp

)
increase with the ratio hm/h. In the cases

where ω∗
mp < ω < ω

′
mp (in the cases where > ω

′
p ), the presence of the metal layer in the plate leads to a

decrease (increase) in the absolute values of the amplitude of the interface stress. Comparison of the
results in the figures labeled a, b, and c with each other shows that an increase in the values of the ratio
hd/h leads to a decrease in the magnitudes of these increase and decrease.
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Figure 6: The graphs of the frequency response of the interfacial stress obtained under h = 0.1 m and
hm/h = 0.2 for the cases where the plate consists only of the piezoelectric material and of the two-layer
“metal+piezoelectric” material in the cases where hd/h = 2 (a), 3 (b) and 6 (c)

At the same time, comparison of the results in Figs. 5–7 with each other show that an increase in
the ratio hm/h (i.e., an increase in the thickness of the metal layer in the plate) leads to a decrease in
the resonant frequency of the hydro-elastic system under consideration.

Recall that all the above results hold for the case where h = 0.1 m. According to known physical-
mechanical considerations, the cases where h is close to 0.1 m must give similar results in a qualitative
sense. However, in the cases where h � 0.1 m, the frequency response of the interface stress and the
influence of the problem parameter on this response are quite different from the ones we obtain in the
case h = 0.1 m. To illustrate this statement, we consider the graphs in Fig. 8, which show the response
for the case h = 0.001 m at hd/h = 2 (Fig. 8a) and 3 (Fig. 8b).
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Figure 7: The graphs of the frequency response of the interfacial stress obtained under h = 0.1 m and
hm/h = 0.3 for the cases where the plate consists only of the piezoelectric material and of the two-layer
“metal+piezoelectric” material in the cases where hd/h = 2 (a), 3 (b) and 6 (c)

Figure 8: The influence of the ratio hm/h on the graphs of the frequency response of the interfacial
stress obtained under h = 0.001 m for the cases where hd/h = 2 (a) and 3 (b)
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These results are obtained for the cases with hm/h = 0.0, 0.3, and 0.7. From these results, it is
immediately evident that there is no resonance case and no D+RSR+BLD zone in the considered
range of change of vibration frequency.

Moreover, it is evident from these results that before (after) a certain value of this frequency, an
increase in the values of the ratio hm/h causes an insignificant decrease (significant increase) in the
values of the amplitude of the interfacial stress. At the same time, an increase in the ratio hd/h leads to
an increase in the “certain value” of the vibration frequency.

We have analyzed the results of the two-layer “steel+PZT-2” plate and all previous conclusions
refer to this case. Now we consider some results shown in Fig. 9, which refer to the two-layer
“aluminum+PZT-2” plate. Note that these results are obtained for the case where h = 0.1 m and
hm/h = 0.1 for hd/h = 2 (Fig. 9a), 3 (Fig. 9b), and 6 (Fig. 9c). Note also that in Fig. 9, not only
the frequency responses for the case “aluminum+PZT-2”, but also the frequency responses for the
case “steel+PZT-2”, are given in order to estimate the influence of the metal layer properties on the
investigated frequency responses.

Figure 9: The graphs of the frequency response of the interfacial stress obtained under h = 0.1 m and
hm/h = 0.1 for the cases where the plate is made of the two-layer “steel+PZT-2”and “aluminum+PZT-
2” materials, in the cases where hd/h = 2 (a), 3 (b) and 6(c)
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Thus, it follows from the results in Fig. 9, that in the case of the “aluminum+PZT-2” plate, the
D+RSR+BLD zone and the resonant frequency also appear. However, the “length” of this zone
is less than, and the resonant frequency is greater than, in the case of the “steel+PZT-2” plate. At
the same time, the absolute values of the interfacial stress obtained for the “aluminum+PZT-2” case
are significantly lower than those of the “steel+PZT-2” plate. It can be concluded that the material
properties of the metal layer can significantly influence the investigated frequency responses.

Finally, we consider the numerical convergence of the used computational algorithm within the
framework of which the above results are obtained. Note that the convergence of the numerical results
with respect to the length of the integration interval, i.e., with respect to S∗

1 , does not present any
particular difficulties and, as stated in the works of Akbarov et al. [6,7], the value S∗

1 = 5 is quite
sufficient to obtain the numerical results converging with higher order. However, the convergence of the
numerical results with respect to the number N causes some difficulties at the vibrational frequencies
that are close to the resonant frequencies. As an example, Fig. 10 presents the graphs of the frequency
response of the interfacial stress calculated in the “steel+PZT-2” plate case for h = 0.1 m and hm/h =
0.1. These graphs were made for different values of the number N. It can be seen that increasing the
values of this number causes a decrease in the “oscillation amplitudes”of the numerical results not only
in the cases where the vibration frequency is far from the resonance frequency, but also in the cases
where the vibration frequency is close to the resonance frequency. When considering other similar
results, note that in obtaining the above results, it is assumed that N = 15 × 104.

Figure 10: Examples of convergence of numerical results with respect to the number N obtained for
the plate “Steel+PZT-2” in the case where h = 0.1 m, hm/h = 0.1, and hd/h = 2

5 Conclusions

Thus, in the present work, the mechanically forced vibration of the hydro-elastic-piezoelectric
system consisting of a two-layer “elastic+PZT” plate, a compressible viscous fluid, and a rigid wall
has been investigated. The structure of this work is organized as follows: in Section 1, an overview and
the findings of related research are given. In Section 2, the mathematical formulation of the problem,
the equation of motion of the metal/PZT plate and the flow equations, as well as the corresponding
boundary, contact, and compatibility conditions are given. In Section 3, the solution method for the
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formulated boundary value problem and the algorithm for obtaining numerical results are explained.
The numerical results are presented and discussed in Section 4 and, finally, the results are summarized
in the present section, i.e., in Section 5.

The PZT layer of the plate is assumed to be in contact with the fluid and time-harmonic linear
forces act on the free surface of the elastic-metallic layer. The motion of the plate is described within
the piecewise homogeneous body model using the exact equations and relations of elastodynamics
and elasto-electrodynamics for piezoelectric materials. The fluid flow is described by the linearized
Navier-Stokes equations for the barotropic, compressible, viscous Newtonian fluid. The plane-strain
state in the plate and the plane flow in the fluid take place. For the solution of the corresponding
boundary-value problem, the Fourier transform is used with respect to the spatial coordinate on the
axis along the laying direction of the plate. The analytical expressions of the Fourier transform of
all the sought values of each component of the system are determined. The origins of the searched
values are determined numerically, after which the numerical results on the stress on the fluid and
plate interface planes are presented and discussed.

These results are obtained for the case where PZT-2 is chosen as the piezoelectric material, steel
and aluminum as the elastic metal materials, and glycerin as the fluid.

Analysis of these results allows the following concrete conclusions to be drawn about the character
of the influence of the problem parameters on the frequency response of the stress acting on the
interface between the piezoelectric layer and fluid:

− The character of the interface stress frequency response graphs obtained for the two-layer
“metal+piezoelectric” plate depends significantly not only on the total thickness h of the plate,
but also on the ratios hm/h and hd/h, where hm is the metal layer thickness and hd is the fluid
depth. Under the considered range of change of the ratio hm/h (i.e., under hm/h = 0.1, 0.2, and
0.3) for relatively large values of the total thickness of the plate (e.g., at h = 0.1 m), this
dependence has a non-monotonic character, but for relatively small values of this thickness
(e.g., at h = 0.001 m), the dependence has a monotonic character and is qualitatively similar
to the case of metal plates.

− At low vibration frequencies of the two-layer “metal+piezoelectric”plate and the plate consist-
ing only of piezoelectric material (i.e., the “piezoelectric” plate), the zone “descent+relatively
sharp rise+beginning of the last descent” (D + RSR + BLD) appears.

− Assuming that the D + RSR + BLD zone for the two-layer “metal+piezoelectric” plate
appears for the frequencies ω < ω∗

mp, but for the “piezoelectric” plate this zone appears for
the frequencies ω < ω∗

p, it is found that ω∗
mp < ω∗

p, and the values of ω∗
mp decrease with the ratios

hm/h and hd/h, i.e., for the same whole thickness of the plate, the existence of the metal layer in
the plate leads to a reduction of the D + RSR + BLD zone.

− As in the case where the plate is made of piezoelectric material only, and as in the case of the
two-layer “metal+piezoelectric” plate, the resonance case occurs and the resonance frequency
obtained for the two-layer “metal+piezoelectric” plate is lower than that obtained for the
“piezoelectric” plate.

− The resonance frequency of the two-layer “metal+piezoelectric” plate decreases with the
thickness of the metal layer in the plate.

− It is found that ω
′
mp < ω

′
p, where ω

′
mp

(
ω

′
p

)
is the frequency at which the amplitude of the

interfacial stress with respect to the two-layer “metal+piezoelectric” plate (with respect to the
“piezoelectric” plate) is zero.
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− The differences
(
ω∗

p − ω∗
mp

)
and

(
ω

′
p − ω′

mp

)
increase with the ratio hm/h and in the cases where

ω∗
mp < ω < ω∗

p (in the cases where ω > ω
′
p), the presence of the metal layer in the plate leads to

a decrease (increase) in the absolute values of the amplitude of the interface stress.
− The mechanical properties of the metal layer in the plate have a significant influence on the

frequency response of the stress under investigation.
− Unfortunately, we did not find any related results from other authors with which to compare

the present results. Therefore, we compared the obtained results with those of the authors of
the present work for the cases where the materials of the plate layers are the same, i.e., the same
metal material or the same PZT material.

− The above comparison shows that the concrete numerical results obtained are in agreement
with known physical-mechanical considerations, and made it possible to control the magnitude
of the interfacial pressure between the fluid and the plate by the choice of materials and the
thickness of the plate layers.

In future works, an electrical field instead of mechanical force can be applied to the piezoelectric
plate, so the mechanical response of the system can be analyzed. Furthermore, interface stress can be
studied for different PZT and metal combinations.
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