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Abstract: Breast cancer is the most prevalent cancer among women, and
diagnosing it early is vital for successful treatment. The examination of images
captured during biopsies plays an important role in determining whether a
patient has cancer or not. However, the stochastic patterns, varying intensities
of colors, and the large sizes of these images make it challenging to identify and
mark malignant regions in them. Against this backdrop, this study proposes
an approach to the pixel categorization based on the genetic algorithm (GA)
and principal component analysis (PCA). The spatial features of the images
were extracted using various filters, and the most prevalent ones are selected
using the GA and fed into the classifiers for pixel-level categorization. Three
classifiers—random forest (RF), decision tree (DT), and extra tree (ET)—
were used in the proposed model. The parameters of all models were separately
tuned, and their performance was tested. The results show that the features
extracted by using the GA+PCA in the proposed model are influential and
reliable for pixel-level classification in service of the image annotation and
tumor identification. Further, an image from benign, malignant, and normal
classes was randomly selected and used to test the proposed model. The
proposed model GA-PCA-DT has delivered accuracies between 0.99 to 1.0 on
a reduced feature set. The predicted pixel sets were also compared with their
respective ground-truth values to assess the overall performance of the method
on two metrics—the universal image quality index (UIQI) and the structural
similarity index (SSI). Both quality measures delivered excellent results.

Keywords: Breast cancer; machine learning; classification; feature extraction;
feature selection

1 Introduction

Cancer is caused by cell abnormalities and is a leading cause of death worldwide. The American
Cancer Society (ACS) has estimated that 1.9 million new cancer cases were identified and 608,570
people died of the disease in 2021 in the United States alone (1670 deaths/day) [1]. Breast cancer is the
most frequently diagnosed form of cancer [2]. Breast cancer detection is an important but difficult task
because symptoms of the disease are not prominent in the early stages. A commonly used technique
for detecting cancer is the fine-needle aspiration (FNA) procedure, in which tissues are collected from
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areas of the body that are likely to be afflicted. FNA is an invasive and painful process but provides
accurate results. The extracted tissues are fixed into slides, and the cytoplasm and nuclei are highlighted
in different colors through hematoxylin and eosin (H&E) staining. These slides are manually analyzed
under a microscope to look for abnormalities that are indicative of cancer. Large digitalized images
of these slides are usually obtained at a high resolution, and contain colors of different intensities in
different parts. Analyzing the entire image of a slide is time-consuming and, labeling each malignant
area is challenging and tedious. Multiple specialists analyze the same images in complex cases and
discuss their opinions to reach a consensus. These experts may have different opinions on artifacts
present in the same image. Their final diagnoses can differ, and depend on their level of expertise.
Computer-aided diagnostics (CAD) systems can be used to analyze digital images by using computer
vision and image processing methods. This study proposes an automatic machine learning (ML) based
model for the pixel categorization and labeling of images for the diagnosis of breast cancer.

The remainder of this paper is organized into the following sections: Section 2 describes past
work in the area of image segmentation, feature extraction, and machine learning. Section 3 details
the proposed method, which includes the random forest (RF), decision tree (DT) and extra tree
(ET) algorithms as well as feature extraction, genetic algorithm (GA)-based feature selection, and
performance-related parameters. Section 4 describes the experimental setup used to test the proposed
method, the results, and an assessment of its performance. Section 5 summarizes the conclusions of
this study and highlights directions for future work in the area.

2 Literature Review

Researchers have explored solutions for a better, faster, and more accurate understanding of
medical images by using computer-based methods. Medical images contain complex patterns that
make image processing tasks challenging. In the last decade, many attempts have been made to detect
objects in images. Object-oriented algorithms, firefly models, and hybrid models have been developed
for the segmentation and classification of nuclei. A recent study [3] extracted the color histogram
as well as features of texture and the frequency domain from RGB images to identify periocular
cancer. Another study [4] used four hybrid algorithms for segmentation: K-means, fuzzy C-means, the
comparative learning-based neural network, and Gaussian mixture. The competitive learning method
attained the highest accuracy (96%) among them. The authors applied the Inception v3 model for
feature extraction in a study on the segmentation of lesions [5], extracted gradient-based features from
dermoscopic images, and used them for classification with an accuracy of 99.2%. Yet another study [6]
used CAD for the detection of skin cancer and extracted unique features from the segmented images
of lesions. Lesions in the case of melanoma exhibit variations in color while benign skin has a uniform
color. Therefore, color-, shape-, and texture-based features are commonly extracted from images of the
skin for diagnosis. The extracted features are then processed to reduce noise in them as well as their
dimensionality. A popular method for region segmentation involves identifying pixels with similar
values. Researchers [7] have proposed an object-oriented method for measuring the homogeneity of
images obtained during the biopsy of the colon by using the distributions of objects in the images.
The texture is a fundamental and low-level characteristic that is used to discern the contents and
patterns in an image. These characteristics are beneficial for partitioning distinct regions that have
the same color. Textural characteristics in ultrasound images are used to diagnose prostate cancer [8–
10]. The textural analysis of PET images has also been explored [11], and the authors concluded that
textural characteristics are beneficial for tumor detection. Geometric characteristics have been used to
locate the internal cervical OS [12]. A study [13] used high-order spectra (HOS) and the local binary
pattern (LBP) to identify cases of oral cancer. The authors [14] have utilized an ultrasound scanner to
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analyze the textural properties of images to identify cysts. They found that the co-occurrence matrix
was suitable for this task. morever a study [15] retrieved color-and texture-based characteristics from
images of patients with meningioma. A study on segmentation [16] focused on detecting breast cancer
lesions using texture descriptors. Another studies [17,18] exhibited textural characteristics collected
from sub-images to classify breast cancer as benign or malignant. These textural elements were used
to obtain average values of images with the same distances between pixels in four distinct orientations.
In the reference [19], textural characteristics have been extracted using different filters, the gray-level
co-occurrence matrix, and the local properties of images. The feature set thus obtained was used for
computer-based breast cancer screening. Traditional techniques of classification include statistical
analysis, support vector machine (SVM), artificial neural network (ANN), decision tree (DT), random
forest (RF), and K-nearest neighbor (KNN). In a primary study [20], the authors applied four
classifiers—one-nearest neighbor (1NN), quadratic linear analysis (QDA), SVM, and RF—to classify
histological images of tumors in the breast ether as benign or malignant. Another study [21] assessed
the performance of the KNN and ANN classifiers, where the latter outperformed the former. A
research paper [22] experimented with a KNN classifier to extract shape-and co-occurrence-based
features from a mammography dataset for classification. This method attained an accuracy of 82%
under the ROC curve, which is unsatisfactory. Researchers [23] have also developed an automated
system for cancer diagnosis and classification by using images obtained during biopsies. It covers a
range of necessary tasks from pre-processing to classification, where adaptive histogram equalization
was used in the pre-processing, K-means clustering was used for segmentation, and the fuzzy KNN,
SVM, and RF algorithms were used for classification. The results of their experiments showed that
the KNN is the most accurate model. In recent work, the authors segmented images of the lung and
identified the airway in it by using morphological operations. They reduced error by using optimal
thresholding on grayscale images [24].

Although the above results are promising there is still room for improvement in feature extraction
and reduction in the relevant methods. In this study, we extract feature sets based on different
combinations and configurations of spatial filters. In this research work, feature sets have been
significantly reduced to only twelve components and applied to construct an effective supervised
machine learning model.

3 Proposed Method and Model

We propose an automatic approach for generating new sets of pixel values using different sets of
filters to identify pixels in images indicative of breast cancer. Section 3.5 describes some of the filters
used in this study.

3.1 Novelty in the Study

The proposed model involves feature extraction using different filters, feature selection using the
GA, feature reduction using PCA, hyperparameter optimization for the ML models, the pixel-level
classification on two datasets (a) the BreCaHad dataset and (b) dataset of ultrasound images of the
breast. In addition, random images are used without target labels, and the results of the proposed
method are compared with the corresponding ground-truth images to visualize its performance.
The assessment of our method is based on the image quality indices UIQI and structural similarity
index (SSI).
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3.2 Algorithm of the Proposed Model

Pseudo-code: The proposed algorithm is provided below.

——————————————————————————————————————————–

Input: Dataset D = ( xi,yi), xi is the set of features of images of breast cancer patients and yi is the set
of the respective pixel values of the ground-truth images. Also used are sets of classifier models and
two datasets: BreCaHad and a dataset of ultrasound images.

Output: Highest accuracies Acc, UIQI and SSI values of the best model (ACCmax), the predicted images,
and their UIQI and SSI scores, and the segmented tumor region.

——————————————————————————————————————————–

(i) Load dataset D= (xi,yi)

(ii) Pre-process all input images

(iii) For each Model training do:

(a) Extract important features from the image by using different filters and set a target class by
using its ground-truth image

(b) Split the data into training and testing subsets
(c) Apply genetic programming for feature selection
(d) Apply the RF, DT, and extra tree classifier models
(e) Fine-tune the hyperparameters of the classifiers based on the assessment of the training and

testing subsets

(iv) Go to the next step if the highest accuracy has been achieved; otherwise, repeat steps (a) to (d) by
changing the combination of the filter sets

(v) Select the model with the highest accuracy (ACCmax)

(vi) Randomly select an image and feed it to the proposed GA-PCA-DT model

(vii) For each sample image:

(a) Apply the procedure given in step iii(a)
(b) Tune and align the model the classifier by training and testing subsets
(c) Apply genetic programming for feature selection
(d) Apply PCA repeatedly to identify the optimum feature set (i.e., PCA components)
(e) Apply the reduced set of features to the final tuned model
(f) Calculate the accuracy (ACCmax) of each predicted image with respect to the ground-truth
values

(viii) Compare the predicted image with the ground-truth image on the quality measures.

3.3 Diagram of Process Flow

Fig. 1 shows the step-by-step procedure for tuning the hyperparameters of all three ML algo-
rithms, namely, the RF, ET, and DT. The classifier with the highest accuracy was selected as the final,
optimized model, and was used to classify pixels of images of patients with breast cancer (see Fig. 4 in
Section 3.7).
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Figure 1: Process of hyperparameter optimization

3.4 Pre-Processing

Entire images of slides of tissues, of size 1360 × 1024, were converted into grayscale images of size
300 × 300. The image was resized for two reasons (a) to reduce the computational and memory-related
costs, and (b) to render the image manageable.

3.5 Feature Extraction
3.5.1 Prewitt Edge Detection Filter

Digital filters are useful for image pre-processing tasks. A variety of filters have been used in the
literature to extract the properties of images [25–29]. Prewitt operators are used to detecting edges
along the x and y directions to yield masks Gx and Gy, respectively.

The Prewitt operator works on grayscale images and applies both masks one by one to determine
the horizontal and vertical edges. Both edges are then combined to display the complete edges of the
given image:

Gx(x, y) =
⎡
⎣−1 0 1

−1 0 1
−1 0 1

⎤
⎦ × Im and (1)

Gy(x, y) =
⎡
⎣−1 −1 −1

0 0 0
1 1 1

⎤
⎦ × Im (2)
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Here Im is an image and the total magnitude in both directions can be calculated as

G =
√

G2
x + G2

xy (3)

A higher value of G represents better edge detection. The direction (D) can be also determined as
D ∈ {

Gx, Gy

}
3.5.2 Gaussian Filter

Gaussian blurring is a method of image denoising that is commonly used for image pre-processing.
The Gaussian operator for a 2D distribution is as follows:

G(x, y) = 1
2πσ 2

e

(
− x2+y2

σ2

)
(4)

The value of sigma is important as it determines the width of the kernel image to be blurred.
Higher values blur images over a larger area and lower values are used to limit this blurring area.

3.5.3 Gabor Filter

The Gabor filter acts as a local bandpass filter to extract spatial and edge-related features. It is
constructed by using a Gaussian function in combination with a sinusoidal input. The filter can be
expressed using parameters revised as eq (5) made more generalized, where θ represents the orientation
of the filter, the sinusoidal radial frequency is W, and σx, σy are the standard deviations Different
Gabor filters can be constructed by changing the values of the parameters. Parameter settings are
crucial for identifying the patterns.

G (x, y) = 1
2πσxσy
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(
−1

2

[
x2

k

σ 2
x

+ y2
k

σ 2
y

])
. exp [i(2πWxk + �)] (5)

where xk = xcosθ + ysinθ

and yk = ycosθ − xsinθ

� represents the phase shift as
π

2
,
π

4
. . ..

3.5.4 Median Filter

The median filter is a non-linear digital filter that is commonly used to de-noise images. The
median operation uses the median value of the pixels surrounding the pixel of interest. All pixel values
are arranged and their median value is then selected as the value of the central pixel. Fig. 2 illustrates
this process.

Median operationCorrupted 
pixel value 

Figure 2: The median filter
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3.6 GA-Based Feature Selection

This study uses the genetic algorithm (GA) to control the problem of dimensionality. The GA
algorithm can search for the optimum value based on the survival-of-the-fittest theory. Genetic
operators include selection, crossover, and mutation. These operators are applied to chromosomes
(solutions) to optimize their fitness values. Chromosomes collections of genes as shown in Fig. 3a,
where each gene represents a feature. For example, chromosome C = {gene1, gene2, . . . , genen}
represents different intensities obtained from different combinations of filters.

In the feature selection, “0” indicates the absence of a particular feature in the chromosome and
“1” represents its presence. The initial population size, number of generations (iterations), crossover
points, crossover probability, mutation probabilities, and techniques of chromosome selection are
major considerations in this vein. The process of genetic programming is shown in Fig. 3b.

Figure 3: (a) Illustration of a sample chromosome. (b) Step-by-step process of GA-based feature
selection

3.7 Principal Component Analysis (PCA)

The principal component analysis is a popular approach for dimension reduction in which an
original set of attributes is orthogonally transformed into a new set of attributes. The relationship
between the attribute sets (x, y) can be analyzed by a covariance matrix. Eigenvalues and eigenvectors
are the fundamental measures used to determine the relevant components. The highest eigenvector
with the maximum eigenvalue represents the first component, and the other components are calculated
in decreasing order of value:

Covx,y = 1
n − 1

∑n

i=0
(xi − xm) (yi–ym) (6)

where, I = 0, 1, . . . ., n, and xi is the value of the ith attribute and xmis the mean of the attribute values.
yi and ym are the ith and the mean values of the second attribute set, respectively, and are used to
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calculate values of the eigenvector (e). I refer to an identity matrix, and λ represents the eigenvalues
and eigenvectors obtained using Ae = λe. The complete eigenvectors corresponding to the eigenvalues
can be found using Eq. (7). A is a covariance matrix:

(A − λiI) ei = 0 (7)

3.8 Supervised Classifiers

Machine learning algorithms are used to identify the important characteristics in a given dataset
for predictive analysis or classification. This kind of identification is based on such attributes as the
number of dimensions and the location of each data point. Medical images captured by advanced
medical equipment provide a greater number and variety of features than images obtained by using
traditional systems.

Fig. 4 shows the process of classifying each pixel of a given image into two essential categories.
i.e., normal and cancerous.

Figure 4: Pixel-level classification

The major steps are as follows: A random image is selected for classification. Features are
extracted using a set of filters, and target values are assigned. Then the extracted dataset is split into
training and testing subsets. Both subsets are submitted to the selected model. Training subset is useful
to train the model for predicting each pixel value, whereas test subset result directs to tune and evaluate
the model for better accuracy.

The final step consists of optimization using the genetic algorithm (GA) and principal component
analysis (PCA). First, the GA selects the most discriminant and important feature set, which is
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processed by PCA to be limited to 12 components. Next, the tuned and aligned models are provided
with the final components without their target values. The predicted values are then compared with
the respective ground-truth values.

3.8.1 Random Forest (RF)

The RF classifier uses multiple decision trees to generate different sets of samples and calculates
their average accuracy. Bootstrapping is carried out and random features are selected to this end, and
the final decisions are taken according to the maximum voting principle. Such averaging is useful for
handling the problem of model overfitting.

3.8.2 Decision Tree (DT)

The decision tree is used to evaluate data points on pre-specified, multiple “if-else” conditions.
The end nodes contain a class of all possible classes.

3.8.3 Extra Tree (ET)

This classifier is similar to the random forest and applies multiple decision trees. In the extra tree
classifier, all points are supplied to the tree, whereas subsamples are supplied in the RF.

3.9 Model Performance
3.9.1 Accuracy

True positive (TP) = number of positive samples correctly predicted.

False-negative (FN) = number of positive samples incorrectly predicted.

False-positive (FP) = number of negative samples incorrectly predicted as positive.

True negative (TN) = number of negative samples correctly predicted.

Accuracy (overall): the ratio of all correctly classified cases to the total number of cases. It is defined as

= (TP + TN)/(TP + FP + TN + FN) (8)

3.9.2 Image Quality Assessment

The predicted images are assessed using two image quality measures (a) Universal image quality
index (UIQI) and Structural similarity index (SSI) [30,31]. Both quality measures have been discussed
in Sections 4.4.1 and 4.4.2 respectively.

4 Experiments and Results
4.1 Datasets

We used the breast cancer histopathological annotation and diagnosis dataset (BreCaHAD). It is
a collection of open-source, benchmark histopathological images of patients with breast cancer [32].
All images were obtained from case studies on surgical pathology. The slides were developed by H&E
staining and the images were annotated. All images were available in eight-bit RGB color and had
a size of 1360 × 1024 pixels. All biopsy images were classified into six malignant classes—mitosis,
apoptosis, tumor nuclei, tubule, and non-tubule. Various settings were used to gather the histological
structures with distinct boundaries to weakly define the histological structures. The dataset is available
at https://doi.org/10.6084/m9.fgshare.7379186.

https://doi.org/10.6084/m9.fgshare.7379186
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Another dataset consisting of ultrasound images was used. These images were classified as benign,
malignant, or normal. The ground-truth values of each image are also provided in this open dataset,
which can be accessed at the following link: BreastUltrasoundImagesDataset|Kaggle [33]. The dataset
contained 600 images of patients with breast cancer, aged 25 to 75 years. All images had a size of
500 × 500 pixels in png format. The dataset also contained ground-truth images.

4.2 Experimental Setup

All experimental work was carried out by using the Google Colab cloud platform on the Tesla
P100-PCIE GPU. Various Scikit learn and other packages were installed as required. The scripting
language was Python 3.5 and the seed value was set to 42.

4.3 Model Selection and Optimization

Tab. 1 represents the optimized hyperparameter values used for model learning. The model was
trained and tested using all the extracted features, a total of 40, through different combinations and
configurations of eight filters.

Table 1: Model performance and hyperparameter values (Extracted features = 40; the number of filters
applied = 8)

Model Training accuracy Test accuracy Remarks (best parameter values)

Random forest 1.0 0.651 {n_estimators: 70, random_state: 50}
Decision tree 1.0 0.942 {max_depth: 100, random_state: 10}
Extra tree 0.829 0.536 {n_estimators: 500, random_state: 50}

Tab. 2 shows the features extracted as well as the training and testing accuracies of the models
considered. It shows that the DT provided the highest accuracy.

Table 2: The sets of features, and the training and testing accuracies of the RF, DT, and ET classifiers

Feature set Extracted features Classifier Training accuracy Test accuracy

Feature set-1 Gabor features RF 1.0 0.578
DT 1.0 0.94
ET 0.713 0.49

Feature set-2 Gabor features+
Prewitt

RF 1.0 0.581
DT 1.0 0.941
ET 0.716 0.468

Feature set-3∗ Gabor
features+Prewitt
+Gaussian

RF 1.0 0.658
DT 1.0 0.942
ET 0.785 0.575

Feature set-4 Gabor+
Prewitt+Gaussian+
Median features

RF 1.0 0.69
DT 1.0 0.94
ET 0.82 0.60

Breast Ultrasound Images Dataset | Kaggle


CMC, 2023, vol.74, no.2 3381

Tab. 2 shows that feature set-3 provided an accuracy of 0.942 by using only 36 features with the
decision tree classifier. Feature set-3 was then supplied to the genetic algorithm for feature selection
and reduction, and yielded only 30 prominent features. The pixel value of the original image has also
been extracted as one of the features. The values of the GA operator were set as follows: population
= 10, crossover probability = 0.5, mutation probability = 0.2, generation = 5, and tournament size =
3. The population and the number of generated values were reduced to minimize the computational
cost. A lower probability of mutation was better for avoiding the local minimum. The reduced feature
set obtained by the GA operator was fed to all three classifiers. The 30 features thus selected increased
the testing accuracy by 0.1% (from 0.942 to 0.943). The accuracies of all classifiers are shown in Tab. 3.

Table 3: The accuracy values obtained by using GA-based features

Classifiers GA-DT model (30 features) Base models (36 features)

Training accuracy Test accuracy Training accuracy Test accuracy

DT 1.0 0.9431 1.0 0.942

When classifying the images, the population was set to 50 and the number of generations to 20 to
ensure robust performance. The seed value was set to 42 to ensure that the results could be reproduced,
and the components of PCA were limited to 12. This yielded a range of variance of 0.9999 to 1.0.

4.4 Strategy for Image Evaluation

To evaluate the images, an unlabeled image was first supplied to build the model (GA-PCA-DT)
and the output of the model (predicted image) was compared with the respective ground-truth (labeled)
image. The markers or labels of the predicted and the ground-truth images were then noted. The
relevant steps are shown in Fig. 5.

To check the robustness of the model, one image from each malignant class was randomly selected
and supplied to it for label prediction. Tab. 4 lists the images predicted by the GA-PCA-DT model and
the corresponding ground-truth images. Tab. 5 shows the pixel-level accuracies.

Figure 5: (Continued)
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Figure 5: Processing histopathology images. (a) Resized original image (300 × 300). (b) The image was
generated using the proposed GA-DT model. (c) The ground-truth image. (d) Labels assigned by the
GA-DT model (e) Labels marked in the ground-truth image. (f) Original annotated image (in RGB)

Table 4: Comparison between the images predicted by the proposed model and the relevant ground-
truth images for the BreCaHad dataset

Image ID Original image
(in BGR)

Ground-truth
image (in
grayscale)

Predicted
image (in
grayscale)

Ground-truth
nucleus
annotation
(in“jet”
colormap)

Predicted
nucleus
annotation
using
GA+PCA
(12)∗

features+DT
(in “jet”
colormap)

Image
Case_1-04.png

Image
Case_12-
09.png

Image
Case_13-
05.png

(Continued)
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Table 4: Continued
Image ID Original image

(in BGR)
Ground-truth
image (in
grayscale)

Predicted
image (in
grayscale)

Ground-truth
nucleus
annotation
(in“jet”
colormap)

Predicted
nucleus
annotation
using
GA+PCA
(12)∗

features+DT
(in “jet”
colormap)

Image
Case_16-
03.png

Image
Case_17-
06.png

Image
Case_4-10.png

Note: ∗PCA(12) = PCA first 12 components.

Table 5: Pxel-level classification accuracies delivered by the GA+PCA+DT model with and without
using the feature selection methods GA/PCA

Image Training/Testing
and whole-image
accuracies

Accuracy using
GA features (24
features)

Whole-image
accuracy with
GA+PCA (12)
features

PCA variance
with 12
components

Image
Case_1-04.png

Train: 1.0
Test: 0.9418
Whole image 1.0

Train: 1.0
Test: 0.94227
Whole image: 1.0

Whole image:1.0 0.99996

Image
Case_12-09.png

Train: 1.0
Test: 0.91844
Whole image 1.0

Train: 1.0
Test: 0.92013
Whole image: 1.0

Whole image:1.0 0.99997

Image
Case_13-05.png

Train: 1.0
Test: 0.94897
Whole image 1.0

Train: 1.0
Test: 0.94836
Whole image: 1.0

Whole image:1.0 1.0

(Continued)
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Table 5: Continued
Image Training/Testing

and whole-image
accuracies

Accuracy using
GA features (24
features)

Whole-image
accuracy with
GA+PCA (12)
features

PCA variance
with 12
components

Image
Case_16-03.png

Train: 1.0
Test: 0.93902
Whole image 1.0

Train: 1.0
Test: 0.99988
Whole image: 1.0

Whole
image:0.999788

0.99999

Image
Case_17-06.png

Train: 1.0
Test: 0.94544
Whole image 1.0

Train: 1.0
Test: 0.94711
Whole image: 1.0

Whole image:1.0 0.99999

Image Case_
4-10.png

Train: 0.999962
Test: 0.95802
Whole image:
0.99994

Train: 0.99974
Test: 0.957166
Whole image:
0.99978

Whole image:
0.99978

0.99995

4.4.1 Graphical Illustration of UIQI

A simplified image quality measure, UIQI, has been proposed by Wang and Bovik. UIQI evaluates
the quality of the test image over the referenced image by finding, loss in correlation, distortions in
luminance and distortions in contrast. For example, suppose, Im and Ir are two images. Then UIQI
value will be the product of all the above three components mathematically expressed as given in the
reference [30]:

UIQI(Im, Ir) = σImIr

σIrσIm

.
2.ImIr,(

Im
)2

+
(

Ir
)2 .

2.σIrσIm

σIr
2+σIm

2
(9)

UIQI has been employed to evaluate how the predicted images corresponded to the ground-truth
images, as shown in Fig. 6.

Figure 6: UIQI scores of the predicted images



CMC, 2023, vol.74, no.2 3385

4.4.2 Graphical Comparison Based on SSI

An extension of the UIQI, structural similarity (SSI), was also proposed by Wang et al. [30,31].
The SSI is commonly used in videos and still images. It evaluates the degradation in image quality
caused by pre-processing or losses in transmission. It uses two images to this end, i.e., the original and
the processed image.

The SSI examines the similarity between the original and the processed image. It has a value
between zero and one, where zero indicates that the images are completely dissimilar, and one indicates
that they are identical. The SSI measure assumes that the human eye gathers image information
through three channels, luminance, contrast, and structure present in the images. Therefore, SSI
uses measurement functions for luminance (L), contrast (C), and structure (S). These functions are
combined to calculate the final SSI value as represented in Eq. (10). Suppose Im and Ir are two images.
To compare their image quality measure, SSI can be expressed as follows.

SSI(Im, Ir) = f(L(Im, Ir).C(Im, Ir).S(Im, Ir)) (10)

A score of 0.99 and above is considered representative of satisfactory similarity. The SSI scores of
the randomly selected images are shown in Fig. 7.

Figure 7: Structural similarity scores

Tab. 6 shows the classification-related performance of the proposed model based on the dataset of
ultrasound images. Total extracted features are limited to 12 components using PCA and supplied to
Decision Tree. The maximum accuracy pixel-level classification was obtained 1.0 for each test sample.
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Table 6: Comparison between the predicted images and the relevant ground-truth images from the
ultrasound breast cancer tumor dataset

Image class
and ID
(random
sample from
each class)

Original image
(In BGR
format)

Ground-truth
Image∗∗

Predicted
image
GA+PCA
(12)+DT
features)∗∗

Feature
importance
using
GA+PCA (12)

Whole-
image
accuracy
using
GA+PCA
(12) +DT

(i) Benign
Class
benign
(1).png

1.0 1.0

(ii) Malignant
Class
malignant
(147)

1.0 1.0

(iii) Normal
normal
(85).png

1.0 1.0

Note: ∗∗ Black and white images.

5 Conclusion and Future Work

The proposed method successfully extracted prominent spatial features from the images through
various filters, reduced feature set size by implementing GA and PCA in the combination, and
accurately classified all pixels of chosen test images. The RF, DT, and extra tree models were built, and
their hyperparameters were optimized based on the training and testing sets. The training accuracies
of the GA-based method (without PCA) was 1.0, and testing accuracies ranged from 0.92 to 0.99 for
the histopathology dataset. In the ultrasound image dataset, the model yielded training accuracies of
1.0 and testing accuracies from 0.9327 to 1.0. The final proposed model, GA-PCA-DT, was tested on
images selected from each class. The proposed model has produced whole image classification accuracy
between 0.9997 and 1.0. Furthermore, the predicted image (all pixels values) compared with respective
ground-truth values generated UIQI scores in the range of 0.9999 to 1.0 and SSI scores in the range
of 0.99824 to 1.0 for the test images, chosen randomly from every class of both datasets.

Breast cancer detection and annotation is a tedious and time-consuming task for every healthcare
expert. The proposed model is simple, accurate, fast, and inexpensive, and thus can help classify whole
image pixels into binary classes i.e., “disease” and “non-disease”. We believe that healthcare expert’s
interventions are necessary for every medical examination and such automatic models can only assist
experts at the primary level in expediting breast cancer detection, especially in the large populations
or remote areas where healthcare facility is not sufficient.

The results reported here are excellent but slightly overfitted. The likely reasons for this are (a) a
large number of target classes and (b) the consideration of exceptional pixel values as an additional
class. The problem of overfitting can be solved by increasing the population size, further fine-tuning
the model, and using regularization methods.
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In future work, attention can be drawn to the use of more ML models, filters, and the employment
of feature reduction techniques. In addition, different image quality measures can be explored to
determine better evaluation. In this study, the images were resized to lower dimensions. Future studies
can consider operations on the original images (i.e., 1360 × 1024), and RGB (i.e., red, green, blue)
channels should be used instead of grayscale values.
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