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Abstract: Due to highly underdetermined nature of Single Image Super-
Resolution (SISR) problem, deep learning neural networks are required to
be more deeper to solve the problem effectively. One of deep neural networks
successful in the Super-Resolution (SR) problem is ResNet which can render
the capability of deeper networks with the help of skip connections. However,
zero padding (ZP) scheme in the network restricts benefits of skip connections
in SRResNet and its performance as the ratio of the number of pure input
data to that of zero padded data increases. In this paper. we consider the
ResNet with Partial Convolution based Padding (PCP) instead of ZP to solve
SR problem. Since training of deep neural networks using patch images is
advantageous in many aspects such as the number of training image data and
network complexities, patch image based SR performance is compared with
single full image based one. The experimental results show that patch based
SRResNet SR results are better than single full image based ones and the
performance of deep SRResNet with PCP is better than the one with ZP.

Keywords: Single image super-resolution; SRResNet; patch inputs; zero
padding; partial convolution based padding

1 Introduction

Deep learning algorithms have the ability to learn hierarchical representation of the data and
appeared to be a superior alternative to other machine learning algorithms. In image super-resolution
problems, the major goal is to appropriately generate and estimate new adjacent pixels around given
ones in a low resolution (LR) image in order to enhance the quality of the image by improving the
image resolution. Single image super resolution (SISR) is a classical ill-posed problem of reconstruct-
ing a high-resolution image IHR from its low-resolution ILR counterpart. Contrary to multi-image super
resolution (MISR) which is now merged into video super resolution task, SISR is more challenging
task due to estimating single optimal solution image ISR from the wide range of possible target SR
solutions.
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SISR is particularly important in computer vision tasks. Many computer vision applications,
ranging from advertisement to medical image processing can take benefit from image super resolution
methods. SISR algorithms always strive for ISR outputs with better aesthetic quality. Interpolation-
based methods are the simplest ones but results into visually poor ISR image. Deep learning methods are
quality-wise more efficient but computationally expensive. With the advancements in computational
resources more sophisticated deep learning algorithms are designed for SR tasks. One of the major
issues with the deep learning algorithms is that, poorly modeled problem misleads the network which
causes inefficiency. So, it is reasonable and efficient to develop a super-resolution algorithm using
local patches of LR images focusing on local properties. Patch based approach is also advantageous
in training of deep neural networks in many aspects.

Recently a lot of image super-resolution algorithms have been introduced based on well-known
deep learning approaches [1–3] and convolutional neural network (CNN) based SR algorithms have
shown excellent performance [4–6]. Deep neural network [7] is efficient to model the mappings of high
complexity such as super-resolution function and it was shown that deeper networks have the potential
to substantially increase the network accuracy even though it is not easy to train [8].

To train deep neural networks more efficiently, the concept of residual blocks [9] and skip-
connections [10] has been introduced in deep neural networks such as SRResNet [11] which is
considered in this paper. SRResNet, a customized ResNet [9], is a deep residual neural network
specifically designed for super-resolution. The major strength of the SRResNet is the use of residual
layers based on a technique of skip connections between two subsequent layers which can effectively
manage vanishing gradient problem [10] encountered in deep neural networks. To implement skip
connections in SRResNet, zeros should be padded to the inputs to generate outputs of the same size as
the inputs which is called zero padding (ZP). In SRResNet, ZP is commonly used because of simplicity
but padding algorithm should be carefully selected because ZP affects the network performance.

In this paper, patch image based SRResNet is considered to develop a super-resolution algorithm
and PCP is adopted as a padding algorithm in SRResNet. Through the performance comparison
between patch image based super-resolution and single image based one, it will be shown that patch
image based SRResNet is more powerful both in performance and network efficiency and PCP is more
effective than ZP as a padding scheme for patch based SRResNet.

Training of a deep neural network such as SRResNet requires a large amount of training data
and powerful computational resources to implement. For example, in case of an SRResNet with four
residual blocks and an image input of size 384 × 384 × 3 shown in Fig. 1, the network model utilizes
1,722,115 parameters to learn, which makes it unable to run on a 32 GB RAM of a CPU system.
Particularly, it is not feasible to be implemented in widely used handheld devices. By the way, patch
image based approach can facilitate to train complex networks more efficiently despite limited physical
capability and provide comparably good performance. On the other hand, padding algorithms should
be carefully selected in patch image based approach because it can affect the performance considerably
by propagating padding noises through boundaries of many patches.

Patch based deep learning algorithm for image super-resolution is considered to have many
advantages in both performance and network efficiency. Nonetheless, there has been no report to
investigate the performance with respect to input image size. Our contribution can be summarized as
follows.

1. In order to show the superior performance of patch input based SRResNet, performance
comparison of SRResNet has been carried out with respect to input image size. It is shown
that patch input based SRResNet performs better than single full image case.
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2. In order to improve the patch input based SRResNet, PCP is used as a padding algorithm
instead of ZP, which is originally used in SRResNet. Performance analysis has been done
depending on padding algorithms, which shows that PCP is more efficient than the simple ZP.

Figure 1: Network architecture of SRResNetp

2 Related Work
2.1 Image Super-resolution

Deep learning methods for super-resolution are classified into nine categories: Linear, Residual,
Multibranch, Recursive, Densely connected, Progressive, Attention based, Adversarial and Multiple
degradation handling networks [12]. The pros and cons of each method are addressed in [12] regarding
the issues of the ill-posed super-resolution problem. One of the first and simplest deep learning
approach to super-resolution problem is Super-Resolution Convolutional Neural Network (SRCNN)
[13]. SRCNN is a linear network consisting of only 3 layers. The first layer is focusing on feature
extraction, the second layer is implementing a mapping between an LR input and a high resolution
output, and finally the third layer is an output layer. The output functions of the first two layers
are implemented using ReLU activation. SRCNN generates super-resolution images with better mean
squared error (MSE)/peak signal-to-noise ratio (PSNR) than conventional machine learning methods,
but the resultant images are visually less appealing as compared with other deep learning methods
such as SRGAN [11]. Those methods which are based on residual networks can more efficiently
manage the complexities of the super-resolution problem by extending depth level and overcoming
vanishing gradients by introducing skip connections. Residual networks were originally designed for
image classification [9]. Two types of residual networks are used for super-resolution tasks, which
are single stage networks and multistage residual networks. Single stage residual networks have just
a single network with residual blocks. Enhanced deep super-resolution (EDSR) [14] is a single stage
residual network. EDSR modifies existing ResNet architecture and makes the network simpler by
removing batch normalization layers from a residual block and bringing ReLU activation outside
of a residual block. Removing batch normalization from the residual block is beneficial for better
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PSNR [15]. Major issue with EDSR is that it require mean of the three RGB channels from training
dataset, which is later applied to the test images and there is a chance that the training set is not able to
find the universal mean value from the limited training set. Cascading residual network (CARN) [16],
another single stage residual network, adopts group convolution method by cascading intermediate
layer features and converging on a 1 × 1 convolutional layer. The local and global cascading modules
can efficiently learn multilevel information representation. Multistage residual networks are made
up of multiple subnetworks. These networks learn different levels of abstractions and are usually
trained one by one. FormResNet [17] composed of two subnetworks which are Formatting layer and
DiffResNet and both are similar to DnCNN [18]. Formatting layer learns how to improve the uniform
areas of the image, and DiffResNet enhances the structured regions of the image. Residual Encoder
Decoder Network (REDNet) [19] is a UNet like architecture with convolutional layer which extracts
feature maps but preserves image structures, and deconvolutional layer learns to estimate the missing
information of an LR input image. Kernel-Oriented Adaptive Local Adjustment (KOALAnet) [20] is
a blind super resolution method, which aim to recover the HR image from a LR input image, degraded
with unknown kernel. SRGAN is a GAN based network with SRResNet as generator and a simple
CNN network as discriminator [11]. In SRGAN, the authors used a multi-objective loss function
which has three components: (a) an MSE loss, which represents the pixelwise differences, (b) high level
feature’s space difference, which captures the perceptual loss of the generated image, and (c) a standard
GAN loss (adversarial loss function) which works on balancing game concept of min-max between
generator and discriminator. As our base deep learning model for SR, we adopt SRResNet which is
used as a generator in SRGAN. In SRResNet, PixelShuffler is used as a kind of upsampler which needs
to be trained with a big amount of data to ensure a good performance. By the way, UpSampling2D is
a simple bicubic interpolation method with a consistent precision, so we replace PixelShuffler with it
considering limited amount of data.

2.2 Padding Schemes

In deep learning networks, padding extra pixels to an input is required before convolution in order
to obtain an output with the same size of an input, for example in modern networks for segmentation
tasks [21–26] ZP is used at each convolution layer. Usually padding schemes are paid less attention and
simple padding algorithms such as ZP and reflection padding are utilized for padding. In [27], a more
systematic approach is considered to introduce 8 extra filters per each layer to learn padding pixels
for the boundary of an input to the next convolutional layer, which loads additional burden to train
extra filters for simple padding. Cube padding [28] is suggested based on image projection method to
deal with boundaries, where the image is first projected on a cube and the cube faces are concatenated
to construct a 2D image. Partial convolution based padding [29] can efficiently handle problems due
to ZP by correcting convolution results. The correction can simply be implemented by multiplying a
constant ratio matrix with the convolution results obtained using ZP.

3 Proposed Method

One of a major issue with SRResNet is the training of sizable networks. To overcome this issue,
we consider patch inputs, which subsequently causes information loss due to ZP. In order to improve
the performance of SRResNet, patch input based approach and PCP algorithm are considered.

Fig. 1 represents the overall network architecture of SRResNet [11] where the notation kx1nx2
has two parts, kx1 means kernel of size x1 and nx2 is x2 number of filters. According to Fig. 1, the
input image is convolved with 64 filters of size 9 × 9 × 3 followed by Parametric Rectified Linear Unit
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(PReLU) [30], and then passed from B residual blocks. The output of each residual block is elementwise
added with the block input to make a skip-connection. Each residual block has a convolutional layer
with 3 × 3 filters followed by batch normalization [31] and PReLU and then passed from another
convolutional layer with filter size 3 × 3 and batch normalization. A final skip connection is built
by passing the residual block’s output from a convolution layer with filters of size 3 × 3 and batch
normalization layer and the result is added with the input to the convolutional layer. Then the result
is passed from UpSampling block. UpSampling block consists of convolutional layer followed by
UpSampling Layer and then Leaky ReLU. Output of the upsampling block is passed from a final
convolutional layer with 3 filters of size 9 × 9. The output of three filters corresponds to RGB color
values. In the original SRResNet [11], the authors have used 64 filters in each layer, including input
layer and within residual blocks, and 256 filters in the layer just before pixelshuffler, but here in this
architecture we used 128 filters in each layer and 256 filters in the Upsampling block. The reason for
spreading the layer is that the patches are more sensitive to ZP in the convection layer, so our aim is
to reduce this negative effect by, using both the PCP and reduced exposure of the patch in ZP stages.

3.1 Patch Input Based Super-Resolution Deep Neural Network: SRResNetp

To estimate super-resolution images, additional pixels should be generated from LR images
through proper algorithms. The values of additional generated pixels are dependent on the properties
of neighboring ones. So, it is more efficient to use patch images to develop neural networks for super-
resolution.

In this paper, SRResNet is considered to estimate super-resolution images and patch images
obtained from a single image are provided to train SRResNet as input. The number of patches
extracted from a single image can be calculated as:

Total Number of Patches =
(
x − x́

) ∗ (
y − ý

)

stridex∗stridey

(1)

where, x́, ý are the horizontal and vertical dimensions of a patch image, x, y are the horizontal and
vertical dimensions of an image and stridex, stridey are the number of horizontal and vertical strides.

In this paper, we consider a target single image with the dimension of 640 × 640. To train
SRResNet, the dimension of a target patch image is assumed to be 32 × 32 and patches are extracted
from a single image with a stride of 5. So, the number of patches extracted from a single image is 13271.
If the number of target single images for training is 36, the total number of patches generated from the
training set is 13271∗36 = 477,756 which is quite enough to train the network.

In this paper, 2× upscaling super-resolution is considered. To validate training results, patch
outputs are assembled to reconstruct a single super-resolution image.

3.2 Partial Convolution Based Padding

Originally SRResNet utilizes ZP scheme to implement skip connections which can help to handle
vanishing gradient issues in a deep neural network. ZP is a widely used padding scheme to generate an
output of the same size with an input. Among padding schemes, ZP is the easiest way to implement
but irrelevant zeros padded in the boundary of patches influence the performance of SRResNet.

Fig. 2 shows the image of the difference between a target image and a reconstructed one assembled
from super-resolution output patches. Due to simple ZP on the boundary pixels, the boundary pixels in
the super-resolution output patches are not properly generated and the boundaries are clearly observed
in the image. So padding algorithm should be carefully chosen especially when patch inputs are applied
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to a deep learning model. In this paper, PCP algorithm proposed in [29] is adopted to improve the
performance. PCP is described in:

x̀(i,j) = W TX P0

(i,j)r(i,j) + b (2)

where W T and b are a wight matrix and a bias respectively, X P0

(i,j) is a zero padded input and r(i,j) is a
ratio value for position (i, j) which is less than one. The ratio r(i,j) is defined by

r(i,j) =
∣∣∣
∣∣∣1P1

(i,j)

∣∣∣
∣∣∣

1∣∣∣∣1P0
(i,j)

∣∣∣∣
1

(3)

where ||.||1 is a 1-norm of the window of similar size of the filter, and equal to
∑+ f

2

i,j=− f
2
1Px

(i,j) where f is the

size of the filter used for the current convolution, 1P0

(i,j) is a matrix of similar shape of input, with each
element set to 1 and padded with zeros, 1P1

(i,j) is an input shaped matrix with each element set to 1 and
padded with ones.

Figure 2: Difference image between reconstructed SR image and target HR image

4 Experimental Results
4.1 Experimental Setup

In order to analyze the performance of the SRResNet depending on input size, the amount of
training data, network depth and padding schemes, a few of experiments have been carried out. In
the experiments, NVIDIA GPU RTX2070 (8GB GDDR6) is utilized for GPU processing and deep
learning software programs are implemented based on Keras-2.3.1 and tensorflow-1.14. In this paper,
2× upscaling case is considered for super-resolution. For single full image inputs, CPU is used instead
of GPU.

We used 40 images of dimension 640 × 640 selected from ImageNet database [32] for the experi-
ments. Among the selected 40 images, the number of images used for training is 36 and 4 images are
used for validation.

The optimally trained model is selected based on the performance evaluation of super-resolution
output image patches of size 32 × 32 considering target patch images extracted from the validation
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image data in each experiment. For the comparison between single image super-resolution and patch
based one, LR single input images with the resolution of 192 × 192 are obtained through bicubic
interpolation of HR images with the resolution of 384 × 384. We used 36 images for training and
4 images for testing.

In the training of SRResNet, the weighted combination of MSE and VGG-loss function which was
introduced in [11] is considered as a performance measure. By assigning a bigger weight to VGG loss
in the objective function, visual features in the images are concerned more than simple MSE [11]. In
the experiments, the weights of MSE and VGG loss in the objective function are respectively assigned
with 0.5 and 1.0.

The experimental results are evaluated using three well-known benchmark datasets of Set5 [33],
Set14 [34], and BSD100 [35]. For better perspective comparison we use 6 different quality metrics i.e.,
Mean Squared Error (MSE), Signal to Reconstruction Error ratio (SRE) [36], Structural Similarity
Index Measure (SSIM) [37], Feature based Similarity Index Measure (FSIM) [38], Information
theoretic-based Statistic Similarity Measure (ISSM) [39] and Universal Image Quality index (UIQ)
[40]. The details of the listed quality metrics can be found in [41,42].

4.2 Performance Analysis: Input Size

Input size is a major concern in many computer vision tasks. In hand-held devices a large
sized network is less feasible and even if compressed, the network still requires lots of resources.
Smaller input causes the network to focus more accurately on the SR function while regularizing the
accompanying noise, and hence able to learn the said function from a smaller amount of training data.
This technique works as a potential network regularizer. In super-resolution tasks, the major goal of
the model is to learn the super-resolution function. In case of full image, the model learns the SR
function along with other irrelevant latent features, like shapes, colors, or other global patterns. These
features work like a noise, but in case of patches the model focuses on finer detail of the images and
hence the latent noise eventually starts diluting along with the training, and hence the model is well
generalized for the unseen data. Tab. 1 shows the comparison summary between the case of single full
image input of 384 × 384 (SRResNet1) and that of patch input of 32 × 32 (SRResNet2) using networks
with 4 residual layers and ZP scheme, incorporating total of 12 convolutional layers.

Table 1: Performance comparison: Input size (asterisk ∗ symbol refers to best result, number in
parentheses show the number of images where the model is better than bicubic)

Model Set MSE FSIM SSIM UIQ SRE ISSM

Bicubic Set5 59.897 0.788 0.916 0.844811∗ 56.883864 0.699047
Set14 117.852 0.759 0.856 0.761663 57.944347 0.633492
BSD100 132.964 0.737 0.843 0.762629 56.055533 0.572229

SRResNet1
(384 × 384)

Set5 40.646 (2)∗ 0.791 (3) 0.919 (3) 0.821600 (1) 57.232597 (2) 0.745005 (5)
Set14 98.964 (11)∗ 0.771 (10) 0.869 (10)∗ 0.762756 (10)∗ 58.313336 (11)∗ 0.686926 (14)∗
BSD100 132.518 (81) 0.759 (87) 0.865 (86)∗ 0.777135 (76)∗ 56.246153 (80) 0.639018 (100)

SRResNet2
(32 × 32)

Set5 40.677 (2) 0.792 (4)∗ 0.921 (3)∗ 0.824476 (1) 57.254272 (2)∗ 0.748227 (5)∗
Set14 102.850 (8) 0.773 (11)∗ 0.864 (9) 0.757960 (8) 58.215078 (8) 0.686163 (14)
BSD100 121.384 (83)∗ 0.760 (88)∗ 0.860 (77) 0.769848 (60) 56.333500 (84)∗ 0.640735 (100)∗
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Tab. 1 summarizes the performance comparison depending on the input size. In Tab. 1, SRRes-
Net1 is a ResNet model trained with input size 384 × 384, and SRResNet2 is a model trained with
input size of 32 × 32.

Lower values for MSE mean better and higher values for FSIM, SSIM, UIQ, SRE and ISSM are
better in the sense of performance in the table. The values in parenthesis present the number of cases
that model shows better performance than bicubic interpolation.

As depicted in Tab. 1, the performance of both SRResNet1 and SRResNet2 show better perfor-
mance than bicubic interpolation algorithm. Even though patch input based SRResNet2 has many
advantages over single full image one (SRResNet1) and shows better performance in the average sense
than SRResNet1, it is not always better than single full image case (SRResNet1) due to the effect of ZP.

4.3 Performance Analysis: Padding Scheme

In super-resolution problems, padding methods should be carefully considered especially in deep
neural networks with patch inputs. The performance of deep neural networks depending on ZP and
PCP is investigated in this section. The comparative results are summarized in Tab. 2 where SRResNetp
has the same network structure with SRResNet2 but the ZP in SRResNet2 is replaced by PCP. In the
simulations, both networks are trained using 32 × 32 patch images as inputs and SRResNetp shows
better performance than SRResNet2. Considering the results in Tab. 1, it is also better than other
models in almost all measures. The values in the parentheses represent the number of cases in which
each model shows better performance than bicubic interpolation algorithm given in Tab. 1.

Table 2: Comparison of the padding schemes. (asterisk ∗ symbol refers to best result, number in
parentheses show the number of images where the model is better than bicubic)

Model Set MSE FSIM SSIM UIQ SRE ISSM

SRResNet2
[11]

Set5 39.513 (3) 0.794 (3) 0.922 (3) 0.825778 (1) 57.350258 (3) 0.750499 (3)
Set14 101.850 (10) 0.774 (12) 0.866 (9) 0.757903 (8) 58.198408 (10) 0.690427 (14)
BSD100 115.657 (88) 0.763 (91) 0.864 (83) 0.772164 (62) 56.406706 (92) 0.649222 (100)

SRResNetp
(Ours)

Set5 38.616 (3)∗ 0.797 (4)∗ 0.924 (3)∗ 0.828893 (1)∗ 57.397608 (3)∗ 0.751665 (5)∗
Set14 97.577 (10)∗ 0.777 (12)∗ 0.867 (9)∗ 0.759856 (9)∗ 58.330570 (10)∗ 0.691601 (14)∗
BSD100 110.615 (95)∗ 0.765 (96)∗ 0.866 (87)∗ 0.773494 (63)∗ 56.469083 (96)∗ 0.649591 (100)∗

Fig. 3 is the graph of performance measure with respect to epoch number. Validation error is a
cumulative error (MSE) over 1600 non-overlapping patches of 32 × 32 × 3 extracted from 4 validation
images. Training error is calculated using MSE between super-resolution output patch and high-
resolution target patch. SRResNetp shows more stable and consistent tendency than SRResNet2
during the training period.

In order to check the effect of PCP more clearly, the difference of each pixel value between network
output images and original target images is visualized in Fig. 4. The pixel values of the images in Fig. 4
are calculated using (4) which means the MSE value of each pixel considering 77 target images selected
from the data set of BSD-100.

HMSRResNet (i, j) =
∑n

k=0

(
HRi,j − SRi,j

)2

n
(4)
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where HMSRResNet (i, j) is the heatmap index value for the difference image at position (i, j), HRi,j and
SRi,j are the corresponding pixels of High Resolution and Super resolution images respectively. And
the differences of similar corresponding pixels from n images are averaged.

Figure 3: Training MSE and validation MSE of SRResNet with PCP and SRResNet with ZP

(a) b

c d

(b)

(c) (d)

Figure 4: Assembled images of pixel MSE of super-resolution and high-resolution images. (a) shows
the image of MSE values between super-resolution image using ZP and HR image. (b) is image of
MSE values between super-resolution image using PCP and HR image. (c) is the enlarged image of
the area marked with a red square in (a). (d) is the enlarged image of the area marked with a yellow
square in (b)
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In Figs. 4a and 4b represent respectively the assembled images of pixel MSE values obtained from
patch outputs of SRResNet2 and SRResNetp. The ZP case (a) shows more clear patch boundaries
than PCP one (b). This phenomenon is more clearly observed as shown in the highlighted areas in
both images depicted in (c) and (d). The PCP is shown to effectively compensate the drawbacks of ZP.

Tab. 3 summarizes the MSE values of both padding methods with respect to the areas. PCP
algorithm shows better performance than ZP one in both areas and influences more on the boundary
pixels than inner ones as expected.

Table 3: Performance analysis on the border region (padded part) and the inner part

Average MSE SRResNet SRResNetp Difference

MSE of inner part 86.226886 83.383777 2.84
MSE of padded part 76.310420 72.631801 3.68

4.4 Performance Analysis: Network Depth

Deep neural networks have capabilities to handle complicated problems efficiently but some issues
such as vanishing gradient and ZP are inherently degrading the performance as network depth is
increased. In SRResNet, the vanishing gradient issue is resolved by using skip connection structure.
In this section, the performance of PCP algorithm is investigated depending on the depth of SRResNet.

The performance comparison between SRResNet2 and SRResNetp are depicted in Fig. 5 depend-
ing on the network depth. In the simulation, we considered four cases by choosing 4 residual blocks, 8
residual blocks, 16 residual blocks and 32 residual blocks in both networks. The numbers on the blue
bar represent the MSE values and the ones on the yellow bar mean the percentage improvement of

PCP with respect to ZP obtained by the formula (MSESRResNet2−MSESRResNetp)
MSESRResNet2

x100. As the network depth is
increased, the super-resolution performance is shown to be improved in both networks as expected
and the PCP shows superior performance to ZP. As observed in Fig. 5, the values of percentage
improvement are decreasing as the network depth is increased because the performance degradation
by ZP is overwhelmed by the super-resolution performance improvement as the depth is increased.

Figure 5: Average MSE of SRResNet and SRResNetp
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4.5 Comparison with State-of-the-art Methods

We compared our results with state-of-the-art methods, trained on a limited dataset of 36
training images and 4 validation images of size 640 × 640. The comparative results from Bicubic,
SRResNet2 (with ZP), SRResNetp (ours, with PCP), EDSR [14], SRGAN [11], and KOALAnet [20]
are summarized in Tab. 4 where SRResNetp has the same network structure with SRResNet2 but
the ZP in SRResNet2 is replaced by PCP. The Networks SRResNet2, SRResNetp, and SRGAN
are trained using 32 × 32 patch images as inputs and SRResNetp shows better performance than
SRResNet2 and SRGAN. KOALAnet is trained in three phases and the third phase of upsampling
network is used for inference. The results shows that SRResNetp has better results on all quality
metrics. One of the possible reasons is that these networks are originally tunned according to a large
training dataset and facing problem in learning the SR function from smaller training dataset (36
images). SRResNetp is able to learn the SR function effectively from a limited dataset of size 36 images.
Other benefits of patch inputs is that the networks need less amount of computational resources, as
shown in Tab. 5. Due to increased ratio of input data to the padded zeros in convolutional layers, the
network must compromise on quality in case of patch inputs, but PCP can compensate the possible
loss in quality. Hence patch inputs shall be used along with PCP or any other sophisticated padding
scheme.

Table 4: Comparison with state-of-the-art methods. (asterisk ∗ symbol refers to best result, number in
parentheses show the number of images where the model is better than bicubic)

Model Set MSE FSIM SSIM UIQ SRE ISSM

Bicubic Set5 59.897 0.788 0.916 0.844811∗ 56.883864 0.699047
Set14 117.852 0.759 0.856 0.761663 57.944347 0.633492
BSD100 132.964 0.737 0.843 0.762629 56.055533 0.572229

SRResNet2 [11] Set5 39.513 (3) 0.794 (3) 0.922 (3) 0.825778 (1) 57.350258 (3) 0.750499 (3)
Set14 101.850 (10) 0.774 (12) 0.866 (9) 0.757903 (8) 58.198408 (10) 0.690427 (14)
BSD100 115.657 (88) 0.763 (91) 0.864 (83) 0.772164 (62) 56.406706 (92) 0.649222 (100)

SRResNetp
(Ours)

Set5 38.616 (3)∗ 0.797 (4)∗ 0.924 (3)∗ 0.828893 (1)∗ 57.397608 (3)∗ 0.751665 (5)∗
Set14 97.577 (10)∗ 0.777 (12)∗ 0.867 (9)∗ 0.759856 (9)∗ 58.330570 (10) 0.691601 (14)∗
BSD100 110.615 (95)∗ 0.765 (96)∗ 0.866 (87)∗ 0.773494 (63)∗ 56.469083 (96)∗ 0.649591 (100)∗

SRGAN [11] Set5 71.034 (1) 0.764 (0) 0.880 (0) 0.772287 (0) 55.992828 (1) 0.691594 (2)
Set14 150.706 (1) 0.741 (1) 0.821 (0) 0.692529 (0) 57.283919 (1) 0.637498 (6)
BSD100 169.211 (12) 0.731 (39) 0.818 (33) 0.706243 (10) 55.457787 (4) 0.589415 (70)

EDSR [14] Set5 39.537 (3) 0.784 (3) 0.896 (2) 0.826398 (1) 57.264791 (3) 0.747258 (5)
Set14 102.358 (10) 0.774 (9) 0.862 (8) 0.747870 (4) 58.410932 (11)∗ 0.677441 (10)
BSD100 121.916 (62) 0.757 (51) 0.867 (48) 0.796339 (26) 56.399114 (61) 0.620603 (48)

KOALAnet [20] Set5 43.463 (2) 0.769 (1) 0.899 (0) 0.802185 (0) 56.120524 (1) 0.686741 (1)
Set14 112.102 (8) 0.747 (3) 0.840 (2) 0.734836 (3) 57.419660 (1) 0.629211 (5)
BSD100 138.376 (43) 0.739 (56) 0.841 (41) 0.751117 (39) 55.703526 (13) 0.590334 (69)
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Table 5: Computational resource required by the networks listed in Tab. 4

Model Parameters (Million) FLOPs (Billion) GPU memory
required (GB)

SRResNet (input size 192 × 192) 1.7221 1.4023 8.3004
SRResNetp (input size 16 × 16) 1.7221 0.0097 0.0592

SRResNetpcp (ours) 3.4374 0.0097 0.0608
EDSR (pixel shuffler) 5.3455 0.0320 4.1731

EDSR (upsampling2D) 5.3248 0.0319 4.0604
SRGAN (input size 16 × 16) 6.792 0.0248 0.0213

KOALAnet Phase 1 4.3191 280.594 0.0707
Phase 2 1.1519 273.166 0.0190
Phase 3 6.1814 724.803 0.1017

Visual comparison of various methods is shown in Fig. 6. One image is selected from each
benchmark dataset. It can be seen from the visual results that SRResNet(PCP) can reconstruct finer
details as compared to SRGAN, EDSR and KOALAnet. The result of KOALAnet is not good due to
the fact that the network is too complex to learn from a limited dataset.

Figure 6: (Continued)
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Figure 6: Visual comparison between (a) Original HR image, (b) SRGAN, (c) SRResNet-patch input,
(d) SRResNet-PCP, (e) Bicubic interpolation, (f) EDSR, (g) KOALAnet

The total number of parameters in Tab. 5, includes both the trainable and non-trainable param-
eters. In terms of computational resources, the number of floating point operations (FLOPs) and
the amount of GPU memory requirement by a method, are two main concerns during designing an
algorithm or choosing among different alternatives. The need for GPU memory by an algorithm is
directly related to the input image size and number of network parameters. The number of network
parameters are usually kept constant, so the GPU memory required by the same method for two
different inputs will be different, as shown in the case of SRResNet and SRResNetp. Both networks
have same architecture and network parameters, but the memory requirement for the network with
384 × 384 input size and batch size of 1 causes the outburst of the available GPU memory with our
NVIDIA GPU RTX2070 (8GB GDDR6). Here the SRGAN network is reduced to only 4 residual
blocks (originally the network has 16 residual blocks) for the fair comparison.

5 Conclusion and Future Work

In this paper, it has been shown that the performance of SRResNet for single image super-
resolution can be enhanced by considering patch images as input and replacing ZP with PCP. Even
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though patch input based super-resolution has lots of advantages including performance and network
efficiency, there exists a limitation in performance enhancement of SRResNet due to ZP. We have
shown that this limitation can be improved by introducing PCP as a padding algorithm instead of ZP.
PCP is an efficient algorithm but still there is a possibility to improve the algorithm because it simply
considers the number of pixels on the boundary overlapped with filters to be padded.
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