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Abstract: In this study, the morphological galaxy classification process was
carried out with a hybrid approach. Since the Galaxy classification process
may contain detailed information about the universe’s formation, it remains
the current research topic. Researchers divided more than 100 billion galaxies
into ten different classes. It is not always possible to understand which class
the galaxy types belong. However, Artificial Intelligence (Al) can be used for
successful classification. There are studies on the automatic classification of
galaxies into a small number of classes. As the number of classes increases,
the success of the used methods decreases. Based on the literature, the classi-
fication using Convolutional Neural Network (CNN) is better. Three meta-
heuristic algorithms are used to obtain the optimum architecture of CNN.
These are Grey Wolf Optimizer (GWO), Particle Swarm Optimization (PSO)
and Artificial Bee Colony (ABC) algorithms. A CNN architecture with nine
hidden layers and two full connected layers was used. The number of neurons
in the hidden layers and the fully connected layers, the learning coefficient and
the batch size values were optimized. The classification accuracy of my model
was 85%. The best results were obtained using GWO. Manual optimization of
CNN is difficult. It was carried out with the help of the GWO meta-heuristic
algorithm.

Keywords: Astronomy; classification; convolution neural network; galaxy;
grey wolf optimizer

1 Introduction

A Galaxy consists of stars, dust, gas and dark matter held together by gravity. There are
approximately 100 billion galaxies in the universe [1,2]. Galaxies were formed by the formation of
gas and dust clusters, which were hot at the beginning of the universe but later got colder. Galaxies
are divided into spiral, elliptical, peculiar, and irregular. Galaxies can be further divided into classes
[3,4]. Classification of galaxies is especially important to obtain information about the formation of
the universe. Since the formation of galaxies is related to their current structures, the classification of
galaxies is the subject of study of many researchers today.
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Reza [9] classified galaxy types into four groups: spiral, merger, star and elliptical, using five
different machine learning algorithms. Using the data set obtained by the Galaxy Zoo project,
classification was made with Decision Trees, Random Forest (RF), ExtraTrees, K-Nearest Neighbors
(KNN) and Artificial Neural Network (ANN). The best result was achieved using ANN with an
accuracy of 98.2%. Misra et al. [0] classified galaxy clusters into three classes using Support Vector
Machine (SVM), Naive Bayes and Convolution Neural Network (CNN). Their datasets consist
of galaxies of elliptical, spiral, and irregular types. They achieved the best classification with a
CNN of four hidden layers. Their method classified the images with an accuracy of 97.3958%.
Biswas et al. showed that ANN can perform a faster classification than manual classification [7].
However, their studies remained at the basic level, and did not make a detailed classification process.
Cheng et al., classified elliptical and spiral galaxies using CNN, KNN, Logistic Regression, SVM, RF,
and ANN. They used the Dark Energy Survey dataset [8] and obtained an accuracy of 99% with CNN
method. Cheng et al. classified elliptical and spiral galaxies using CNN [9]. Their classification studies
used a CNN architecture with three convolutional layers and two dense layers. They binary classified
galaxies with an accuracy of 99%. Bastanfard et al. classified the galaxies into two groups of spiral and
elliptical galaxies [10] using SVM classifier with an accuracy of 97%. Goyal et al. classified galaxies
into three groups: elliptical, lenticulars, and spirals. They used different machine learning algorithms
[11] with CNN and an accuracy of 88%.

Abd Elaziz et al., classified galaxies into three groups of elliptical, lenticulars, and spirals using
a hybrid approach [12]. At first, they performed feature extraction using the Gegenbauer moment
method. Then, feature selection was performed using the artificial bee colony optimization algorithm.
They obtained the feature subset required for the classification. Finally, they classified the galaxies
into three classes using the SVM classifier with an average accuracy of 91%.

Based on the literature CNN method is generally used to achieve accurate classifications. This is
the reason to use CNN method for this study. However, the deciding the architecture of the CNN is
not easy. Abd Elaziz et al. [12] used a meta-heuristic optimization algorithm for feature selection. This
study uses a metaheuristic optimization algorithm to obtain the optimum CNN architecture. A hybrid
approach that optimizes the CNN architecture while performing the classification process with CNN
is discussed in this study. No similar study has been found in the literature. Therefore, this study will
be innovative and contribute to the literature. Another innovative aspect is classifying galaxy types
belonging to ten different classes whereas most studies have done two or three different classifications.

In Section 2, the hybrid approach of this study is presented. The experimental results are included
in Section 3. In the last section, the conclusion is explained.

2 Structure

In this study, galaxy classification was performed using CNN. CNN has been among the most
popular classification methods in recent years. The CNN method was preferred in this study because
it can successfully solve many classification problems [13-19]. Based on the results of this study,
it is a suitable method for solving the galaxy classification problem. The Grey Wolf Optimizer
(GWO) algorithm is used to obtain the optimum CNN architecture to achieve the best classification
result. The GWO algorithm is used in solving optimization problems [20-23] and improving other
metaheuristic optimization algorithms [24-29]. It is preferred for hyperparameter optimization of the
CNN architecture. CNN and GWO are explained in detail in the following sections.
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2.1 Convolution Neural Network (CNN)

Convolution Neural Network has become the most popular topic in recent years with the
development of hardware technology. The CNN has been adapted to many different disciplines
because classical image processing stages can be performed automatically. The CNN method takes
pictures as input and produces feature maps by passing them through layers. It then classifies images
by feature selection. A CNN architecture consists of an input layer, convolution layer, pooling layer,
fully connected (FC) layer, SoftMax, and output layers [30]. The CNN architecture is shown in Fig. 1.
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Figure 1: CNN architecture

The input layer is where the image data is applied raw to the CNN architecture. The input layer
size is determined according to the resolution of the image. The convolution layer extracts the features
from the images. In this layer, many features are obtained using filters of different sizes such as 2 x 2,
3 x 3,and 5 x 5. This filter is moved over all the pixels in order, starting from one corner of the picture.
A new value is obtained by multiplying and summing the overlapping pixel values on the picture with
the filter. In this way, different features are brought to the fore from each filter. Rectified Linear Unit
(ReLu) activation function is generally used in the convolution layer.

The pooling layer is used to reduce the load on the hardware while working on the CNN
architecture. It may cause some features to be lost but, it also prevents overfitting. It does not have to be
used in every CNN architecture. All features extracted in the fully connected layer are smoothed into a
single vector. Among the features extracted by this layer, the most contributing and non-contributing
features to the classification are determined by updating the weights. The feature selection process
is performed with this layer. In the SoftMax layer, the outputs of the FC layer are passed through
the activation function and the class predictions are transferred to the output layer. The output layer
predicts the class labels.

2.2 Grey Wolf Optimizer (GWO)

Grey Wolf Optimization (GWO) algorithm is a meta-heuristic optimization algorithm inspired
by Grey wolves’ survival and hunting strategies in nature [31-33]. Grey wolves have a chain in which
alpha wolves are at the top, and beta, delta, and omega wolves are listed, respectively (Fig. 2).

Alpha wolves represent the most dominant and commanding wolves, as seen from the chain
structure. Beta wolves act as alpha wolves’ assistants and run the communication network between
alpha wolves and other wolves. Omega wolves are the lowest level wolves chosen by alpha wolves.
They are the ones who eat at last during hunting. Wolves that do not belong to the class of alpha,
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beta, or omega wolves are called delta wolves. Delta wolves are predominantly selected by alpha and
beta wolves from omega wolves [34].
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Figure 2: GWO algorithm hierarchy chain [31]

2.2.1 Hunting
Grey wolves hunt in the following three stages

e Observing, tracking and approaching the prey
e Encircling the prey and forcing it to move until it gets tired
e Attacking the prey

In the GWO algorithm, alpha wolves represent the best solution. Beta and delta wolves represent
the second and third best solutions, respectively. Finally, omega wolves represent candidate solutions.

D=|CxX,(t)— X (1) (1)
Xt+1)=X,(t) —A*xD 2)
Egs. (1) and (2) in the GWO algorithm are used to express the encirclement of prey. It keeps the

number of 7 instant iterations, X, the position of the prey, X the position vector of a grey wolf. 4 and
C represent the vector coefficients and are calculated as shown in Eqs. (3) and (4).

A=ax2xr —1) 3)
C=2xrn 4)

Here, the random r, and r, are in the range of [0, 1] and a denotes the linearly decreasing coefficient
as the iteration progresses from 2 to 0.

2.2.2 Search

In GWO, the search process starts randomly, and the availability value of each wolf is calculated
according to the cost function. The top three positions with the best availability value are represented
as alpha, beta, and delta wolves, respectively. The alpha wolf coordinates the hunting process, and
beta and delta wolves can join as needed. The positions of alpha, beta and delta wolves are updated
as shown in Eqs. (5), (6), and (7).

D,=|C*X,— X (1]
Dy =|Cx X, — X (1) )
D; = |G x X; — X (1)
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Here, X,, X, and X; represent the positions of alpha, beta, and delta wolves, respectively. The top
three wolves are constantly updated in each iteration.

Xl = |X0t - AO(DDtl

Xy = ‘Xﬂ - AﬂDﬁ‘ (6)
Xy = |Xs - A5D5|

Xi+X,+X
X(t+1) = % (7)

Here, X (z 4+ 1) denotes the new position of the prey.

2.2.3 Attack

After the location of the prey is determined in GWO, attacking the prey is carried out. Attacking
the prey takes place after the prey gets tired and stops moving. Considering the mathematical modeling
process, the attack process takes place according to the A value specified in Eq. (3). The 4 value is in
[—2a,2a] and its value changes depending on the random variable r,. If the |A4| value is greater than
or equal to 1, Grey wolves will move away from the prey and start looking for a more suitable prey.
If | 4] is less than 1, the grey wolves are forced to attack the prey. This prevents getting blocked by
local minimums. In GWO, the hunting process is continued until the stopping criterion is met or the
specified number of iterations is reached.

3 Experimental Results

In this study, galaxy classification was made using the CNN method. Optimization of the CNN
architecture with the support of the GWO algorithm has been carried out. In addition, a comparison
was made with the Particle Swarm Optimization (PSO) [35] and Artificial Bee Colony (ABC) [36]
algorithms, which are well known in the literature to compare the success of the GWO algorithm.
The dataset and the CNN architecture used in the experimental studies are described in the following
sections.

3.1 Dataset

Galaxy images used in this study were created by Galaxy Zoo Project. Galaxyl0 Sloan Digital
Sky Survey (SDSS) Dataset [37] consists of ten classes, accepted by more than 55% of researchers. This
dataset consists of 21785 images, that are 69 x 69 in size. Table | presents the classes of the dataset and
the number of samples in each class.

Table 1: Galaxyl0 SDSS dataset

Class name The number of sample  Class label
Disk, Face-on, No spiral 3461 0
Smooth, Completely round 6997 1
Smooth, in-between round 6292 2
Smooth, Cigar shaped 394 3
Disk, Edge-on, Rounded bulge 1534 4

(Continued)
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Table 1: Continued

Class name The number of sample Class label
Disk, Edge-on, Boxy bulge 17 5
Disk, Edge-on, No bulge 589 6
Disk, Face-on, Tight spiral 1121 7
Disk, Face-on, Medium spiral 906 8
Disk, Face-on, Loose spiral 519 9

In Fig. 3, sample images of the classes in the Galaxyl0 SDSS dataset are shown. As seen from
Fig. 3, there are 10 galaxy classes in the dataset. Although some classes are similar to each other,
they differ from each other with small differences. These similar classes complicate the problem being
considered. This situation requires a more complex CNN architecture instead of a simpler CNN
architecture.

Disk, Face-on, No Spiral Smooth, Completely round Smooth, in-between round Smooth, Cigar shaped Disk, Edge-on, Rounded Bulge

”

Disk, Edge-on, Boxy Bulge Disk, Edge-on, No Bulge Disk, Face-on, Tight Spiral Disk, Face-on, Medium Spiral Disk, Face-on, Loose Spiral

»

Figure 3: Example images of each class from the Galaxy10 dataset [37]

3.2 CNN Architecture

In this study, a basic CNN architecture was determined. The number of neurons in the layers of this
architecture, learning coefficient and batch sizes were optimized. The CNN architecture is presented
in Table 2, and ranges of optimized parameters are given in Table 3.

Table 2: Optimized CNN architecture

Layer type The number of neurons Filter size
Input layer 69 x 69 x 3

Convolution layer ReLu Parameter 1 3x3
Pooling layer 2x2
Convolution layer ReLu Parameter 2 3x3

(Continued)
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Table 2: Continued

Layer type The number of neurons Filter size
Convolution layer ReLu Parameter 3 3x3
Convolution layer ReLu Parameter 4 3x3
Dropout layer 0.5
Convolution layer ReL.u Parameter 5 3x3
Convolution layer ReL.u Parameter 6 3x3
Convolution layer ReL.u Parameter 7 3x3
Pooling layer 2x2
Convolution layer ReL.u Parameter 8 3x3
Dropout layer 0.5
Convolution layer ReLu Parameter 9 3x3
Full connected layer Parameter 10 3x3
ReLu

Dropout layer 0.5
Full connected layer Parameter 11

ReLu

Dropout layer 0.5
Softmax layer 10

Output layer 10

Table 3: Optimized parameter ranges

Parameters Range Parameter definitions
Parameter 1~11 16, 32, 64, 128, 256, 512, 1024 The number of neurons
Parameter 12 0.1, 0.01, 0.001, 0.0001, 0.00001, Learn rate

0.000001, 0.0000001, 0.00000001
Parameter 13 128, 256, 512 Batch size

Parameter 1~11 given in Table 2 represents the number of neurons to be optimized. In addition to
these parameters, Parameters 12 and 13 represent the learning coefficient and batch size, respectively.

3.3 Analysis

The parameters of the CNN architecture are optimized using the GWO algorithm. All operations
have been carried out with Python 3.6 and Keras library. In the development of the CNN model, Adam
optimizer as optimization function, Mean Squared Error (MSE) and Mean Absolute Error (MAE) as
loss function, were used. MSE and MAE calculations are given in Egs. (8) and (9), respectively. Fig. 4
shows the flow chart of the proposed method.

1 .

MSE=-% (n—7) ®)
| ~

MAE=-%" |v.—7i ©)

Here y; denotes the actual class label and y; denotes the predicted class label.
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Figure 4: The flow chart of the proposed method

In addition to the GWO algorithm, I optimized the CNN architecture with the well-known
Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC) algorithms. These algorithms
are used successfully in most real-world problems. The PSO and the ABC algorithms are state-of-art
metaheuristic algorithms that were compared with GWO [38-43]. Therefore, these algorithms were
used for comparison in this study.

The model’s accuracy value was considered as the cost function of the used metaheuristic
algorithms. The accuracy formula is given in Eq. (10). Itis aimed to determine the optimum parameters
that will maximize the accuracy value.

4 Number of Correct Predictions (10)
ccuracy =
4 Total Number of Predictions

A total of 21785 images were separated as training and test data with the 10-fold cross-validation
technique. The optimum parameters of the CNN architecture were determined by metaheuristic
algorithms. All algorithms were run with a population size of 30 and 50 iteration steps. In Table 4,
the performance metrics of the train and test dataset are given. The best results were obtained with
the GWO. To prevent overfitting in the CNN model, the training phase was terminated in cases where
the dropout layers and early stop process and the validation accuracy value could not be improved
for ten epochs. In addition, a comparison was made with another study using the same dataset in the
literature [44]. The results of the reference study are presented in Table 4.

Considering the results given in Table 4, the test accuracy value was found to be 85%, whereas
in the training as the accuracy was 93%. The GWO algorithm achieved better results than other
metaheuristic algorithms. Compared to the Reference Study, the GWO algorithm is more successful in
the training phase. In the test phase, the GWO algorithm achieved a better result by a small difference.
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Table 4: Performance metrics

Optimization algorithm Dataset Accuracy MSE MAE

GWO Train 0.934 0.010 0.025
Test 0.852 0.022 0.041

PSO Train 0911 0.013 0.027
Test 0.807 0.030 0.044

ABC Train 0.895 0.016 0.032
Test 0.828 0.026 0.043

Reference study [44] Train 0.899 N. A. N. A.
Test 0.850

The differences between test and train results were examined, It was found that the model is not
overfitting and performs a balanced learning process using GWO. During the model’s training, the
accuracy and loss value of the model obtained with the train and test data are given graphically in
Fig. 5 for the GWO.

Model Accuracy Model Loss

— TFain 1 — Tain
Validation

Validation

=07 10 1
g w
2 g
§ 06 = 0.8 1
06 1
05
04
04
0.2 1
0 10 20 30 40 0 10 20 30 40
Epoch Epoch

(a) (b)

Figure 5: Development of accuracy and loss values during the training of the model (a) Accuracy graph
(b) Loss value graph

The confusion matrix in Fig. 6 is given to see the classes that our model learned best and could
not learn. A confusion matrix is a technique used to summarize the performance of a classification
algorithm. If you have an unequal number of samples in each class, or more than two classes in your
dataset, the classification accuracy alone can be misleading. A confusion matrix contains more detailed
information about the classes in which your classification model fails. In this way, it can be easier to
identify the areas to be focused on to improve the algorithm. The values in the matrix represent the
classification results as percentages.

If Fig. 6 is examined, my model was able to learn Classes 1, 2, 4, 6 and 7 with an accuracy of
over 90%. Except for Class 5, the remaining classes could be learned at a level considered successful.
However, during the training phase, it learned very little about Class 5 and confused it with Class 4.
As explained in the previous sections, our dataset has very little data belonging to Class 5. For this
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reason, the desired success in the learning process could not be achieved. Not including Class 5 in
the study could have been considered as a solution, as there are very few examples compared to other
class sample numbers. Since I assert a hybrid approach, I do not need to simplify my dataset. Learning
achievements in the training phase are also seen in the testing phase. In direct proportion to the success
in the training phase, classification was also possible in the testing phase. If the examples of all classes
are examined in Fig. 3, itis understood that Classes 1 and 2 have a different and rounded shape from all
other classes. Similarly, Classes 7 and 8 have a different spiral appearance than other classes. Galaxies
belonging to the other six classes are in the form of disks and are likely to be confused with each
other. The examples where the model will have the most difficulty learning are the examples of these
six galaxy types. Based on the confusion matrix, the classes with the most success are Classes 1 and 2.
Even though Class 8 has a helical appearance, it is a disc-like shape. For this reason, a classification
as successful as the training results could not be obtained in the test results. In Class 4 and 6, my
CNN model could generate a distinctive feature map and distinguish it from other disk-like galaxies.
In Table 5, the Precision, Recall and F1 Score values obtained by the GWO algorithm for each class
are given. The data in Table 5 also supports the results in Fig. 6. The Precision, Recall and F1 Score
formulas are given in Eqgs. (11), (12) and (13), respectively.

TP
Precision = ———— (11)
TP+ FP
TP
Recall = —— (12)
TP+ FN
Precisi Recall
F1 Score — 2 5 LTecision * Reca (13)

Precision + Recall

Confusion Matrix Confusion Matrix

Class 0 7000055 1 = Classo 2] 6 6 0 0 0 0 3 2 0 "
Class1{4 0 000O0O0O Class1{1EZ# 0 0 0 0 0 0 0 ©
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s Cass3{3 0 3] 7 025 0 0 0 y Class3{1 0 0 011 0 00
Sclassa{l1 01 o 03000 » Sclassa{1 0 0 0 00 00O u
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Figure 6: Confusion matrix of training and test dataset (a) Confusion matrix of test dataset (b)
Confusion matrix of train dataset
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Table 5: Precision, Recall, and F1 score metrics
Train Test
Class Precision  Recall F1 score Class Precision  Recall F1 score
0 0.94 0.75 0.83 0 0.73 0.63 0.68
1 0.96 0.98 0.97 1 0.94 0.94 0.94
2 0.96 0.96 0.96 2 0.93 0.92 0.93
3 0.92 0.79 0.85 3 0.74 0.61 0.67
4 0.96 0.97 0.97 4 0.92 0.93 0.93
5 1.00 0.38 0.55 5 1.00 1.00 1.00
6 0.91 0.98 0.94 6 0.77 0.83 0.80
7 0.83 0.91 0.87 7 0.69 0.66 0.67
8 0.88 0.86 0.87 8 0.53 0.53 0.53
9 0.93 0.88 0.91 9 0.71 0.52 0.60
Avg 0.93 0.85 0.87 Avg 0.80 0.76 0.78

Here, TP, FP and FN represent True Positives, False Positives and False Negatives, respectively.
As can be seen from Table 5, the small number of samples in Class 5 caused the Recall value to be low
during training. Similarly, during the test, the Recall value of Classes 7, 8 and 9 is low. These classes
have been mixed with other classes. This is clearly seen in the confusion matrix. In addition to Table 5,
ROC curves of model results according to classes are given in Fig. 7.
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Figure 7: ROC curves of training and test dataset (a) Test dataset (b) Train dataset

In Table 6, the parameters of my optimally obtained CNN architecture are given. These parame-
ters have been determined with the support of the GWO algorithm.
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Table 6: Achieved optimum results and parameters

Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5
32 128 256 1024 512
Parameter 6 Parameter 7 Parameter 8 Parameter 9 Parameter 10
512 256 64 128 1024
Parameter 11 Parameter 12 Parameter 13

512 0.0001 64

4 Conclusions

In this study, a morphological galaxy classification process was carried out. A hybrid approach is
asserted using the Galaxyl10 SDSS dataset. The neuron numbers, learning coefficient and batch size
of the CNN architecture are adjusted with the help of meta-heuristic algorithms. The hyperparameter
optimization process was calculated with the help of meta-heuristic algorithms. GWO, PSO and
ABC algorithms, which are widely used in the literature, were selected. For an objective comparison,
powerful state-of-the-art algorithm has been preferred. The learning process is difficult because
the sample in the dataset is not homogeneously distributed. To overcome the problem, parameter
adjustment is made with the help of an algorithm. The results show that the intended method can
be used successfully in classification processes. Among the algorithms used, the GWO algorithm has
been the most suitable for this problem. The GWO algorithm completed the training process with 93%
accuracy and the testing process with 85% accuracy. Other algorithms have lagged this ratio. In future
studies, a hybrid approach will be developed using homogeneous datasets.
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