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Abstract: This works intends to provide numerical solutions based on the
nonlinear fractional order derivatives of the classical White and Comiskey
model (NFD-WCM). The fractional order derivatives have provided authentic
and accurate solutions for the NDF-WCM. The solutions of the fractional
NFD-WCM are provided using the stochastic computing supervised algo-
rithm named Levenberg-Marquard Backpropagation (LMB) based on neural
networks (NNs). This regression approach combines gradient descent and
Gauss-Newton iterative methods, which means finding a solution through the
sequences of different calculations. WCM is used to demonstrate the heroin
epidemics. Heroin has been on-growth world wide, mainly in Asia, Europe,
and the USA. It is the fourth foremost cause of death due to taking an over-
dose in the USA. The nonlinear mathematical system NFD-WCM discusses
the overall circumstance of different drug users, such as suspected groups, drug
users without treatment, and drug users with treatment. The numerical results
of NFD-WCM via LMB-NNs have been substantiated through training,
testing, and validation measures. The stability and accuracy are then checked
through the statistical tool, such as mean square error (MSE), error histogram,
and fitness curves. The suggested methodology’s strength is demonstrated
by the high convergence between the reference solutions and the solutions
generated by adding the efficacy of a constructed solver LMB-NNs, with
accuracy levels ranging from 10−9 to 10−10.

Keywords: Fractional order; heroin epidemic mathematical system;
white-comiskey model; numerical results; neural networks

1 Introduction

Heroin is a synthetic opioid from morphine, a natural chemical extracted from the seedlings
of several opium poppy plants. These plants grow in Southeast and Southwest Asia, Mexico, and
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Colombia. Heroin produces in the form of a white or brown powder, and a black sticky material
known as black tar heroin. People use heroin by injecting, sniffing, snorting, smoking, or speed-
balling by mixing heroin and crack cocaine [1]. The growth of these opium poppies was discovered
as evidence in ancient times. Opium poppies were first harvested and consumed around 6,000 years
ago. Opium has been a popular narcotic for millennia. During the 1800 s, opium dens were prevalent,
and the first drug, morphine, was derived from the opium poppy [2]. Later, heroin became an opiate
substance derived from morphine [1–3]. Illicit drug exploitation is destructive to society. Drug users are
often potential health extorts to others in order to assess the risk of acquiring and ingesting the drug.
These individuals are more susceptible to infection, which can transmit to others due to their damaged
immune system. Heroin is an illegal narcotic with major societal consequences. The number of heroin
users is increasing every day. Heroin users are affected in many ways, especially physically, culturally,
and financially. According to medical science, heroin enters the body, and targets the brain, heart rate,
and other cell receptors [4]. Heroin addiction is an attractive trend to study from the perspective of
infectious diseases because it is highly ubiquitous. Therefore, various approaches have been adopted
to study the different aspects of heroin addiction through mathematical models. In 2007 [5], White
and Comiskey constructed the mathematical model for infectious diseases and found through the
threshold dynamics that prophylaxis is much better than treatment. After a couple of years, this model
was modified by adding the eigenvalue equation, and the Poincare-Bendixson theory was used to
obtain the stability of the equilibrium point [6]. Through the delay, global stability for the heroin
model was studied by Huang et al. [7]. Wang et al. [8] added the bilinear law to analyze the dynamical
behavior of the heroin model. Ma et al. [9] studied the interesting question on media coverage about
the spreading of drug addiction. For this purpose, they studied the dynamical behavior based on
the 3D drug model using the basic reproduction number. Age structure and nonlinear incidence
phenomena were added to the heroin epidemic model using Yang et al. [10,11]. Time distributed delay
and nonlinear incidence in the heroin epidemic model is discussed in [12]. The heroin epidemic model
with treat age phenomena in mathematical epidemiology was introduced by Botmart et al. [13]. This
mathematical model based on the relapse rate means how long time is required for the host in the
treatment of heroin addiction. Other different epidemic models have been constructed and tested in
various methods in order to capture the dynamics of opioid addiction [14–16]. Fractional calculus is
used to model the physical and technical phenomena characterized by the fractional order system (the
theory of real/complex order of integral/derivatives). The ideas of fractional calculus were proposed
by well-known mathematicians, such as Leibniz, Abel, L’Hopital, Liouville, Riemann, and many
others [17,18]. It is found that conventional nonlinear mathematical models, including derivatives
integrations fail miserably in complicated situations. In recent years, fractional calculus has been more
essential in numerous areas ranging from biomedical sciences to space sciences. Fractional differential
system models play a vital role in electricity, chemistry, economics, control theory and automata, image
processing, mechanics, chemistry, etc. Mostly, major topics of engineering include thermal diffusivity
at semi-infinite, vibration, neutrons-point kinetic model, power-law, continuous-time random walk,
die-electric polarization, colored and noise, electromagnetic waves robotics, chaos theory, and in
biosciences especially in physiology can be better characterized through the fractional order system
[19,20]. Recently, authors have been interested in developing the fractional differential system due to its
wide use in almost all fields of engineering and biosciences. In [21–23], the kernel Hilbert space method
has been adopted for first-order differential systems, BVPs with two points, integro-differential
systems with two-points boundary value problems, and fractional diffusion Gorden Dirichlet time
systems in the permeable source. The nonlinear homogenous time fractional gas dynamic system via
fractional-order analytical technique is presented in [24]. In the biomedical field, the fractional system
is used by Akinlar et al. [25] for the SIRE epidemic disease, Caputo-Fabrizio fractional Des for Rubella



CMC, 2023, vol.74, no.2 4455

disease model [26], and Anthrax disease model in animals [27], for hepatitis B model [28], for the
HBV infection model [29], world-known chickenpox disease [30], for infectious diseases [31], psoriasis
diseases [32], for HIV/AIDS with treatment model [33] and SIR system of childhood disease [34,35].

An artificial neural network (ANN) is a major cognitive computing paradigm of artificial
intelligence. ANNs are evolutionary adaptive in numerous cases based on the information through
the network during the learning process, either internally or externally. The learning method entails
constructing a set of links (weights) that give a representation compatible with the training set.
Stochastic numerical solutions are created to model the ANNs and optimize them by combining
of linear and non-linear search algorithms to solve differential problems. Sabir et al. [36] considered
artificial neural networks essential for medical revolutions. Epidemic forecasting has been viewed in
the light of artificial neural networks by Philemon et al. [37]. For the differentiation of infectious and
non-infectious diseases, this paradigm has been used in [38].

The current study aims to solve the mathematical model by using the optimal approach to handle
the drug and how a drug pandemic might take hold and spread over a population as well. First, the
biological mathematical White and Comiskey model (WCM) involving the chemotaxes and nonlinear
diffusion mechanism is discussed. This model is based on the fractional order differential equations,
which explain the diffusion of heroin. Then the stochastics computing LMB-NNs technique was taken
to solve the designed model. The purpose of introducing stochastic computing is to solve the nonlinear
fractional derivative (NFD) WCM. The stochastic solvers have abundant applications to solve the
diversity of applications, like food chain models [39,40], periodic differential models [41,42], thermal
explosion theory [43,44], smoking differential models [45,46], corneal shape models [47,48], singular
differential systems [49,50], Leptospirosis disease models [51,52] and prevention factor in the HIV
systems [53,54]. In this paper, the simulations of the WCM are presented using stochastic procedures.
The main procedure is given as follows:

• The WCM describes the situation of heroin and non-heroin users but is expected to use it as
this group is quite close to the heroin user group.

• The mathematical model of WCM in the form of differential equations is solved through the
LMB-NNs techniques.

• A data set for training, testing, and validation based on the LMB-NNs for solving the NFD-
WCM.

• The fitness functions are taken in the NNs process, which converts many outputs to a single
response.

• Designed Backpropagation based neural networks by providing training and testing dataset
LMB is adopted to faster the training.

• The significance of the LMB-NNs technique is illustrated through statistical tool, such as mean
square error, error histograms, correlation, regression, and fitting graphs.

The paper is planned to distribute in four sections: Section two delves into the (NFD-WCM)
problem formulation and its equilibrium and stability conditions. Section third discusses the LMB for
finding the answer to the problem. Section fourth contains the numerical and graphical results. The
final portion contains the conclusions.

2 The White-Comiskey Model (WCM)

The WCM consists of three groups of individuals, which are described as:

(i) Susceptible S: those who have never used a drug before.
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(ii) Drug user without treatment D1: those who take drugs without care.
(iii) Drug user under-going treatment D2: those groups who go through medication to help them

overcome their addiction.

The susceptible individual may either smarten up or die and depart or can shift to the drug addict.
Drug users continue drug smarten-up or die or start treatment. Drug adductors may smarten up or
return the drug. The comprehensive detail of each parameter of (WCM), used to observe the drug’
user group and their treatment process is dispatched in Table 1.

Table 1: Parameter representation of the WCM

Parameters Details

S(τ ) Susceptible individuals’ population
D1(τ ) Drug users’ without treatment
D2(τ ) Drug users’ under-going treatment
A The individual entering the susceptible group
τ Time
μ The natural death rate of the population
δ2 The increasing rate of removal or death rate of drug users with treatment
δ1 The increasing rate of removal or death rate of drug users
β1 Possibility rate to becomes a drug user
β3 Possibility rate of drug users under treatment to return to drugs user without treatment.
p The portion of drug user who enters treatment per unit time
N(τ ) Total number of population

The mathematical model of (NFD-WCM) is constructed as follows,⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dS(τ )

dτ
= A − (

β1
N

D1 (τ ) + μ
)

S (τ ) ,

dD1(τ )

dτ
= β1

N
D1 (τ ) S (τ ) − (p + μ + δ1) D1 (τ ) + β3

N
D1 (τ ) D2 (τ ) ,

dD2(τ )

dτ
= pD1 (τ ) − (δ2 + μ) D2 (τ ) − β3

N
D1 (τ ) D2 (τ ) ,

(1)

where A = μS(η) + (δ1 + μ)D1(η) + (δ2 + μ)D2(η) (2)

Let N(τ ) = S(τ ) + D1(τ ) + D2(τ ); the total population size is the rate of susceptible inhabitants,
and drug users without care and with care (treatment). A few basic assumptions of the WCM model
are given:

• N(η) is assumed to be a constant size within the specific period of the model.
• Drug users can use the treatment during the period of model application.
• Drug users under the treatment process are still using drugs.
• Drug users without treatment group are infectious to adductors in susceptible and treatment.
• Drug users do not infect the susceptible group under treatment.
• Under going treatment can return to non-treatment drug users when contact with them.
• In the population, everyone has the same chance of treatment as other individuals.
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The updated form of Eq. (1) with the use of Eq. (1) is given as:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dS(τ )

dτ
= −β1

N
D1 (τ ) S (τ ) + (δ1 + μ) D1 (τ ) + (δ2 + μ) D2 (τ ) ,

dD1(τ )

dτ
= β1

N
D1 (τ ) S (τ ) − (p + μ + δ1) D1 (τ ) + β3

N
D1 (τ ) D2 (τ ) ,

dD2(τ )

dτ
= pD1 (τ ) − (δ2 + μ) D2 (τ ) − β3

N
D1 (τ ) D2 (τ ) ,

(3)

where N(τ ) = S(τ )+ D1(τ )+ D2(τ ) is constant. To get the normalized form of the Eq. (3), the values
are taken as

x̃ = S(τ )

N(τ )
, ỹ = D1(τ )

N(τ )
, z̃ = D2(τ )

N(τ )
with x̃ + ỹ + z̃ = 1 in Eq. (3), which becomes as:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dx̃
dτ

= −β1̃x̃y + (δ1 + μ) ỹ + (δ2 + μ) z̃,

dỹ
dτ

= β1̃x̃y − (p + μ + δ1) ỹ + β3̃z̃y,

d̃z
dτ

= p̃y − (δ2 + μ) z̃ − β3̃z̃y,

(4)

Reducing Eq. (4) in x̃, ỹ coordinates, let z̃ = 1 − x̃ − ỹ,⎧⎪⎪⎨
⎪⎪⎩

dx̃
dτ

= −β1̃x̃y + (δ2 + μ) − (δ2 + μ) x̃ + (δ1 + δ2) ỹ,

dỹ
dτ

= (β1 − β2) x̃̃y − (p − β3 + μ + δ1) ỹ − β3̃y2.
(5)

The fractional order differential system of Eq. (5) can be represented as:⎧⎪⎪⎨
⎪⎪⎩

dα1 x̃ (τ )

dτ α1
= −β1̃x (τ ) ỹ (τ ) + (δ2 + μ) − (δ2 + μ) x̃ (τ ) + (δ1 − δ2) ỹ (τ ) ,

dα2 ỹ (τ )

dτ α2
= (β1 − β3) x̃ (τ ) ỹ (τ ) − (p − β3 + μ + δ1) ỹ (τ ) − β3 (̃y (τ ))

2 .
(6)

The Caputo derivative is used in this study, and the fractional order derivative values have been
taken between 0 and 1.

2.1 Free Equilibrium State of Drug

To get drug free equilibrium state, put Eq. (6) equal to zero, given as

− β1̃x̃y + (δ2 + μ) − (δ2 + μ) x̃ + (δ1 − δ2) ỹ = 0, (7)

(β1 − β2) x̃̃y − (p − β3 + μ + δ1) ỹ − β3̃y2 = 0. (8)

From Eq. (7), the drug’s free equilibrium state conditions become as,(̃x0, ỹ0) = (1, 0). The
Jacobian matrix of Eq. (6) is given as:

J (̃x, ỹ) =
(−β1̃y − (δ2 + μ) − β1̃x + (δ1 − δ2)

(β1 − β2) ỹ (β1 − β2) x̃ − (p − β3 + μ + δ1) − 2β3̃y

)
. (9)

The disease free-state Jacobian matrix is provided as follows:

J (̃x0, ỹ0) =
(−(δ2 + μ) (δ1 − δ2) − β1

0β1 − (p + μ + δ1)

)
. (10)
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The eigenvalues of the matrix (10) are λ1 = −(δ2 +μ), and λ2 = β1 − (p + μ + δ1). For stability of

WCM, the λ1, λ2 < 1. Here λ1 is obviously less than 1. But for λ2 < 1, there must R0 = β1

(p + μ + δ1)
<

1. Otherwise, if β1 > (p + μ + δ1), the model will be unstable.

2.2 Equilibrium of Endemic

For positive endemic equilibria, it is assumed that β1 > (p + μ + δ1), the Eq. (8) for x̃ takes the
form as:

x̃ = (p − β3 + μ + δ1) + β3̃y
(β1 − β3)

, or x̃ = β1

R 0
(β1 − β3) − β3(1 − ỹ)

(β1 − β3)
(11)

The updated form of Eq. (7) by using the above equations becomes as follows:

β1β2̃y2 + ((p + δ2 + μ − β3) β1 + β3 (δ1 + μ)) ỹ + (p + δ1 + μ − β1) (δ2 + μ) = 0. (12)

The Eq. (12) becomes as follows:

ỹ = −B ± √
B2 − 4β1β2C

2β1β2

, (13)

where B = (p + δ2 + μ − β3) β1 +β3 (δ1 + μ) , and C = (p + δ1 + μ − β1) (δ2 + μ) . The value of ỹ from
Eq. (13) into Eq. (11) gives the positive endemic equilibrium results for ỹ > 0, and x̃ > 0.

3 Numerical Simulation

This part presents the numerical performances of the acquired results of three situations based on
the nonlinear fractional differential system of the White-Comiskey heroin model is presented.

Case I: Consider a nonlinear fraction system of heroin model for simulation by taking the suitable
values of relevant parameters and corresponding initial conditions.

Let p = 0.04, δ1 = 0.05, μ = 0.04, δ2 = 0.06, β1 = 0.008, β3 = 0.001 with ICs x̃ (0) = 0.2, ỹ (0) =
0.2 in Eq. (6) yields the following mathematical form,⎧⎪⎪⎨
⎪⎪⎩

dα1 x̃ (τ )

dτ α1
= −0.008̃x (τ ) ỹ (τ ) + 0.1 + 0.11̃x (τ ) − 0.01̃y (τ ) , x̃0 = 0.2,

dα2 ỹ (τ )

dτ α2
= 0.007̃x (τ ) ỹ (τ ) + 0.57̃y (τ ) − 0.001 (̃y (τ ))

2 , ỹ0 = 0.2.
(14)

Case II: Consider p = 0.03, δ1 = 0.05, μ = 0.04, δ2 = 0.06, β1 = 0.007, β3 = 0.002 with ICs
x̃ (0) = 0.3, ỹ (0) = 0.3 in Eq. (6) yield the following mathematical form:⎧⎪⎪⎨
⎪⎪⎩

dα1 x̃ (τ )

dτ α1
= −0.007̃x (τ ) ỹ (τ ) + 0.1 + 0.1̃x (τ ) − 0.01̃y (τ ) , x̃0 = 0.3,

dα2 ỹ (τ )

dτ α2
= 0.005̃x (τ ) ỹ (τ ) + 0.118̃y (τ ) − 0.002 (̃y (τ ))

2 , ỹ0 = 0.3.
(15)

Case III: Consider the parameters p = 0.02, δ1 = 0.04, μ = 0.05, δ2 = 0.06, β1 = 0.006, β3 = 0.002
with ICs x̃ (0) = 0.1, ỹ (0) = 0.1 in Eq. (6) yield the following mathematical form:⎧⎪⎪⎨
⎪⎪⎩

dα1 x̃ (τ )

dτ α1
= −0.006̃x (τ ) ỹ (τ ) + 0.11 + 0.11̃x (τ ) − 0.02̃y(τ ), x̃0 = 0.1,

dα2 ỹ (τ )

dτ α2
= 0.004̃x (τ ) ỹ (τ ) + 0.108̃y (τ ) − 0.002(̃y (τ ))

2, ỹ0 = 0.1.
(16)
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3.1 Design Methodology

The mathematical form in Eqs. (14)–(16) of the nonlinear fractional system of the White
Chomiskey heroin model is investigated through the soft computing supervised LMB-NNs.

The emerging issue of artificial intelligence (AI) is considered a function optimization problem
in which we look for the best network parameters to reduce neural network error. Levenberg-
Marquardt’s approach easily implements network learning and intelligent computing. This is a method
of supervised learning used to supervise the development of some prediction models, decrease notably
nonlinear function problems over a few functional parameters, or precisely anticipate the outcomes
by specifying a variety of distinct algorithms and patterns. LM technique is also the most prominent
method for Feedforward neural networks.

Fig. 1 displays the standard procedure’s structure. First, the prepared LMBs-NNs algorithm is
embedded for three cases of NFD-WCM, as illustrated in Table 1. By using 0.001 as the step size for
each variable, the total data for LMBs-NNs is 1001 input points found between 0 and 1. Next, the data
are randomly distributed for a set of validations, trained, and tested in various ratios to establish the
percentage that provides a better grasp of stability and convergence analysis. Finally, the NFD-WCM
model is interpreted for several cases using a data set for coupled non-linear higher order fractional
differential equations. For LMBs-NNs, the “nftool” is sat, taking the data set for training, testing, and
validation as along 7 neurons as, Data set obtained for training is 72%, Data set obtained for testing
is 14%, Data set obtained for validation is 14%.

Figure 1: (Continued)
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Figure 1: Stepwise frameworks of the nonlinear fractional system of WC heroin model via LMBs-NNs
technique. a) mathematical system of heroin model, b) procedure of LMBs-NNs, c) simulation of the
proposed model via LMBs-NNs

4 Numerical Results and Discussion

This part presents the numerical results of the proposed NFD-WC-based heroin model through
the LMB-NNs algorithm. The fractional order derivatives have been used in many applications
[55–61]. The Significant performance of LMBs-NNs has been checked through statistical tools.
Comparing of the proposed technique proves the excellent agreement and precision of proposed
technique with generated dataset. The structure to compute NFD-WCM is provided in Table 2.

Table 2: LMBs-NNs structure to compute NFD-WCM

Case MSE Gradient Performance Epoch Mu Time

Training Testing Validation

1 9.894 × 10−10 1.806 × 10−10 1.288 × 10−20 9.77 × 10−08 9.894 × 10−10 28 1 × 10−11 02 S
2 4.105 × 10−09 5.352 × 10−09 4.663 × 10−09 9.41 × 10−08 4.105 × 10−09 25 1 × 10−10 02 S
3 2.280 × 10−09 3.976 × 10−09 4.642 × 10−09 7.88 × 10−08 2.280 × 10−09 16 1× 10−10 02 S

Figs. 2–4 are drawn to show the analysis report of the designed LMBs-NNs technique for the
NFD-WC heroin model. The mean square error is measured in Fig. 2 for training, testing, and
authentication. The significant performance is found at the points 4.6637 × 10−10, 1.28 × 10−10, and
4.64 × 10−9 at epochs 25, 28 and 16 respectively. Fig. 3 shows the state transition values that consist
of gradient, Mu, and validation performance of the LMBs-NNs technique. The best gradient values
for training, testing, and validation are 9.4085 × 10−8, 9.704 × 10−8 and 7.8834 × 10−8 for three cases.
Best Mu values are found in the range 1 × 10−10, 1 × 10−11, and 1 × 10−10 for cases 1, 2 and 3. In
general, the gradient is used for the neural networks’ weight. It ensures that the weight is in a suitable
amount and correct direction. Mu tool controls the training algorithm within the domain, whereas the
right tool checks the generalized standard of each process. The fitness function and error dynamic are
plotted in Fig. 4 representing the precision, convergent, and accuracy of the proposed model solved
by LMBs-NNs. The error dynamic is in the range 2 × 10−4, 2 × 10−4, and 10 × 10−5. For training, the
error between outputs and targeted values are found at points −2.2 × 10−6, 3.1 × 10−6, and 4.8 × 10−6
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for all three cases. For the testing procedure, the error between outputs and targeted values has been
found at points −1.6×10−6, 6.5×10−6, and −6.1×10−5. The validation accuracy between the outputs
and targeted values are at points 1.5×10−5, 1.3×10−5, and 8.8×10−6. The purpose of correlation is to
check the validity of regression analysis. The correlation value reached to 1 indicates that the non-linear
fractional order system executed the perfect result computed by LMBs-NNs. Figs. 5 and 6 display the
results comparability of the function x̃ (τ ) and ỹ (τ ) from nonlinear fractional system of WC heroin
model by LMBs-NNs and accomplished absolute errors of x̃ (τ ) and ỹ (τ ) for three different cases.
Absolute error is considered the benchmark form of accuracy. The smallest AE values in the range
10−6 − 10−4, and 0 − 10−4 for the functions x̃ (τ ) and ỹ (τ ) respectively, indicates the performance of
LMBs-NNs for NFD-WCM.

Figure 2: High Performance of LMBs-NNs for the nonlinear fractional system of WC heroin model
using the mean square error tool at suitable epochs for three different cases
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Figure 3: State transition for three cases using the nonlinear fractional system of WC heroin model by
LMBs-NNs to compute the proposed model
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Figure 4: Comparison of outputs using the LMBs-NNs for the nonlinear fractional system of WC
heroin model

Figure 5: Results comparability of the function x̃ (τ ) from the nonlinear fractional system of WC heroin
model by LMBs-NNs and accomplished absolute error of x̃ (τ ) for three different cases
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Figure 6: Results comparability of the function ỹ (τ ) from the nonlinear fractional system of WC heroin
model by LMBs-NNs and accomplished absolute error of ỹ (τ ) for three different cases

5 Conclusion

This study aims to construct the artificial neural networks in conjunction with Levenberg
Marquardt backpropagation, i.e., LMBs-NNs, to solve the nonlinear fractional system of the White-
Comiskey model of heroin (NFD-WCM). This model depends upon three compartments, susceptible,
drug user without treatment, and drug’ user undergoing the treatment and cure. The significance of
supervised LMBs-NNs can be described in the following steps of statistical tools:

• The LMBs-NNs are implemented using authentication, testing, and training data samples.
• For training, validation, and testing, the ratios for solving three cases of the NFD-WCM are

chosen with samples of 72%, 14%, and 14%, respectively.
• The nonlinear fractional order system of the heroin model is solved by observing the brilliance,

quality, precision, and stability of the LMBs-NNs and matching/overlapping the findings.
• The M.S.E convergence graphs are used to check the system’s testing, authentication, and

security. M.S.E in the range 4.64 × 10−9 to 4.6637 × 10−10 show the efficacy of the method.
• The correlation results are reliable enough to verify the regression processes. The gradient values

for each case of the nonlinear fractional model of heroin are obtained using the step size.
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