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Abstract: Speech emotion recognition, as an important component of human-
computer interaction technology, has received increasing attention. Recent
studies have treated emotion recognition of speech signals as a multimodal
task, due to its inclusion of the semantic features of two different modali-
ties, i.e., audio and text. However, existing methods often fail in effectively
represent features and capture correlations. This paper presents a multi-level
circulant cross-modal Transformer (MLCCT) for multimodal speech emotion
recognition. The proposed model can be divided into three steps, feature
extraction, interaction and fusion. Self-supervised embedding models are
introduced for feature extraction, which give a more powerful representation
of the original data than those using spectrograms or audio features such
as Mel-frequency cepstral coefficients (MFCCs) and low-level descriptors
(LLDs). In particular, MLCCT contains two types of feature interaction
processes, where a bidirectional Long Short-term Memory (Bi-LSTM) with
circulant interaction mechanism is proposed for low-level features, while a
two-stream residual cross-modal Transformer block is applied when high-level
features are involved. Finally, we choose self-attention blocks for fusion and a
fully connected layer to make predictions. To evaluate the performance of our
proposed model, comprehensive experiments are conducted on three widely
used benchmark datasets including IEMOCAP, MELD and CMU-MOSEI.
The competitive results verify the effectiveness of our approach.

Keywords: Speech emotion recognition; self-supervised embedding model;
cross-modal transformer; self-attention

1 Introduction

Speech emotion recognition (SER) [1–3] is of significant importance in subjective cognitive
research, which aims to determine a human’s emotional states towards a certain topic by understanding
the characteristics of speech in media. Traditional emotion recognition methods tend to be based on
unimodality like image or text. However, the limited amount and single distribution of information
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makes the results unsatisfactory. Unlike the traditional paradigm, recent studies consider emotion
recognition of speech signals as a multimodal task because it contains semantic features of two
different modalities, i.e., audio and text. Yoon et al. [4] combined the information from audio and
text sequences using dual recurrent neural networks (RNNs) and then predicted the emotion class.
Yoon et al. [5] put forward multi-hop attention mechanism to compute the relevant segments of the
textual data and audio signal. In recent years, Transformer [6,7] has been widely used in various
research areas including Computer Vision (CV) and Natural Language Processing (NLP) and achieved
state-of-the-art results. Naturally, the cross-modal Transformer [8] has been proposed for interaction
problems in multimodal task. However, studies [9] have shown that using the Transformer purely at an
early stage is not good for results or requires an extremely large dataset. Therefore, we propose a multi-
level framework to extract features and interactions in a stepwise manner. In addition, when it comes
to representing raw data, traditional approaches usually employ Mel-frequency cepstral coefficients
(MFCCs) [10] for audio signals and glove embeddings [11] for textual sequences. Rather than using
those low-level feature extractor, self-supervised embedding models (SSE) [12] would be a better choice
due to its powerful representation capabilities. SSE models are usually pre-trained on pretext tasks with
a large number of unlabeled data in advance, and then generate more valuable feature representations
for downstream tasks [13–15]. Bidirectional Encoder Representations from Transformer (BERT) [16]
is known as one of the most outstanding SSE for text representation, while Masked Autoencoder
(MAE) [17] gives unlimited possibilities for vision learning.

In this paper, we propose a multi-level circulant cross-modal Transformer (MLCCT) for mul-
timodal speech emotion recognition. To the best of our knowledge, it is the first time that a
Transformer-based progressive framework is used in multimodal speech emotion recognition, which
may better capture correlations between different modalities. MLCCT is composed of three parts,
feature extraction, interaction and fusion. SSE models are introduced for feature extraction, which
give a powerful representation of the original data. Specially, Transformer Encoder Representations
from Alteration (TERA) [18] and a robustly optimized BERT pretraining approach (RoBERTa) [19]
are used to represent audio signal and textual sequence, respectively. In particular, MLCCT contains
two types of feature interaction processes. The first one employs a bidirectional Long Short-term
Memory (Bi-LSTM) with circulant interaction mechanism for low-level features, while in the second
stage a two-stream residual cross-modal Transformer block (RCTB) is applied. Finally, we choose
self-attention blocks for fusion and a fully connected layer to make predictions. Comprehensive
experimental results on three benchmark datasets including IEMOCAP, MELD and CMU-MOSEI
[20–22] show that the proposed MLCCT has achieved competitive results. In summary, the major
contributions of our research can be summarized as follows:

• A multi-level framework is proposed for a progressive cross-modal interaction, which combines
local and global features for accurate predictions, which will serve as an inspiration for future
research.

• A circulant interaction mechanism is presented to take full advantage of capturing correlations
between different modalities in an early stage.

• Most of the work done focuses on handcrafted feature extracting by using machine learning
methods, while SSE models are introduced in this paper to generate more valuable feature
representations for downstream classification.

• A two-stream residual cross-modal Transformer block is put forward to establish deep interac-
tions between modalities.

The remaining of this paper is structured as follows: In Section 2, we introduce related work
on multimodal speech emotion recognition and self-supervised learning. In Section 3, the details
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of proposed MLCCT are presented. Finally, we evaluate the experimental results three benchmark
datasets and draw a conclusion in Sections 4 and 5.

2 Related Work
2.1 Multimodal Speech Emotion Recognition

Emotion recognition models can be divided into two categories, discrete models and dimensional
models. Discrete models use a few adjectives such as anger, disgust, fear, happiness, sadness, and
surprise to describe emotional states. Thus, it is widely accepted for its simplicity despite of the
limitations in presenting dynamic processes. In contrast, several basic attributes are usually selected as
coordinate measures of the emotion space in the dimensional emotion model. Then all emotional states
can be found on this space with its own coordinate points. The Pleasure-Arousal-Dominance model
(PAD) [23] is one of the most well-known dimensional models, which can theoretically represent an
infinite number of emotions. However, the dimensional model is difficult to understand and complex
to manipulate, resulting in it not being mainstream.

Traditional methods recognize speech emotion by acoustic feature extraction or semantic infor-
mation analysis. Acoustic features are classified into three categories: rhythmic features, spectral-
based correlation features, and sound quality features, which describe information about the pitch,
amplitude and timbre of speech, respectively. Bhargava et al. [24] improved automatic emotion
recognition from speech by incorporating rhythm and temporal features. Different metrics of speech
rhythm are investigated with the aim to determine general emotional tendencies at the overall level
by studying the regularity of the appearance of certain linguistic elements in speech. Palo et al. [25]
put forward a Wavelet-based MFCCs model to perform affective computing with respect to spectral
features, and the improved model is more resistant to interference from noise. Recently, deep learning
techniques have demonstrated breakthrough performance and have been considered as an alternative
to tradition approaches in SER. The two most popular neural network architectures are convolutional
neural networks (CNNs) [26–29] and recurrent neural networks (RNNs) [30–32]. Among them,
CNN is beneficial for spatial information and RNN helps to capture temporal information in
SER. Yenigalla et al. [33] presented a CNN-based model to classify emotion using phoneme and
spectrogram. Zhao et al. [34] proposed a hybrid model, in which a 1D CNN-LSTM network and a 2D
CNN-LSTM network were constructed to learn local and global emotion-related features from speech
and log-mel spectrogram, respectively. In addition, the attention mechanism is particularly favored
in multimodal interaction problems, especially Transformer. Tsai et al. [35] proposed Multimodal
Transformer (MulT), which leverages inter-modal connections to individually reinforce target modal
characteristics. A Transformer-based joint-encoding for emotion recognition [36] is put forward, which
relies on a modular co-attention and a glimpse layer to jointly encode one or more modalities. However,
using transformers purely at an early stage is detrimental to the results, so we propose a progressive
framework to address this issue.

2.2 Self-supervised Embedding

In recent years, supervised learning has hit a bottleneck, which relies heavily on expensive manual
labeling and suffers from poor generalization. As an alternative, self-supervised embedding models
(SSE) has showed its soaring performance and gained increasing attention. SSE aims to learn a generic
representation for downstream tasks, where training data is labeled by using a semi-automatic process.
Specifically, the process may predict a portion of the data from the others. The general procedure is
that the SSE models are firstly pre-trained on a set of pretext tasks, and then the pre-trained SSE
models extract features for downstream tasks.
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SSE models can be categorized into generative, contrastive and adversarial. Generative models
encode the input x into a high-dimensional vector and then reconstructs x from the vector as
the output. GPT and GPT-2 [37,38] reconstruct the sentence by predicting the next word. BERT
incorporates masked language model on the basis of next word prediction and achieves better results.
PixelCNN [39] fixes the picture by next pixel predicting, while VQ-VAE [40] acts on the whole picture.
Generative models recover the original data distribution without making assumptions for downstream
tasks, leading to its wide applications. However, generative models are extremely sensitive to rare
samples and there is a semantic gap between pretext tasks and downstream tasks. Contrastive models
map pairs of data to a common space and measure similarity. Deep InfoMax [41] focus on modeling the
mutual information between local feature and global context, while MoCo [42] and SimCLR [43] tend
towards instance-level representations. In addition, works including CLEAR [44] and BERT-CT [45]
have presented overwhelming performances on various benchmark datasets. In comparison, without
decoder, contrastive models are usually lightweight and take classification tasks as downstream tasks.
Adversarial models train an encoder to generate fake samples and a decoder to distinguish them from
real samples. Adversarial models, especially Generative Adversarial Networks (GAN) [46], have shown
significant results in image generation and style transformation. However, there are still challenges for
its future development due to its easy collapse and limited application in NLP.

3 Method

As shown in Fig. 1, the structure of proposed MLCCT is composed of three parts, feature
extraction, interaction and fusion. SSE models are introduced for feature extraction, which give a
more powerful representation of the original data than those using spectrograms or MFCCs. In
particular, MLCCT contains two types of feature interaction processes, where a Bi-LSTM with
circulant interaction mechanism is proposed for low-level features, while a two-stream RCTB is applied
when high-level features are involved. Finally, we choose self-attention blocks for fusion and a fully
connected layer to make predictions. It is believed that the progressive framework may better capture
correlations between different modalities.

Figure 1: Overall architecture of proposed MLCCT
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3.1 Self-supervised Embedding Layer

Rather than using low-level feature extractor, SSE models would be a better choice due to its
powerful representation capabilities. SSE models are usually pre-trained on pretext tasks with a large
number of unlabeled data in advance, and then generate more valuable feature representations for
downstream tasks. Specially, TERA and RoBERTa are used to represent audio signal and textual
sequence, respectively.

TERA introduces a total of three types of alteration to pre-train Transformer encoders on a large
amount of unlabeled speech, namely time alteration, frequency alteration and magnitude alteration.
Among them, the time alteration enables to learn richer phonetic content through contextual under-
standing of previous and future content., the frequency alteration effectively encodes speaker identity
and the magnitude alteration improves performance by increasing data diversity for pre-training. We
download the checkpoint of TERA from the open-sourced fairseq toolkit, which is pre-trained on
LibriSpeech dataset for 960 h. The models’ input is an 80-dimensional log ME.

RoBERTa is an extension study on BERT pre-training, carefully measuring the effects of many key
hyperparameters and training data sizes. The improvements specifically include the following points.
Firstly, RoBERTa has a larger training dataset with the addition of CC-NEWS, OPEN WEB TEXT
and STORIES, while expanding batch size from 256 to 8 K. Secondly, dynamic masks are proposed
to replace the original static masks to perform data augmentation for larger datasets. Finally, the next
sentence prediction mechanism is eliminated, which is proved to be of little use. In this work, we train
RoBERTa following the BERTLARGE architecture, which contains a 24-layer Transformer with 16 self-
attention heads and 1024 hidden dimensions. The model is pre-trained on the BOOKCORPUS and
WIKIPEDIA datasets with 100 K steps.

3.2 Multi-level Interaction Module

The proposed multi-level interaction module contains low-level interaction sub-module and high-
level interaction sub-module, which capture the correlations between modalities in a progressive way.
With the low-level feature interaction sub-module, MLCCT can extract fine-grained local features
from speech signals and text sequences. Considering the superiority of RNN in handling sequence
tasks, we employ a Bi-LSTM with circulant interaction mechanism, as shown in Fig. 2. LSTM
is an extension of RNN, which can effectively solve the problem of gradient disappearance or
explosion. LSTM makes some improvements and optimization based on the structure of RNN, adding
memory cells and updating memory by input gates and forget gates. When LSTM is dealing with the
information at current timestamp t, it receives a total of three input vectors xt, ht−1 and Ct−1, where
xt is the input of current timestamp, ht−1 and Ct−1 are the output and memory cell state of previous
timestamp, respectively. The specific process can be described by the following equation.

ft = σ
(
δf · xt + ϕf · ht−1 + εf

)
(1)

it = σ (δi · xt + ϕi · ht−1 + εi) (2)

ot = σ (δo · xt + ϕo · ht−1 + εo) (3)

C̃t = tanh (δo · [xt, ht−1] + εC) (4)

where ft, it and ot stand for forget gate, input gate and output gate, respectively. δ is weight matrix from
the input layer to the hidden layer, while ϕ denotes weight matrix from the hidden layer to the hidden
layer and ε is the offset matrix. In addition, σ represents sigmoid activation function. The LSTM
first determines current state Ct by controlling the memory cell how much prior information Ct−1 is
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forgotten and how much temporary state C̃t is retained through forgetting gates ft and input gates it.
And then, the output gate ot is used to decide how to output the hidden state layer ht by computing Ct

in memory cell.

Ct = it ∗ C̃t + ft ∗ Ct−1 (5)

ht = ot ∗ tanh (Ct) (6)

Figure 2: Detailed procedures of Bi-LSTM with circulant interaction mechanism

After Bi-LSTM, the circulant interaction mechanism is put forward to capture inter-modal
correlation in an early stage. Specially, the intermediate results of audio a ∈ R

a and text s ∈ R
s will

constructed as circulant matrices and multiplied by each other, where elements in each row perform
a shift operation without changing the values as a whole. To further reduce computational cost, two
weight matrices Wa ∈ R

d×a and Ws ∈ R
d×s are involved to project both feature vectors to a lower

dimensional space. The detailed procedures are illustrated in Eqs. (7)–(9).

A = Ã � (Ws · s) = 1
d

d∑
i=1

ai � (Ws · s) (7)

S = S̃ � (Wa · a) = 1
d

d∑
i=1

si � (Wa · a) (8)

where

Ã = circ_matrix (Wa · a) , S̃ = circ_matrix (Ws · s) (9)

where ai ∈ R
d and si ∈ R

d are row vectors of circulant matrices, � is denoted as Hadmard product.
Through the element-wise product, we complete the preliminary interaction and get the integrated
vectors A ∈ R

d and S ∈ R
d.

As shown in Fig. 3, a two-stream RCTB is proposed for high-level interaction between audio and
text. The RCTB takes the low-level integrated vectors as input. Since A and S share same dimension,
there are no additional adjustment operations. RCTB takes advantage of the cross-modal attention
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mechanism to explore inter-modal relationships and strengthen the target modal representation. In
addition, shortcuts are employed to learn the residuals, which makes it easier for the model to converge.
Take audio as the query vector QA = AWQA

∈ R
d×1, text as the key vector KS = SWKS

∈ R
d×1 and value

vector VS = SWVS
∈ R

d×1, where WQA
, WKS

and WVS
are weights. Then a scaled dot-product attention

is computed, and the specific process can be seen in the following formula.

YA = A + softmax

(∑d

i=1QAi � KS√
d

)
VS (10)

where YA ∈ R
d×1 is the final integrated vector of audio. In the same way, we can also obtain the final

interaction vector with text as the target modality Ys.

YS = S + softmax

(∑d

i=1QSi � KA√
d

)
VA (11)

Figure 3: Structure of two-stream residual cross-modal Transformer block

For fusion, we first concatenate two final integrated vectors YA and YS, and then feed them
into multi-head self-attention blocks. The output from self-attention layer will pass through a fully
connected layer to make prediction. Multi-head attention allows the model to jointly attend to
information from different representation subspaces.

Y = FC
(

W O
(∑h

i=1
�

(
Qτ W Q

i , Kτ W K
i , Vτ W V

i

)))
(12)



4210 CMC, 2023, vol.74, no.2

where

Qτ = Kτ = Vτ = concat (YA, YS) (13)

where FC denotes fully connected layer, � is self-attention computing and h is the number of
head. Compared with somewhat straightforward fusion, self-attention blocks may lead to a further
performance gain.

4 Experiment and Discussion

We carried out our experiments on three widely used benchmark datasets including IEMOCAP,
MELD and CMU-MOSEI to verify the effectiveness of our proposed MLCCT. The testing environ-
ment was conducted on one single Nvidia RTX 3090 graphic card with 16GB memory, and an Intel(R)
Core(TM) i7–7700 3.60 GHz.

4.1 Dataset

IEMOCAP collects data from five sessions of ten male and female participants, each session
consisting of two unique participants. IEMOCAP is segmented by dialogue and each dialogue is
annotated with categorical labels, such as angry, happy, sad, neutral, surprised, etc. We divided the
whole dataset into five subsets, using the first four dialogues as training and validation and the last one
as testing, which excludes speaker-related interference and is useful for real-life scenario applications.

The MELD dataset has over 12,000 discourses from the Old Friends TV series. Unlike other
datasets, MELD is a conversational dataset, with several speakers participating in a single dialogue.
Each dialogue is annotated with any of seven emotions: anger, disgust, sadness, joy, surprise, fear, and
neutrality.

The CMU-MOSEI dataset is the largest sentence-level sentiment analysis and emotion recognition
dataset available in online video. CMU-MOSEI contains over 65 h of annotated video from over 1,000
speakers and 250 topics. Similar to the MELD dataset, CMU-MOSEI is divided into three groups:
training set, validation set, and testing set. We performed data statistics for the three benchmark
datasets mentioned above, which are recorded in Tabs. 1 and 2.

Table 1: Amount of data for each type of emotion in IEMOCAP

Emotion IEMOCAP

Training Validation Testing

Happy 198 28 58
Sad 426 60 122
Angry 202 29 58
Neutral 769 110 220
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Table 2: Amount of data for each type of emotion in MELD and CMU-MOSEI

Emotion MELD CMU-MOSEI

Training Validation Testing Training Validation Testing

Neutral 4513 450 1204 - - -
Happy 1661 157 380 7136 636 1438
Fear 264 36 50 257 28 55
Sad 674 107 204 2669 279 502
Disgust 266 21 68 767 61 150
Angry 1065 148 328 1607 136 384
Surprise 1150 142 207 348 29 78

4.2 Comparative Study
4.2.1 Experiments on IEMOCAP

Due to the uneven distribution of samples of each category in the IEMOCAP dataset, we
selected the four most used emotion categories (neutral, angry, sad and happy) for our classification
experiments. The comparison of the proposed MLCCT with prior studies on the IEMOCAP dataset
can be clearly seen in Tab. 3, and mean accuracy is used as the evaluation metric. It confirms that
multimodal speech emotion recognition tends to outperform those based on unimodal, audio or text.
Compared with Lex-eVector, which is also based on multimodal data, MLCCT improves nearly 7%
in accuracy, further verifying that our proposed progressive framework has a greater effect on the
interaction and fusion in multimodal speech emotion recognition.

Table 3: Comparison of MLCCT with prior models on IEMOCAP

Model Modality Acc

LSTM [47] Audio 54
Extreme Learning Machine (ELM) [48] Audio 54.3
Hierarchical Decision Tree [49] Audio 56.83
RNN-ELM [50] Audio 62.85
ACNN [51] Audio 62.11
RNN + Attention [52] Audio 63.5
CNN + LSTM [53] Audio 64.5
Bi-LSTM-ELM + LLDs [54] Audio 64.2
Greedy-Attention [55] Audio 59.4
FCN + Attention [56] Audio 70.2
Bi-LSTM + Context-aware Attention [57] Audio 68.8
Lex-eVector [58] Audio 57.4

Text 53.5
Multimodal 69.2

(Continued)
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Table 3: Continued
Model Modality Acc

Ensemble model of CNN and LSTM [59] Audio 62.72
Text 64.78

MLCCT Audio 66.19
Text 56.5
Multimodal 75.92

To further analyze the recognition results, Tab. 4 shows the accuracy and F1 scores for each
category, and Fig. 4 plots the confusion matrix. From the experimental results, we can find that our
model has better performance in terms of accuracy compared to RAVEN [60] and MCTN [61] models.
In terms of the MulT model, MLCCT performs better overall, except for a 1.1% lower classification
accuracy in Anger. We believe that the improvement stems from placing the Transformer further back
in the network and thus more adapted to high-level features. In brief, our model achieved significant
recognition results on the IEMOCAP dataset.

Table 4: Performance for each category on IEMOCAP

Happy Sad Angry Neutral

Method Acc F1 Acc F1 Acc F1 Acc F1
RAVEN [60] 77 76.8 67.6 65.6 65 64.1 62 59.5
MCTN [61] 80.5 77.5 72 71.4 64.9 65.6 49.4 49.3
MulT [35] 84.8 81.9 77.7 74.1 73.9 70.2 62.5 59.7
MLCCT 84.7 82.8 78.1 75.2 72.8 72.1 65.1 62.5

Fig. 4 shows in more detail the specific effects of the model on each category. It can be seen that
MLCCT achieves the best recognition in “Happy”, followed by “Sad” and “Angry”, and the last one is
“Neutral”. We speculate that it may be “Neutral” that is the most vaguely defined and is more difficult
to represent in a multimodal form.

4.2.2 Experiments on MELD

The evaluation of our proposed model compared to the conventional studies on MELD is
presented in Tab. 5. It can be seen that MLCCT outperforms any other model in terms of average
accuracy and F1 score. Although the improvement is limited, for example, its accuracy is only 1.5%
higher than that of [102]. It is believed that the reason leading to this result may be the more complex
speakers and scenes in MELD.

A more detailed analysis is conducted based on each category on the MELD. As can be seen in
Fig. 5, the recognition accuracy of our proposed model inevitably decreases as the number of emotion
categories increases. Specifically, MLCCT performs well on Neutral, Joy and Surprise, reaching
an accuracy of 78.68 on Neural. However, its recognition results on Sadness and Disgust are not
satisfactory, especially sadness is often misclassified as Neutral. It is speculated that the reason leading
to this result may lie in the uneven distribution of the various types of data in the MELD dataset, with
relatively little disgust and sadness data.
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Figure 4: The recognition rate confusion matrix on IEMOCAP

Table 5: Comparison of MLCCT with prior models on MELD

Model Modality Acc F1 score

AGHMN [62] Text 60.3 58.1
KET [63] Text 60.6 58.2
Confidence-estimator Ensemble Model [64] Multimodal 61.2 59.5

Con-GCN [65] Audio 49.32 47.4
Text 45.61 42.2
Multimodal 61.7 59.4

MLCCT Audio 48.8 45.34
Text 61.7 58.9
Multimodal 63.2 62.4

4.2.3 Experiments on CMU-MOSEI

Tab. 6 presents the comparison of the proposed model and prior works on CMU-MOSEI dataset
in terms of mean accuracy and F1 score. The experimental results again demonstrate the fact that
speech emotion recognition based on multimodal data tend to have better accuracy than those relying
on unimodal data alone. Moreover, our proposed multi-level model also proves to be a better choice,
achieving an accuracy of 51.2% and an F1 score of 82.0.
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Figure 5: The recognition rate confusion matrix on MELD

Table 6: Comparison of MLCCT with prior models on CMU-MOSEI

Model Modality Acc F1 score

RTN [66] Multimodal 48.12 62.12
CIM [67] Audio 30.25 38.72

Text 42.6 59.22
Multimodal 49.12 66.6

GMU + Attention [68] Audio 31.75 43.65
Text 43.58 60.82
Multimodal 50.31 72.21

MLCCT Audio 35.6 46.56
Text 48.2 62.78
Multimodal 51.2 82.0

As in the previous two subsections, we also provide a more specific analysis of the results for
each category on CMU-MOSEI shown in Fig. 6. It can be further seen that our model has certain
generalization ability and can still cope well with the overall accuracy when facing the problem of
unbalanced data across emotion labels. In particular, MLCCT achieved the best accuracy of 79.82%
in Happy, and the worst performance in Fear.
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Figure 6: The recognition rate confusion matrix on CMU-MOSEI

4.3 Ablation Study
4.3.1 Ablation Study on Multi-Level Interaction

To demonstrate the effectiveness of the progressive framework, we conduct an ablation study on
multi-level interaction. Specifically, we design the following strategies for comparison, as shown in
Tab. 7.

Table 7: Ablation study on multi-level interaction on CMU-MOSEI

SSE Low-level interaction High-level interaction Acc F1 score

A √ √ 28.12 30.18
B √ √ 42.71 72.51
C √ √ 45.25 75.62
D √ √ √ 51.20 82.03

The experimental results in Tab. 7 show that the model containing only single-level interactions is
limited in terms of recognition results. In particular, the accuracy of Strategy B, which only employs a
Bi-LSTM with circulant interaction mechanism for low-level features, dropped significantly to 28.12%.
Without the low-level interactions, the model in Strategy C also encountered a bottleneck, achieving
an accuracy of 42.71% and an F1 score of 72.51. In addition, SSE also proved to be effective, which
helped to improve the model’s accuracy rate by about 6%.
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4.3.2 Ablation Study on Attention Blocks

A total of two types of attention mechanisms are included in the structure of this network, which
are cross-modal attention mechanism and self-attention mechanism. To further explore the influence
of these two attention mechanisms on the final recognition accuracy, we select the CMU-MOSEI
dataset with the largest amount of data for the ablation experiments, as shown in Tab. 8.

Table 8: Ablation study on attention blocks on CMU-MOSEI

Cross-modal
attention block

Self-attention
block

Cross-model
head

Self-attention head ACC-6 ACC-2 F1 score

1 1 1 1 49.7% 79.6% 80.2
1 1 2 4 50.1% 80.2% 80.6
2 4 1 1 50.9% 82.4% 81.5
2 4 2 4 51.2% 82.9% 82.0
2 4 4 8 51.3% 83.6% 82.7
4 8 2 4 51.4% 83.5% 82.5
4 8 4 8 51.2% 82.1% 81.7

It is known that as the number of attention blocks increases, the accuracy of the model improves
more slowly and the training difficulty and recognition time also increase. Therefore, combining
various factors, we finally chose two cross-modal attention blocks with four heads and two self-
attention blocks with four heads as hyperparametric settings.

5 Conclusion

In this paper, we propose a multi-level circulant cross-modal Transformer (MLCCT) for multi-
modal speech emotion recognition. Different from prior works, MLCCT adopts a progressive frame-
work, which combines local and global features for accurate predictions. To the best of our knowledge,
this is the first time that a Transformer-based progressive framework is used in multimodal speech
emotion recognition, which will serve as an inspiration for future research. Specifically, MLCCT better
captures inter-modal relationships through two modal interaction processes. The first one employs a
bidirectional Long Short-term Memory (Bi-LSTM) with circulant interaction mechanism for low-
level features, while a two-stream residual cross-modal Transformer block is applied when high-level
features are involved. Finally, self-attention blocks are used for fusion. Comprehensive experimental
results on three benchmark datasets including IEMOCAP, MELD and CMU-MOSEI show that the
proposed MLCCT has achieved competitive results.
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