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Abstract: The effectiveness of the logic mining approach is strongly corre-
lated to the quality of the induced logical representation that represent the
behaviour of the data. Specifically, the optimum induced logical represen-
tation indicates the capability of the logic mining approach in generalizing
the real datasets of different variants and dimensions. The main issues with
the logic extracted by the standard logic mining techniques are lack of inter-
pretability and the weakness in terms of the structural and arrangement of the
2 Satisfiability logic causing lower accuracy. To address the issues, the logical
permutation serves as an alternative mechanism that can enhance the proba-
bility of the 2 Satisfiability logical rule becoming true by utilizing the definitive
finite arrangement of attributes. This work aims to examine and analyze the
significant effect of logical permutation on the performance of data extraction
ability of the logic mining approach incorporated with the recurrent discrete
Hopfield Neural Network. Based on the theory, the effect of permutation and
associate memories in recurrent Hopfield Neural Network will potentially
improve the accuracy of the existing logic mining approach. To validate
the impact of the logical permutation on the retrieval phase of the logic
mining model, the proposed work is experimentally tested on a different
class of the benchmark real datasets ranging from the multivariate and time-
series datasets. The experimental results show the significant improvement
in the proposed logical permutation-based logic mining according to the
domains such as compatibility, accuracy, and competitiveness as opposed to
the plethora of standard 2 Satisfiability Reverse Analysis methods.
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1 Introduction

Artificial Neural Network (ANN) is a subset of Artificial Intelligence that was inspired by
artificial neurons. The primary aim of the ANN is to create black box model that can offer alternative
explanation among the data. Using this explanation, one can use the output produced from ANN
to solve various optimization problem. The main problem with conventional ANN is the lack of
symbolic reasoning to govern the modelling of neurons. Reference [1] proposed logical rule in ANN
by assigning each neuron to the variable of the logic. This leads to the introduction of Wan Abdullah
method to find the optimal synaptic by comparing the cost function with the final energy function.
Reference [2] proposed another variant of logic namely 2 Satisfiability (2SAT) in single layered ANN
namely Discrete Hopfield Neural Network (DHNN). The proposed 2SAT was reported to obtain
high global minima ratio if we optimize the learning phase of the DHNN. The discovery of this hybrid
network inspires other study to implement 2SAT in ANN. Recently, [3] integrates 2SAT in Radial
Basis Function Neural Network (RBFNN) by calculating the various parameters that leads to optimal
output weight. The proposed work confirms the capability of the 2SAT in representing the modeling
of the ANN. In another development, [4] proposed mutation DHNN by implementing estimated
distribution algorithm (EDA) during retrieval phase of DHNN. This shows that the interpretation
of the 2SAT logical rule in DHNN can be further optimized using optimization algorithm. The
implementation of 2SAT in various network inspires the emergence of other useful logic such as [5–
9] in doing DHNN. Various type of logical rule creates optimal modelling of DHNN that has wide
range of behavior. Despite having various type of logical rule in this field, the exploration of different
connectives among clauses is limited.

The most popular application of the logical rule in DHNN is logic mining. Reference [10] proposed
the first logic mining namely Reverse Analysis (RA) method by implementing Horn Satisfiability in
DHNN. The proposed logic mining managed to extract the logical relationship among the student
datasets. One of the main issues of the proposed logic mining is the lack of focus of the obtained
induced logic. In this context, more robust logic mining is required to extract single most optimal
induced logic. Reference [11] proposed 2 Satisfiability Reverse Analysis Method (2SATRA) by
introducing specific learning phase and retrieval phase that creates the most optimal induced logic.
The proposed 2SATRA extracts the best induced logic for league of legends. The proposed logic
mining was extended to various application such as Palm oil pricing [12,13] and football [14]. After
the introduction of 2SATRA in the field of logic mining, [15] proposed the energy-based logic mining
namely E2SATRA by considering only global neuron state during retrieval phase of DHNN. In this
context, the proposed E2SATRA capitalize the dynamics of the Lyapunov energy function to arrive
at the optimal final neuron state. Note that, the final global neuron state ensures the induced logic
produced by E2SATRA is interpretable. One of the main issues with the conventional 2SATRA is
the possible overfitting issue due to ineffective connection of attribute during pre-processing phase. In
other word, the attribute might possess the optimal connection with other variable in 2SAT clause, but
the other possible connection was disregarded. The optimal logical rule will be less flexible and fail to
emphasize the appropriate non-contributing attributes of a particular data set.

In this paper, the modified 2SATRA integrated with permutation operator will enhance the
capability of selecting the most optimal induced logic by considering other combination of variable
in 2SAT logic. The proposed modified 2SATRA will extract the optimal logical rule for various real-
life datasets. Therefore, Thus, the correct synaptic weight during learning phase will determine the
capability of the logic mining model and the accuracy of the induced logic generated during testing
phase. This work focused on the impact of the logical permutation mechanism in Hopfield Neural
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Network (HNN) towards the performance of 2SATRA in the tasks data mining and extraction. The
contribution of this paper is as follows:

(a) To formulate 2 Satisfiability that incorporates permutation operators which consider various
combination of variable in a clause.

(b) To implement permutation 2 Satisfiability in Discrete Hopfield Neural Network by minimizing
the cost function during learning phase that leads to optimal final neuron state.

(c) To embed the proposed hybrid Discrete Hopfield Neural Network into logic mining where
more diversified induced logic has been proposed.

(d) To evaluate the performance of the proposed permutation logic mining in doing real life
datasets with other state of the art logic mining.

The organization of this paper is as follows. Section 2 encloses a bit of brief introduction of 2
Satisfiability logical representation including the conventional formulations and examples. Section 3
focuses on the formulations of logical permutation on 2 Satisfiability Based Reverse Analysis methods.
Thus, Section 4 explains the experimental setup including benchmark dataset, performance metrics,
baseline method and experimental design. Then, the results and discussions are covered briefly in
Section 5. Definitively, the concluding remarks are included in the final section of this paper.

2 Satisfiability in Discrete Hopfield Neural Network

Satisfiability (SAT) is a class of problem of finding the feasible interpretation that satisfies a
particular Boolean Formula based on the logical rule. Based on the literature in [16], SAT is recognized
to be a variant of NP-complete problem and incorporated to generalize a plethora of constraint
satisfaction problems. Thus, the breakthrough of SAT research contributes to the development
of the systematic variant of SAT logical representation, for instance, the 2 Satisfiability (2SAT).
Theoretically, the fundamental 2SAT logical representation composes of the following structural
features [4]:

(a) Given a set of specified x variables, w1, w2, w3, . . . , wx where wi ∈ {−1, 1} (bipolar states) that
illustrate the False and True outcomes correspondingly.

(b) A set of logical literals comprising either the positive variable or the negation of variable in
terms of wi ∈ {wi, ¬wi}.

(c) Given a set of y definite clauses, C1, C2, C3, . . . , Cy in a set of logical rule. For every Ci is
connected to logical operator AND (∧) consecutively. Additionally, the 2 literals structure as
given in (b) are well-connected by logic operator OR (∨).

Based on the feature in (a) until (c), the precise definition of P2SAT with different clauces can be
seen as follows

P2SAT = y∧
i=1

Ci (1)

whereby Ci is a clause containing strictly 2 literals each

Ci = x∨
i=1

(mi, ni). (2)

Then, by governing the Eqs. (1) and (2) respectively, an illustration of P2SAT can be crafted as

P2SAT = (¬C ∨ D) ∧ (M ∨ N) ∧ (¬E ∨ ¬G) (3)
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whereby the logical clauses in Eq. (3) are divided into 3 clauses such as C1 = (¬C ∨ D), C2 = (M ∨ N)

and C3 = (¬E ∨ ¬G). In particular, the aforementioned clauses must be satisfied with the appropriate
bipolar interpretations with specific arrangements in align with the logical rule. Therefore, if the
bipolar interpretation or assignment reads (C, D) = (1, −1), P2SAT yields the False outcome or −1.
Due to the compatibility of P2SAT with the ample information storage mechanism, we implemented
P2SAT into DHNN as a logical representation.

Specifically, the fundamental classification of DHNN with i-th activation is shown as follows

Si =
{

1, if
∑N

i=0WijSj ≥ θ

−1, otherwise
(4)

where θ and Wij refer to the neuron threshold and second-order synaptic weight of the network
correspondingly. In most of the DHNN research, θ = 0 is chosen as a standard threshold parameter.
Note that N denotes the total number of 2SAT literals in a logical representation. Then, Wij is defined
as the connection between neuron Si and Sj. This paper utilizes DHNN to avoid any intervention
of the hidden layer. Hidden layer requires additional optimized parameters that potentially disrupt
the signal of the local field in (4). In other word, suboptimal signal will leads to suboptimal synaptic
weight which cause the final state to be trapped in local minimum energy. The thought of employing
P2SAT in DHNN (DHNN-2SAT) is due to the potential of the P2SAT logical rule that can govern the
output of the network symbolically. Thus, P2SAT will take advantage of the DHNN content adressable
memory as a remarkable storage especially to applied in logic mining.

3 Permutation in 2 Satisfiability Based Reverse Analysis Method

Logic mining is a paradigm that used logical rule to simplify the information of the data set. Based
on the inspiration of a study by [11], they have successfully utilized logic mining by implemented
reverse analysis method in inducing all possible logical rules that generalize the behavior of the
data set. However, the main task in assessing the behavior of the data set with the pre-defined goal
is the extraction of correct P2SAT logical rule so that it is efficiently evaluated the quality of data
generalization. The structure of the optimum P2SAT must consist the possible tractable inference, and
capable to categorize the outcome of the real datasets. The conventional paradigm is by formulating
and proposing a data mining method that capitalizes learned P2SAT integrated with DHNN. 2
Satisfiability based Reverse Analysis Method (2SATRA) is a method that utilizes DHNN to learn
and extract P2SAT from a particular dataset with different levels of instances and attributes.

Given a set of data, S1, S2, S3, S4, . . . , Sx where Si ∈ {−1, 1} and x is the number of tested attributes.
Note that, the number of tested attributes is randomly chosen from the factors that contribute to the
outcome. Worth mentioning that, the role of 2SATRA is to find the final neuron state that maps from
the learning neuron states. Throughout the learning phase, each dataset will be evaluated in order to
find the synaptic weight by using Wan Abdullah Method [1]. Tab. 1 illustrated all the possible synaptic
weight for P2SAT .

Table 1: Synaptic weight of P2SAT according to [1]

Synaptic weight C1 = S1 ∨ S2 C2 = ¬S1 ∨ S2 C3 = S1 ∨ ¬S2 C4 = ¬S1 ∨ ¬S2

WS1
0.25 −0.25 0.25 −0.25

(Continued)
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Table 1: Continued
Synaptic weight C1 = S1 ∨ S2 C2 = ¬S1 ∨ S2 C3 = S1 ∨ ¬S2 C4 = ¬S1 ∨ ¬S2

WS2
0.25 0.25 0.25 −0.25

WS1S2
−0.25 0.25 −0.25 −0.25

For instance, if the given dataset reads
(
S1

1, S1
2, S1

3, S1
4, S1

5, S1
6

) = (1, −1, −1, 1, 1, 1), 2SATRA will
convert the logical assignments or interpretations into logical representation of P1

2SAT = (S1 ∨ ¬S2) ∧
(¬S3 ∨ S4) ∧ (S5 ∨ S6). Based on Tab. 1, the acquired synaptic weight for P1

2SAT are C1, C2 and C3

correspondingly. In this work, we proposed the permutation of the attributes in order to find the
best interpretation that will generalize the behaviour of the data set. Therefore, the implementation
of several possible permutations for P1

2SAT such as in Eqs. (5) and (6).

Pm i
2SAT = ∧n

g=1Cg where Cg = ∨k
v=1(x

a
gv, yb

gv), k = 2 (5)

Based on the Eq. (5), the possible permutation for Pmi
2SAT is a as follows

Pm2
2SAT = (S1 ∨ ¬S2) ∧ (¬S3 ∨ ¬S4) ∧ (¬S5 ∨ S6)

Pm2
2SAT = (¬S4 ∨ S6) ∧ (¬S2 ∨ ¬S3) ∧ (S1 ∨ ¬S5) (6)

In this context, the Pmi
2SAT embedded to DHNN exhibits more possible attribute arrangement and

we only considered the structure of Pmi
2SAT = 1 in the learning phase of DHNN. Then, the Pmi

2SAT will be
selected as the Pbest if it comply the criteria as in Eq. (7).

n
(

Pki
2SAT

)
≤ Tol (7)

where n
(

Pki
2SAT

)
is the number of logical rule and Tol is the acceptance tolerance range. The logical

Pbest will determine the behaviour of the DHNN and the logical Pbest along with the acquired synaptic
weight obtained will be stored in the content addressable memory for the retrieval phase purposes.
The process of generating induced logical rules, PB

i for this programme is follows exactly from the
conventional 2SATRA. Note that, the implementation of permutation attribute arrangements with the
2SATRA is abbreviated as P2SATRA. To further test the performance of P2SATRA, the PB

i obtained
will be compared with the testing datasets, Ptest. Algorithm 1 illustrates the Pseudocode of the proposed
P2SATRA while Fig. 1 shows the execution of the proposed P2SATRA.

Based on Fig. 1 and Algorithm 1, P2SATRA starts by identifying random logic Pbest which leads to
P2SAT = 1. In this context, P2SAT = −1 will be diregarded to ensure the Satisfiable property of the P2SAT .
After obtaining the synaptic weight via [1], P2SATRA proceed with the retrieval phase of the DHNN.
The main difference between conventional 2SATRA with P2SATRA is the position of the attributes
in the P2SAT during learning phase and retrieval phase. In this context, the final neuron state of the
proposed P2SATRA has bigger search space compared to conventional 2SATRA. Compared to other
optimization method, permutation operator in Eq. (2) requires non-complex optimization problem to
arrive to the optimal induced logic. Thus, P2SATRA only deals with permutation operatorto uncover
possible combination of the connectives in P2SAT .
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Figure 1: The execution of the proposed P2SATRA
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Algorithm 1: Pseudo code of the Proposed P2SATRA
Input: Set all attributes w1, w2, w3, . . . , wx with respect to Plearn, P, trial and Tol.
Output: The best induced logic PB

i .
1 Begin
2 Initialize the parameters;
3 Define the attribute for w1, w2, w3, . . . , wx with respect to Pi

2SAT ;
4 Assign wi as Si, and continue;
5 while (i ≤ P) do
6 find Pbest using Eq. (7);
7 Check the clause satisfaction for Pbest;
8 Compute the synaptic weight associated with Pbest by using WA method;
9 Store the synaptic weight and Pbest in content addressable memory;
10 Initialize the final neuron state;
11 for (k ≤ trial ∪ Tol ≤ 0.001)

12 Compute local field to obtain final neuron state;
13 Convert final neuron state to the logical form;
14 Combine final neuron state to generate induced logic PB

i ;
15 Compare the outcome of the PB

i with Ptest and continue;
16 k ← k + 1;
17 end for
18 i ← i + 1;
19 end while
20 End

4 Experimental Setup
4.1 Benchmark Dataset

In this paper, the impact of logical permutation in attaining the optimum induced logic is
examined. Thus, the first 10 publicly available datasets from repository (B1-B10) are acquired from the
open source UCI repository databases via https://archive.ics.uci.edu/ml/datasets.php. Moreover, 1 real
life dataset (B11) is taken from Department of Irrigation and Drainage, Malaysia. Tab. 2 encloses the
lists of datasets being used in this experiment. Based on the analysis from several previous works, this
study utilizes the standard train-test split method, via 60% set as a learning data and the remaining
40% as a testing data [17]. The data will be converted into bipolar representation (1 and −1) using
k mean clustering as proposed by [18]. The conversion will be applied in both learning and retrieval
phase. To guarantee reproducibility of the result, the implementation code of our proposed P2SATRA
with the datasets can be retrieved from https://bit.ly/3nyUdm8.

Table 2: Benchmark datasets

Code Dataset Attributes Instances Missing
Value

Type of
dataset

Outcome

B1 Chronic kidney
disease

26 400 Yes Multivariate Chronic kidney
disease

(Continued)

https://archive.ics.uci.edu/ml/datasets.php
https://bit.ly/3nyUdm8


2860 CMC, 2023, vol.74, no.2

Table 2: Continued
Code Dataset Attributes Instances Missing

Value
Type of
dataset

Outcome

B2 Heart attack
analysis

14 303 No Multivariate Chances of getting
heart attack

B3 Hepatitis C virus 14 615 Yes Multivariate Category of
diagnosis

B4 Obesity 17 2111 No Multivariate Obesity level
B5 Stroke 12 5110 No Multivariate Stroke prediction
B6 German credit

data
20 1000 No Multivariate Status

B7 Zoo 17 101 No Multivariate Class
B8 Wine 13 178 No Multivariate Class
B9 Energy

efficiency–Y1
8 768 No Multivariate Heating load

B10 Computer
hardware

9 209 No Multivariate Estimated relative
performance

B11 Water level 13 56 Yes Time series Type of river

4.2 Baselines Methods

As the primary impetus of this work is to evaluate the quality of the induced logical representation
generated by P2SATRA, we restrict the baseline methods comparison to the standard method only
with the capability in attaining the induced logic from the real datasets. Tabs. 3–6 show the list of
important parameters for various logic mining approaches. The core concern of combining more
attributes is the possible increment of the learning error as the results of non-effective learning phase
of HNN [19]. Hence, the Hyperbolic activation function is applied to squash the final state of the
neurons because of the capability and the behaviour of the functions such as the continuous, smooth,
and non-linearity of the activation function. In retrieval phase of the logic mining method, the neuron
initialization is set to be random in order to lessen the potential biasness of the network.

Table 3: Parameters setting in E2SATRA model [15]

Parameter Parameter value

Combination of neurons 100
Attribute selection Random
Number of learning (�) 100
Logical rule P2SAT

Tolerance value (∂) 0.001
Number of neuron string 100
Selection_rate 0.1
Neuron combination 100
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Table 4: Parameters setting in 2SATRA model [11]

Parameter Parameter value

Combination of neurons 100
Attribute selection Random
Number of learning (�) 100
Logical rule P2SAT

Number of neuron string 100
Selection_rate 0.1

Table 5: Parameters setting in P2SATRA model

Parameter Parameter value

Combination of neurons 100
Attribute selection Random
Number of learning (�) 100
Logical rule P2SAT

Number of neuron string 100
Selection_rate 0.1
Maximum permutation 100

Table 6: Parameters setting in RA method [10]

Parameter Parameter value

Combination of neurons 100
Number of learning (�) 100
Logical rule P2SAT

Number of neuron string 100
Selection_rate 0.1

4.3 Performance Evaluation Metrics

Various performance evaluations such as the sensitivity, precision analysis, F-Score and Matthews
Correlation Coefficient (MCC) are employed to analyze and assess the overall capability and the
significant effect of logical permutation in P2SATRA. The performance of the P2SATRA is calculated
based on the confusion matrix. Specifically, TP (true positive) refers to the number of positive instances
that correctly classed, FN (false negative) denotes the number of positive instances that incorrectly
classified, TN (true negative) is the number of negative instances that correctly classified, whereas FP
(false positive) demarcates the number of positive instances that incorrectly classified by the model.
In the context of logic mining, TP can be calculated if PB

i = Ptest = 1 and TN can be calculated
if PB

i = Ptest = −1. Sensitivity metric, (Se), examines the main positive result for an instance with
respect to a particular condition.
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Se = TP
TP + FN

(8)

Therefore, precision is employed to gauge the algorithm’s or model’s predictive capability. The
computation and formulation for Precision (Pr) is defined as follows:

Pr = TP
TP + FP

(9)

Accuracy (Acc) refers to the ordinary indicator for verifying the performance of the classification
processes. Thus, the accuracy determines the percentage of instances categorized correctly (emphasis
given on the true outcomes in confusion matrix):

Acc = TP + TN
TP + TN + FP + FN

(10)

F-Score is a substantial indicator that indicates the maximum probability of optimal result,
clearly demonstrating the capability of the computational model. Moreover, F-Score is depicted as
the harmonic mean of the two-performance metrics, which are the precision and sensitivity analysis.

F Score = 2TP
2TP + FP + FN

(11)

In addition, Matthews Correlation Coefficient (MCC) is utilized to quantify the execution of
the entire logic mining approaches by taking into account the eight major derived ratios from the
amalgamation of the entire elements of a confusion matrix. The MCC is given:

MCC = TP TN − FP FN√
(TP + FP) (TP + FN) (TN + FP) (TN + FN)

(12)

4.4 Experimental Design

All simulations will be implemented and executed by employing the Dev C++ Version 5.11
software due to the versatility of the programming language and the user-friendly interface of the
compiler. Hence, the simulations will be implemented in C++ language by using computer with Intel
Core i7 2.5 GHz processor, 8GB RAM and Windows 8.1. Following that, the threshold CPU time for
each execution was set 24 h and any possible outputs that go beyond the threshold time were omitted
entirely from the analysis. The overall experiments were executed by using the similar device to prevent
possible bad sector in the memory during the simulations.

5 Results and Discussions

This study created the 2SATRA integrated with HNN-2SAT to simulate and analyze the effect of
logical permutation, forming P2SATRA. The composition of attributes will be randomly permuted
as opposed to the previous 2SATRA models [11,12]. In this work, the comparison of our proposed
P2SATRA will be examined with the conventional logic mining models such as RA, 2SATRA and
E2SATRA methods.

The results of Acc, Pr, Se, F-Score and MCC for four variants of logic mining apporaches can
be viewed in Tab. 7 until Tabs. 8 and 11. Then, Tab. 12 encloses the induced logic of obtained for 11
real datasets. According to the results, there are several successful dominances and strength points
for P2SATRA which are enclosed based on the analysis of the different performance metrics. Based
on Acc analysis, P2SATRA achieve the maximum optimal Acc values for 11 real datasets, including
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the time-series dataset in B11. This manifests the capability of the logical permutation in P2SATRA
in enhancing the accuracy of the logic mining for the entire datasets used in this work. According to
the thorough observation, the next feasible models that compete in terms of Acc with P2SATRA are
RA and E2SATRA. This implies that the proposed logic mining model has been enhanced by using
permutation operator in diversifying the induced logics that lead to higher accuracy by tuning the high
permutation parameter (maximum of 100 permutation/execution). Based on Tab. 1, all of the accuracy
recorded by P2SATRA achieved Acc ≥ 0.9 which confirms the capability to correctly differentiate TP
and TN for all datasets in this study. Following that, there were three datasets (B4, B9, and B11) that
attain Acc = 1 which implies P2SATRA accurately predict all value of TP and TN. This shows that
the capability of the proposed P2SATRA to work well with time-series datasets, which require proper
enumerations in attaining the best induced logic as compared with the three counterparts. Interesting
observation can be found where the 2SATRA and RA recorded the zero Acc during the execution
with B11 dataset. The 100% differences in the Acc of P2SATRA as opposed to the standard logic
mining approaches in B11 just confirmed the significant effect of logical permutation with the effective
synaptic weight management during time-series data extraction. Statistically, P2SATRA has recorded
an exceptional average rank of 1.045 for the accuracy, which 286% lower than RA and E2SATRA plus
about 322.7% lower than 2SATRA.

(a) For Pr, P2SATRA outperforms the other logic mining models in 7 out of 11 datasets. The
higher Pr values of indicates the superiority of the proposed model to retrieve and generate
more TP. Hence, the nearest model that strongly compares with P2SATRA is E2SATRA.
However, no Pr values were reported in B2, B5 and B11 datasets indicating the failure to
retrieve any value for Pr. This is occurring because P2SATRA and the other logic mining
models fail to retrieve value of positive outcomes, consisting of TP and FP. The proposed
P2SATRA has achieved Pr = 1 value for 3 real datasets which entails P2SATRA correctly
predict the tested data in evaluation with all the positive outcomes. One interesting result was
recorded by 2SATRA for B9, where the Pr = 0 implying the models fail to attain any TP
values in the confusion matrix. This shows the major weakness of standard 2SATRA that
requires reinforcement via the logical permutation approach. To support that, the 2SATRA
has obtained Pr average rank of 3.1878 which approximately 230% higher than the Pr average
rank for P2SATRA.

(b) For result of Se, P2SATRA outperforms other logic mining model in 9 out of 11 datasets.
In addition, according to the F-Score analysis, P2SATRA has recorded exceptional results in
10 out of 11 datasets as compared to 2SATRA, RA and E2SATRA. However, both results
of Se and F-Score for B11 is not able to retrieve any value due to the failure to generate any
positive and negative outcomes. This highlights the similar capability of P2SATRA with the
other logic mining models when being assessed with Se and F-Score for B11, which a variant
of time-series datasets. Overall, the nearest model that competes with P2SATRA is E2SATRA
with the average rank of 2.500. Moreover, P2SATRA has an average rank of 1.909 which is
the peak as compared to other conventional logic mining approaches based on the Se analysis.
In addition, P2SATRA has recorded the superior average rank of F-Score with 1.545 with
almost 99.5% lower than the worst 2SATRA with average rank of 3.000. Hence, both findings
statistically authenticate the acceptable performance of P2SATRA for most of multivariate
datasets as opposed to the conventional logic mining approach.

(c) As well to MCC, logic mining model of P2SATRA shows the highest optimal MCC value
among other model in 6 out of 11 datasets. In meantime, 5 datasets in MCC are not able to
retrieve any value. No value of MCC reported in B2, B4, B5 and B11 for all logic mining
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methods due to the non-existence of positive outcomes for these datasets. In addition, no
MCC value recorded for B7 data due to P2SATRA is not able to retrieve value of TP and
FP. However, the performance of P2SATRA has been exceptional as recorded the best MCC
for 55% of the datasets. The datasets that are equal to zero and approaching zero MCC
are B10 and B9 dataset respectively. This demonstrates P2SATRA has excellent capability in
distinguishing all outcome domains of the confusion matrix and a solid proof of powerful
predictive capability.

(d) According to the average rank for all the data sets in terms of Acc, Pr, Se, F-Score and MCC,
it shows that P2SATRA has the highest average rank compared to other model. It has been
statistically proven, where 2SATRA has been the weakest of the other conventional logic
mining approaches, when being trained and tested with the real datasets in this study.

(e) The further analysis via Friedman test rank has been performed for all 11 datasets with
α = 0.05 and degree of freedom, df = 3. The p-value for Acc, Pr, Se, F-Score and MCC
are 2.5 × 10−4

(
χ 2 = 19.2

)
, 0.032

(
χ 2 = 8.813

)
, 0.305

(
χ 2 = 3.627

)
, 0.038

(
χ 2 = 8.455

)
and

0.209
(
χ 2 = 4.53

)
, respectively. In terms of Acc, Pr and F-Score, the null hypothesis of equal

performance for all the logic mining models were rejected. P2SATRA recorded the average
rank of 1.045, 1.375 and 1.545 in terms of Acc, Pr and F-Score, respectively, which highest
compared to other existing models. As can be seen, E2SATRA is the nearest method that
competes with P2SATRA with an average rank of 2.864, 2.688 and 2.818 for Acc, Pr and
F-Score, respectively. Thus, it shows that the result for Acc, Pr and F-Score are statistically
validating the dominance performance of P2SATRA. However, the null hypothesis of equal
performance for all the logic mining models were accepted in terms of Se and MCC. It can be
concluded that there no difference performance of P2SATRA with other models for Se and
MCC.

Table 7: Acc for all logic mining model

Dataset P2SATRA 2SATRA E2SATRA RA

B1 0.981 0.569 0.171 0.575
B2 0.900 0.182 0.000 0.479
B3 0.915 0.419 0.360 0.407
B4 1.000 0.500 0.667 0.566
B5 0.961 0.400 0.000 0.486
B6 0.923 0.673 0.804 0.393
B7 0.926 0.630 0.750 0.889
B8 0.931 0.389 0.634 0.653
B9 1.000 0.000 1.000 0.839
B10 0.964 0.536 0.728 0.655
B11 1.000 0.000 - 0.000
Avg 0.955 0.391 0.511 0.540
Std 0.037 0.235 0.354 0.240
Min 0.901 0.000 0.000 0.000
Max 1.000 0.673 1.000 0.889
Avg Rank 1.045 3.227 2.864 2.864
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Table 8: Pr for all logic mining model

Dataset P2SATRA 2SATRA E2SATRA RA

B1 0.700 0.600 0.700 0.700
B2 - - - -
B3 0.878 0.585 0.659 0.549
B4 1.000 0.500 0.500 0.566
B5 - - - -
B6 0.954 0.696 0.693 0.388
B7 1.00 0.600 0.600 0.960
B8 0.793 0.875 0.542 0.417
B9 1.000 0.000 1.000 1.000
B10 0.966 0.500 0.897 0.948
B11 - - - -
Avg 0.911 0.544 0.699 0.691
Std 0.112 0.251 0.171 0.250
Min 0.700 0.000 0.500 0.388
Max 1.000 0.875 1.000 1.000
Avg Rank 1.375 3.1878 2.688 2.750

Table 9: Se for all logic mining model

Dataset P2SATRA 2SATRA E2SATRA RA

B1 1.000 0.085 0.097 0.097
B2 0.000 0.000 0.000 0.000
B3 0.865 0.306 0.248 0.292
B4 1.000 1.000 1.000 1.000
B5 0.000 0.000 0.000 0.000
B6 0.966 0.957 0.957 0.962
B7 0.926 1.000 1.000 0.923
B8 1.000 0.339 0.765 0.476
B9 1.000 0.000 1.000 0.762
B10 0.982 0.746 0.929 0.679
B11 - 0.000 0.000 0.000
Avg 0.774 0.403 0.545 0.472
Std 0.410 0.436 0.465 0.411
Min 0.000 0.000 0.000 0.000
Max 1.000 1.000 1.000 1.000
Avg Rank 1.909 2.682 2.500 2.909
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Table 10: F-Score for all logic mining model

Dataset P2SATRA 2SATRA E2SATRA RA

B1 0.824 0.148 0.171 0.171
B2 0.000 0.000 0.000 0.000
B3 0.873 0.402 0.360 0.381
B4 1.000 0.667 0.667 0.723
B5 0.000 0.000 0.000 0.000
B6 0.960 0.803 0.803 0.553
B7 0.962 0.750 0.750 0.941
B8 0.884 0.488 0.634 0.444
B9 1.000 0.000 1.000 0.866
B10 0.974 0.598 0.728 0.791
B11 - 0.000 - 0.000
Avg 0.748 0.351 0.511 0.443
Std 0.398 0.329 0.354 0.361
Min 0.000 0.000 0.000 0.000
Max 1.000 0.804 1.000 0.941
Avg Rank 1.545 3.000 2.818 2.636

Table 11: MCC for all logic mining model

Dataset P2SATRA 2SATRA E2SATRA RA

B1 0.828 0.081 0.130 0.130
B2 - - - -
B3 0.809 −0.078 −0.507 −0.113
B4 - - - -
B5 - - - -
B6 −0.040 −0.040 −0.089 −0.027
B7 - 0.316 0.316 0.040
B8 0.847 0.028 0.509 0.195
B9 1.000 0.107 1.000 0.713
B10 0.918 −1.000 0.728 0.052
B11 - - - -
Avg 0.727 −0.150 0.295 0.158
Std 0.382 0.422 0.556 0.293
Min −0.040 −1.000 −0.507 −0.113
Max 1.000 0.107 1.000 0.713
Avg rank 1.714 3.143 2.429 2.714
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Table 12: Induced logic for P2SAT

Dataset Details of each attribute Induced logic

B1 A = Sugar level P = (D V F) ∧ (A V B) ∧ (C V E)
B = Red blood cells
C = Serum creatinine
D = White blood cell count
E = Red blood cell count
F = Hypertension
P = Chronic kidney disease

B2 A = Sex P = (D V _F) ∧ (A V E) ∧ (_C V B)
B = Resting blood pressure
C = Fasting blood sugar
D = Exercise induced angina
E = Old peak
F = Number of major vessels
P = Chances of heart attack

B3 A = Alkaline phosphatase P = (F V E) ∧ (C V _A) ∧ (B V D)
B = Alamine aminotransferase
C = Aspartate aminotransferase
D = Bilirubin
E = Creatinine
F = Gamma-glutamyl
transpeptisade
P = Category of diagnosis

B4 A = Weight P = (E V C) ∧ (F V _D) ∧ (A V B)
B = Smoking
C = Daily water intake
D = Daily consumed calories
E = Freq. of physical activity
F = Technology usage
P = Obesity level

B5 A = Hypertension P = (F V E) ∧ (_B V D) ∧ (C V A)
B = Heart disease
C = Ever married
D = Type of work
E = Average glucose level
F = Body mass index
P = Stroke prediction

B6 A = Column 6 P = (E V C) ∧ (D V F) ∧ (B V A)
B = Column 10
C = Column 12
D = Column 14

(Continued)
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Table 12: Continued
Dataset Details of each attribute Induced logic

E = Column 16
F = Column 19
P = Column 20

B7 A = Hair P = (A V C) ∧ (D V E) ∧ (B V F)
B = Milk
C = Toothed
D = Backboned
E = Venomous
F = Tail
P = Class

B8 A = Alcalinity of Ash P = (E V C) ∧ (F V D) ∧ (B V A)
B = Total phenols
C = Flavanoids
D = Hue
E = OD280/OD315
F = Proline
P = Class

B9 A = x1 P = (C V _E) ∧ (F V B) ∧ (D V A)
B = x2
C = x3
D = x4
E = x5
F = x7
P = y1

B10 A = mmin P = (F V E) ∧ (D V A) ∧ (B V C)
B = mmax
C = cach
D = chmin
E = chmax
F = prp
P = erp

B11 A = Jan P = (_E V A) ∧ (C V B) ∧ (D V F)
B = Mar
C = May
D = Jul
E = Sep
F = Nov
P = Kuantan

6 Conclusion

In this work, a new alternative approach of attaining the optimal induced logic entrenched
in any of multivariate or time-series datasets by introducing the logical permutations in 2SATRA
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has been successfully developed. The enhancements can be seen clearly in the substantial accuracy
improvement of the proposed model as opposed to the existing approach, indicating the success
in the generalization of the datasets. In this study, we have exploited the multi-connection between
the attribute arrangements in generating the Pi

2 SAT with different accuracy values. Given the high
expressibility and interpretibility of the proposed P2SATRA, the effects of the logical permutations
have been very significant and substantial. By adapting various forms of 2SAT logical structure during
the learning phase of HNN, P2SATRA outperfomed the 2SATRA, E2SATRA and RA approaches
when being measured with the performance metrics such as the accuracy, precision, sensitivity, F-
Score and MCC after the logic mining analysis with 11 different real datasets. For instance, it will
be interesting to infuse different logical rule such as Maximum Satisfiability [20], Y-Type Random
Satisfiability [8], G-Type Random Satisfiability [9] and Random k Satisfiability [5]. In terms of network
architecture, it will be interesting if other learning mechanism such as in [21,22] were embeded into
logic mining.
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