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Abstract: Environmental sound classification (ESC) involves the process
of distinguishing an audio stream associated with numerous environmental
sounds. Some common aspects such as the framework difference, overlapping
of different sound events, and the presence of various sound sources during
recording make the ESC task much more complicated and complex. This
research is to propose a deep learning model to improve the recognition rate
of environmental sounds and reduce the model training time under limited
computation resources. In this research, the performance of transformer
and convolutional neural networks (CNN) are investigated. Seven audio
features, chromagram, Mel-spectrogram, tonnetz, Mel-Frequency Cepstral
Coefficients (MFCCs), delta MFCCs, delta-delta MFCCs and spectral con-
trast, are extracted from the UrbanSound8K, ESC-50, and ESC-10, databases.
Moreover, this research also employed three data enhancement methods,
namely, white noise, pitch tuning, and time stretch to reduce the risk of
overfitting issue due to the limited audio clips. The evaluation of various
experiments demonstrates that the best performance was achieved by the pro-
posed transformer model using seven audio features on enhanced database.
For UrbanSound8K, ESC-50, and ESC-10, the highest attained accuracies
are 0.98, 0.94, and 0.97 respectively. The experimental results reveal that the
proposed technique can achieve the best performance for ESC problems.

Keywords: Environmental sound classification; convolutional neural network;
deep learning; transformer; data augmentation

1 Introduction

Recently, sound detection has gained attention with a wide range of applications, which include
alert systems, wildlife monitoring [1], autonomous cars designation [2], IoT based solution for urban
noise detection in smart cities, classification of distinct musical instruments, voice recognition [3,4] etc.
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It is important to identify the context of the sounds and take appropriate measures to minimize the
risks. This indicates the importance of sound detection systems in virtually every aspect, ranging from
humans to other living organisms such as plants and animals. The detection of environmental sound
is to classify sound classes for recordings or audio clips. The sound classification involves three well-
known research areas namely Automatic Speech Recognition (ASR), Music Information Retrieval
(MIR), and the ESC. This research focuses on the last area as the ESC audio files are unstructured
and have a low Signal to Noise Ratio when compared to ASR and MIR.

Environmental sound contains more variety when compared to speech. Consequently, this varia-
tion and the noisy features have made the ESC more challenging than speech detection. In recent years,
sound detection has made great progress in the research domain, which can be attributed to the publicly
available annotated datasets such as UrbanSound8k (US8K) [5], and ESC version 10 and 50 datasets
(ESC-10 & ESC-50) [6]. Another reason is due to the transition from conventional machine learning
approach to deep learning approach in the sound classification tasks. Moreover, ESC tasks face various
challenges, which makes it hard to experiment. However, one of the major challenges in ESC is that it
lacks specific audio scene/structural music signals. Another reason is that the ratio of signals to noise
is negligible because of the wide range of distance between the voice generation source and the audio
clip recorder when compared with the speech recognition system and musical information retrieval.
Thus, the aforementioned problems lead to the difficulty of ESC tasks when compared with others. To
handle the aforementioned challenges, various artificial intelligence techniques and signal processing
techniques have been utilized for ESC. For the latter, analyses are performed on some simple features
like short-time energy, using some heuristic backends. Besides, some machine learning methods such
as Gaussian mixture model (GMM), K-Nearest Neighbor, Support vector machine (SVM) model,
and Naïve Bayes have successfully been utilized for ESC. On the other hand, with signal processing
development capability, a couple of dictionary-based approaches, including matrix factorization,
Dictionary learning [1], have been productively utilized in ESC. The capabilities of these techniques
in handling complex high-dimensional feature have paved the way for multifeature transformation
scheme application, which includes gammatone spectrogram features [7], Mel-Frequency Cepstral
Coefficients (MFCCs), wavelet-based features, and Mel-spectrogram features in ESC.

Recently, deep neural network models have displayed outstanding predictive performance in
feature extraction for ESC tasks. In comparison with the manual feature extraction schemes for
traditional machine learning models, deep learning is capable of automatic extraction of discriminative
features from large datasets and can generalize well on the unseen data. For instance, [8] experimented
the ability of CNN for audio clip ESC. However, the experimental analysis of the model produced an
outstanding performance on various publically available datasets. In another study, [9] investigated
the effectiveness of a deep belief network for extracting high-level feature representation from the
magnitudes of the spectrum, which outperformed the conventional approaches. The authors of [10]
employed recurrent neural network to learn the temporal relationships to classify the sequential
dynamics of environmental sound signals. The predictive performance of the model produced an
outstanding result. Although, the existing deep neural models, usually consisting of a convolutional
neural network, are improving, and attaining the best predictive accuracy in the ESC baseline methods
[11,12]. However, these techniques are not able to achieve optimum predictive accuracy and used the
large number of features and data enhancement methods. Thus, in this study, a novel transformer
based method was proposed to improve the recognition rate of environmental sounds and reduce the
model training time under limited computation resources. The performance of proposed transformer is
compared with deep CNN both in terms of accuracy and training time. In addition, this also investigate
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the optimize set of features and data enhancement methods to reduce the overfitting problem due to
inadequate data.

The rest of this paper is organized as follows. Recent related works of ESC are introduced in
Section 2. Section 3 provides a detailed description about the proposed methods, including feature
extraction, network architecture, frame-level attention mechanism, and data augmentation. Section 4
provides the experimental settings and results on the ESC-10, ESC-50, and UrbanSound8K datasets.
Finally, Section 5 concludes the paper.

2 Literature Review

Environmental sound classification concentrates on the identification of some daily audio events
with variation in length in particular audio signal. Recently, the ESC research is gaining attention.
Several studies have been conducted on environmental sound classification with various ESC datasets.
For instance, the authors of [13] employed MFCC on ESC-10 dataset. During the implementation
phase, the authors employed both multilayered perception and Random Forest classifiers. However,
the experimental analysis attained the best performance of 74.50% classification accuracy with
multilayer perception classifier. Despite the fact that a varied number of machine learning methods
have been investigated for environmental sound classification, the deep learning model approaches
have stood out for outstanding performance within the domain in a few years back. The initial
deep learning method for ESC was investigated by Piczak [8]. The author employed a 2-dimensional
structure obtained from the log-Mel audio signal features and it was fed as an input to the deep learning
model that possesses two fully connected layers and two convolutional layers. The classification
performance of this model produced 81.0% accuracy on ESC-10 dataset and 64.5% accuracy on ESC-
50 dataset, resulting to 20.6% increase in accuracy for ESC-50 dataset and 7.81% increase in accuracy
on ESC-10 dataset when compared to the conventional machine learning model such as Random
Forest.

Existing research facilitate the use of convolutional neural network in environmental sound
classification. In fact, researchers in [14,15] proposed deeper CNN model that attained even higher
predictive accuracy on ESC dataset. For instance, the authors of [15] proposed a CNN model,
consisting a mixture of a fully connected layer and one-dimensional (1D) convolutional layer, extracted
the features from raw waveforms and attained 71.0% accuracy on ESC-50 dataset. Similarly, the
authors of [14] investigated the predictive performance of a deep neural model that consists of six
convolutional layers for feature extraction by considering the spectrograms and raw waves. However,
the experimental analysis of the model on ESC-dataset attained a predictive accuracy of 79.1% and
93.75% on ESC-50 and ESC-10 datasets respectively. The authors in [16], proposed a novel Teager
energy operator (TEO) based coefficients in different mixtures using Gammatone spectral co-efficient
(GTSC) and MFCC on ESC-50 and Us8k datasets. However, the empirical analysis showed that
combining GTSC and TEO-GTSC attained a maximum accuracy of 88.02% on Us8k dataset and
81.95% on ESC-50 dataset.

To investigate the classification performance of multi-classifiers systems, the authors of [17] intro-
duced an ensemble stack model with CNN on ESC-10, ESC-50, and Us8k datasets. For Dempster–
Shafer CNN construction, the author employed the Demster-Shafer theory of evidence. The empirical
analysis of the study obtained the highest classification accuracy of 92.1% on ESC-10 dataset, 82.8%
on ESC-50 dataset, and 91.9% on Us8k dataset. In another study, authors of [18] experimented various
signal processing methods on the ESC by employing ESC-50 and Us8k datasets. The author utilized
various techniques in their methodology that consists of Short Time Fourier Transform (STFT),
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Continuous wavelet transform (CWT), and Constant Q Transform (CQT), by combining them with
Mel and linear scales. However, the best classification result was obtained by wideband on Mel-
STFT with Us8k dataset by attaining an accuracy of 74.66% and wideband on linear STFT with
the performance accuracy of 55% on ESC-50 dataset.

Deep learning model training that consists of millions of parameters requires large amount
of data. The existing ESC publicly available datasets are considered relatively minute for the deep
learning models. Thus, data augmentation techniques can be employed to partially address the small
dataset issue [19]. For instance, the authors of [19] investigated comprehensively, the influence of data
augmentation techniques such as pitch-shifting, addition of background noise, and time stretching, to
improve the predictive performance of CNN model. In another study [20], authors investigated a deep
learning model for ESC using mixup in audio signal to train the model with stacked convolution and
pooling layers. Similarly, the authors of [12] investigated ‘between class learning’ by mixing sample
signals of diverse classes based on random ratio. The learning model of convolutional layer is trained
to produce the mixing ratio, which makes the model to learn the discriminative features of the sound
signal. However, the predictive performance of the model attained accuracy of 91.4%, 84.9%, and
78.3% on ESC-10, ESC-50, and Us8k datasets respectively.

It is obvious that deeper CNN models and data augmentation can both increase the ESC predictive
performance. Conversely, the normal environmental dataset sizes have restricted the training model
to about fifteen convolutional layers. However, to train deeper models that can easily attain a better
result, the transfer learning approach with pretrained model on ImageNet has shown outstanding
results on ESC tasks. Since the spectrograms, which are usually employed in audio classifier training,
show image-related features such as close correspondence between local points, applying the pretrained
models on ImageNet promotes better feature extraction as well as improve predictive accuracy.

3 Materials and Methods

The proposed convolutional neural network for environmental sound classification is composed
of five (5) steps as shown in Fig. 1. These steps include description of the databases used in the
experiments, data augmentation, feature extraction, transformer model, the convolutional neural
network, and evaluation metrics used to measure the performance using our proposed approach.
In environmental sound classification, the first step is the collection of appropriate sound data.
Three datasets which include ESC-10, ESC-50, and UrbanSound8K were used to evaluate the deep
learning-based environmental sound classification model. These datasets are described in Section 3.1.
Training deep learning based environmental sound classification requires a large amount of training
that maybe difficult to collect. To resolve the problem, we used data augmentation methods such
as Gaussian noise, pitch shift, and time stretch methods to increase the training data and avoid
overfitting. In addition, various features used to train the proposed model are described in Section 3.3.
Here, we extracted features such as Mel-spectrogram, Chromagram, MFFCs, delta-MFCCs, delta-
delta MFCCs, and Tonnetz representation and Spectral Contrast. The proposed transformer and
CNN model comprised of convolutional layer, max-pooling, and fully connected layer are described
in Sections 3.4 and 3.5, respectively. Finally, the description of the evaluation metrics used to measure
the performance of the proposed model is depicted in Section 3.6.
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Figure 1: Proposed research methodology for ESC

3.1 Databases

Three ESC databases were used to evaluate the classification performance of the proposed
method. Three publicly available ESC databases were used to train the model and to evaluate the
performance of the proposed technique, including UrbanSound8K [5], ESC-10 and ESC-50 [6]. The
detailed information of these databases is presented in Tab. 1. The UrbanSound8K database contains
8732 short audio files (up to 4 s) of urban sound areas. The database is categorised into 10 classes: car
horn, air conditioner, children playing, drilling, dog bark, gun shot, engine, idling, siren, jackhammer,
and street music. The audio files of these classes are arranged into 10 folds. The ESC-10 database
contains 400 audio files with an average time of 5 s each. These audio files involve 10 classes (rain, dog
bark, baby cry, sea waves, clock tick, helicopter, person, sneeze, rooster, chainsaw, and fire crackling)
with an overall duration of 33 min. This databased is dispersed into 5-folds where each fold contains
80 audio files with random distribution of sound classes. The ESC-50 database comprises 2000 short
audio files which are distributed into 50 class labels in 5 major sets, including water sounds and natural
soundscapes, animals, human nonspeech sounds, urban/exterior noise, and domestic/interior sounds.
This database is also divided into 5-folds with 400 audio files in each fold. All audio files in ESC-10
and ESC-50 were recorded with 44.1 KHz sampling frequency, and the length of each file is 5 s.
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Table 1: Information about databases

Databases Classes Folds Duration (mins) Total audio clips Storage capacity (GB)

Original Augmented Original Augmented Original Augmented

US8K 10 10 525 2100 8732 34928 6.62 15.5
ESC-50 50 5 167 668 2000 8000 0.20 0.80
ESC-10 10 5 33 132 400 1600 0.04 0.16

3.2 Data Enhancement

One of the widely applied methods in environmental sound classification to avoid overfitting
machine learning models is data enhancement [21]. Data enhancement is the process of increasing
the size of training data using methods such as adding Gaussian noise, pitch shift, and time stretch.
The essence of data enhancement is to improve the robustness of the deep learning model, enhance
generalization and overall accuracy, and data distribution with reduce data variance. Deep learning
models requires a large amount of training data, however, collecting environmental sound data is
tasking and time consuming. In this paper, we apply the above-mentioned data enhancement methods
to enhance the proposed convolutional neural network model performance. First, we increased the size
of the training data by adding Gaussian noise. One of the major factors to consider when increasing
the training data using Gaussian noise is the value of noise amplitude (“σ”). It is essential to choose
the right value of σ . When the value of a is too large, optimization of the model would be difficult
and might lead to low performance, while a small value of may weaken the performance of the model.
Second, we generate new sounds by applying pitch shift enhancement which helps to shift the signal
pitch wavelength by a series of n steps. The shift in the signal does not affect its duration. Finally,
the tempo and pitch of the signal altered using a time stretching approach. These methods provide a
means to increase the training data and avoid overfitting our proposed CNN model.

3.3 Feature Extraction

Feature extraction process plays a significant role in environmental sound classification. It helps
to reduce computational time, classification errors, and algorithm complexity. Therefore, the process
is essential for extraction of the most discriminant attributes from the audio signals that best describe
the sound of the environment. In this paper, various features were extracted and trained with the
proposed convolutional neural networks. The features extracted from ESC-10 and ESC-50 [6] and
UrbanSound8K [5] datasets include Mel-spectrogram, Chromagram, MFFCs, delta MFCCs, delta-
delta MFCCs and Tonnetz representation and Spectral Contrast.

• Mel-spectrogram features: Mel-spectrogram features were extracted by dividing the audio signal
into frames and computing the Fast Fourier transform of each obtained frame. The Mel-scale
for the speech signal frame is produced by separating the frequency spectrum into a frequency
of equal space.

• Chromagram features: Chromagram features are used to distinguish the representation of
harmony and pitch classes. To obtain chroma features, we extracted 12 distinct pitch classes
from the audio signal through binning method and STFF.

• MFFCs, delta MFCCs, delta–delta MFFCCs based features: MFCC features are a set of
Mel-frequency Cepstrum that represents the short-term power spectrum of an audio signal.
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Cepstrum is used to determine the exact response of the human ear and allow for better
audio classification due to its equally spaced frequency band. In this study, we extracted three
mel-cepstrum features which include 40 sets of MFCC, delta MFCC, and delta–delta MFCC
features. To extract MFCC features, the first an audio file is divided into definite length frames.
In the second step, a windowing operation is performed to minimize the silence at the start
and end of every frame. Afterwards, the Fast Fourier Transform (FFT) of each frame is taken
to convert the time domain signal into the frequency domain. All frequency values computed
from FFT are measured by using the Mean scale filter bank using Eq. (1):

Mel(f) = 2595 × log10
(

1 + f
700

)
(1)

Then, the logs of the powers are computed at each mel frequency and finally all log-Mel spectrums
are transformed back to time domain using Discrete Cosine Transform (DCT). The amplitudes
derived from the resultant spectrum are called the MFCCs.

• Tonnetz based features: This is the six-dimension pitch space that describes the harmonic
network of pitch relations in the fall and rise of speech signals. Features such as tonal (pitch
space) of all frames of the audio signals are important in distinguishing environmental sound.

• Spectral contrast-based features: These are features obtained by computing the root mean
square (RMS) difference between the spectral proof and the spectral peak of signal frames.

In this study, we extracted a total 273 features of the above features, which include 128 melspectro-
gram, 12 chromagram, 40 MFFC, 40 delta-MFCC, 40 delta-delta MFCC, 6 tonnetz, and 7 spectral
contrasts that were combined to train the proposed transformer and convolutional neural network
models.

3.4 Proposed CNN Model

The proposed CNN model consists of five 1D convolutional layers (Conv1D), each convolutional
layer is followed by plenty of other layers including among these are batch normalization layer,
MaxPooling layer, dropout layer, flattened layer, and dense layer. The convolution layer used in our
methodology acts on the kernels and sound data array. The first convolution layer is fed with the
extracted feature matrix as input to generate the structural or detailed semantic feature map (local
features) from the provided input sound files. The input of the first Conv1D consists of an array list
of size 273 × 1 along with a stride of one pixel while the number of filters is 64 and with a kernel size
of 5. A batch normalization layer follows this first convolution layer; this will standardize the inputs
by transforming the negative values to zero and to help to attain nonlinearity in the model. Batch
normalization will help to mitigate the effect of unstable input values with the help of scaling and
shifting operation. A 20% dropout rate is applied afterwards during the training process. The dropout
layer helps to reduce the overfitting issue by removing the input values that are less than the dropout
rate. The next layer after the dropout layer is the maxpooling layer, we have used a one-dimensional
maxpooling layer which consists of a pooling window of size 4. The MaxPooling layer help to reduce
the feature by applying maximum filter activation at different positions of the quantified windows to
produce a single output feature map.

Next, the second and third iteration convolution layer follows the similar layout of all layers
described for the first convolution layer. However, the number of filters applied for these two iterations
are 128 with the kernel size of 5. While for the fourth and fifth convolution layers consists of 256 filters
with having the same stride and kernel size. After these sets of convolution layers, flatten, a layer is
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added to flatten the input sound data to one-dimensional array. A fully connected dense layer is used
at the next in our proposed CNN model. The number of neurons in this layer can vary between 10 to 50
neurons; the number of neurons is subject to the number of classes we have used. The fully connected
dense layer integrates the global features derived from the previous layers; it also generates a feature
vector for the classification.

For the activations we have used SoftMax layer which performs the output as multilabeled
classification. This also depends on the number of classifications used for environmental sound data;
other parameters include an Adam optimizer having a learning rate of 0.0001, batch size of 16, and
100 epochs. Some operations and techniques used for our proposed CNN model that are worth
mentioning here include activation function, dropout, and SoftMax function. The activation function
is an important component of neural networks that transforms the signals of neurons to normalize
output. We have used Rectifier Linear Unit (ReLU) activation function instead of sigmoid activation
function to accelerate the convergence and to sort out the problem of vanishing gradient. It also
helps to clamp down negative values from the neuron to 0 and positive value remain unaffected.
The results of this transformation are utilized as the output of the current layer and as inputs to the
consecutive layer in our proposed CNN model. The dropout technique helps to reduce the number of
interconnections among the neurons in the CNN. Random process is followed, hence at every training
step each neuron could be dropped out from the collated contributions of the connected neurons.
We have also used SoftMax activation function as the last activation function to normalize output of
the proposed CNN. The output of SoftMax function is a vector with probabilities of each possible
outcome from the classifications used for environmental sound data.

3.5 Transformer Model

The vanishing gradient is the common issue in Recurrent Neural Network (RNN) and Long
Short-Term Memory (LSTM) architectures regarding learning longer sequences. Although, the
problem of RNN was resolved by LSTM by using carry-forward method, that carry-forward has
information of the previous hidden layer and pervious of the previous hidden layer and so on. However,
this carrying forward method in LSTM may fail when it comes to long sequential problem. Therefore,
the transformer having self-attention mechanism is used to compute the representations of input and
output without utilizing the aligned convolution or RNNs. Self-attention mechanism relates to the
various positions of one sequence to compute the representation of that sequence. The structure of
transformer model is stack-based having encoder-decoder components along with the self-attention.

Encoder: The encoder is used to map the input sequence to sequence of continuous representation.
At every step, the transformer model consumes the previously generated representation as addition
input sequence when generate the next. In this paper, the encoder was comprised of a stack of 6 similar
layers where each layer was further comprised of two sub-layers namely multi-head self-attention layer
and fully connected feed-forward network. Around every two sub-layers, a residual connection was
employed, followed by the normalisation layer.

Decoder: The decoder was also comprised of a stack of 6 similar layers. Additionally, a third sub-
layer called masked multi-headed attention was inserted in the decoder to ensure the predication of any
sequence is only based on tokens before the current token. Finally, like encoder, residual connections
were employed around all sub-layers, followed by the normalisation layer.

Attention: It enables the model to focus on other audio sequences in the input that are closely
related to that word. Self-attention mechanism is being capable of maintaining the context-based
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information in an audio sequence. This information is being extracted from a set of Quires Q, keys K,
and values as shown in Eq. (2):

Attention(Q, K, V) = Softmax(QKT)V (2)

The output of a given equation is a matrix that holds the information of each sequence of audio.
Transformers can achieve parallelization during training because one the reason is that these Q, KV
are in the stacked as matrix.

Moreover, all the encoder and decoder layers had a fully connected feed-forward network that was
applied to every position individually and identically. This comprise of two linear transformations
separated by a ReLU activation. In addition, learned embeddings were employed to transform the
input and output tokens to dimensional vectors. Finally, a softmax function was used to transform
the decoder output to compute the class probabilities.

3.6 Evaluation Metrics

The performance of each ESC model was evaluated using different evaluation metrics. These
evaluation metrics include accuracy, F1-score, precision, and recall. For each sound class, the detection
was measured with the labels and the number of false-positive (FP), true positive (TP), false-negative
(FN), and true negative (TN) were computed using the confusion matrix of each prediction. Accuracy
computes the frequency of accurately detected respiratory sound classes from the total number of
sound signals by using Eq. (3).

Accuracy = 1
N

N∑
i=1

(TP + TN)i

(TP + TN + FP + FN)i

(3)

where N shows the number of sound files.

A recall is used to calculate the number of accurately detected instances as positive instances using
Eq. (4) while precision is used to evaluate the performance of the proposed models to correctly detect
actual sound file as given in Eq. (5).

Recall = 1
N

N∑
i=1

(TP)i

(TP + FN)i

(4)

Precision = 1
N

N∑
i=1

(TP)i

(TP + FP)i

(5)

In addition, these evaluation metrics have been widely employed for the evaluation of various
disease detection, classification, and related systems [22,23].

3.7 Experimental Setup

We conducted all experiments using the anaconda, open-source software library that is used in
Python programming. It has various inbuilt machine learning algorithms and data science packages,
including NumPy, pandas, scikit-learn, etc. It also has some statistical packages for insight visualiza-
tion such as matplotlib, seaborn. It can function effectively in Windows and Linux operating system
platforms. It also offers a choice of creating various environments to perform various tasks using
specific packages.
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To implement the transformer and CNN models from scratch, Keras library has been utilized.
It provides easiness to users to add or drop layers, max-pooling functions, and activation functions
in both transformer and CNN. Another important python library known as Librosa is utilized to
conduct experiments for ESC. The purpose of this library is the evaluation of sound signals. In this
study, the seven acoustic feature extraction techniques used can be obtained using this package. These
feature extraction techniques are MFCC and its variants (delta, delta–delta), Mel spectrogram (Mel),
Chromagram, Tonnetz, and Spectral Contrast. This library executes the data enhancement techniques
involved in this study. Moreover, the experiments reported in this study were conducted on a laptop
of Apple MacBook Pro. The processor of the system is 2.5 GHz Dual-Core Intel(R) Core i5 with a
memory of 8 GB. The hard drive includes 512 GB SSD + 512 GB external HDD.

4 Results and Discussion

In this section, we present the performance evaluation of transformer and CNN models on the
original ESC-10, ESC-50, and UrbanSound8K datasets and enhanced datasets. The pre-divided 10
fold cross validation data split method was employed in all experiments, which implies that each data
sample was used in both training and test databases.

4.1 Results on the ESC-10 Database

The Tab. 2 and Fig. 3 illustrates the performance of CNN and transformer models by using the
Mel-spectrogram, Chromagram, MFFCs, delta MFCCs, delta-delta MFCCs, Tonnetz representation
and Spectral Contrast feature extraction methods on the original ESC-10. As shown in the table,
we have achieved the weighted test accuracy of 0.85 by using CNN model and 0.86 by using the
transformer model. In addition to this, we have evaluated the results on the basis of precision, recall,
and F1-score. We have observed the highest F1-score of 1.00 in Baby cry class by using CNN model
and the lowest 0.67 in the rain class. For the rest of the class F1-score was in between 0.71 to 0.94. The
highest recall score was achieved 1.00 in Helicopter, Rooster, and Fire classes and the rest classes were
in between 0.67 to 0.92. Similarly, for precision, the highest score was obtained by 1.00 in Chainsaw
class. Besides this, we evaluated the transformer model on the ESC-10 dataset and observed that the
transformer model performed better than CNN model in terms of accuracy and training time as shown
in Tab. 8. Moreover, the Fig. 2 demonstrate the training vs. validation accuracy of transformer and
CNN models on the original and enhanced ESC-10 dataset.

Table 2: Results on the original ESC-10 database

Class Accuracy Precision Recall F1-Score
CNN Transformer CNN Transformer CNN Transformer CNN Transformer

Dog Bark 0.80 0.75 0.89 1.00 0.80 0.75 0.84 0.86
Rain 0.67 0.88 0.75 0.78 0.67 0.88 0.71 0.82
Sea Waves 0.88 0.88 0.70 1.00 0.88 0.88 0.78 0.93
Baby Cry 1.00 0.88 1.00 0.88 1.00 0.88 1.00 0.88
Clock Tick 0.86 0.75 0.75 0.86 0.86 0.75 0.80 0.80
Person Sneeze 1.00 0.75 0.89 1.00 1.00 0.75 0.94 0.86
Helicopter 0.67 1.00 0.67 0.80 0.67 1.00 0.67 0.89

(Continued)
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Table 2: Continued
Class Accuracy Precision Recall F1-Score

CNN Transformer CNN Transformer CNN Transformer CNN Transformer

Chainsaw 0.83 0.75 1.00 0.86 0.83 0.75 0.91 0.80
Rooster 0.92 1.00 0.92 0.73 0.92 1.00 0.92 0.84
Fire Cracking 0.83 1.00 0.91 0.89 0.83 1.00 0.87 0.94
Weighted Average 0.85 0.86 0.86 0.88 0.85 0.86 0.85 0.86

Figure 2: Performance on ESC-10 (a) CNN performance on the original data (b) Transformer
performance on the original data (c) CNN performance on the enhanced data (d) Transformer
performance on the enhanced data
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Figure 3: Confusion metrics for the original ESC-10 database

To avoid the risk of overfitting problem, the data enhancement methods were applied to the audio
files. After the data enhancement, both CNN and transformer models receive enough training data as
input. The experimental results demonstrated in Tabs. 3 and 8 reveals the benefit of employing data
enhancement for training both CNN and transformer models. The difference between the average
accuracies achieved by both models on the original and the enhanced datasets is around 11%. The
transformer model obtained the highest accuracy of 0.97 with the enhanced ESC-10. The accuracy of
each class is presented in Fig. 4.

Table 3: Results on the enhanced ESC-10 dataset

Class Accuracy Precision Recall F1-Score

CNN Transformer CNN Transformer CNN Transformer CNN Transformer

Dog Bark 0.94 0.93 0.91 1.00 0.94 0.93 0.92 0.97
Rain 0.94 1.00 0.97 0.86 0.94 1.00 0.95 0.92
Sea Waves 1.00 0.93 1.00 0.98 1.00 0.93 1.00 0.95
Baby Cry 0.97 1.00 0.97 1.00 0.97 1.00 0.97 1.00
Clock Tick 0.91 1.00 1.00 0.97 0.91 1.00 0.95 0.98
Person Sneeze 0.97 1.00 0.91 0.94 0.97 1.00 0.94 0.97
Helicopter 0.97 0.90 0.94 1.00 0.97 0.90 0.95 0.95
Chainsaw 0.94 0.94 1.00 1.00 0.94 0.94 0.97 0.97
Rooster 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Fire Cracking 1.00 1.00 0.94 1.00 1.00 1.00 0.97 1.00
Weighted Average 0.96 0.97 0.96 0.97 0.96 0.97 0.96 0.97
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Figure 4: Confusion metrics for the original ESC-10 database with enchantment

4.2 Results on the ESC-50 Database

The ESC-50 database is substantially more complicated and comprehensive. The possibility of
overfitting issue is higher than ESC-10 database because ESC-50 contains a larger number of classes
and a small number of audio files for model training. Tab. 4 demonstrate the performance of CNN
and transformer models on the original ESC-50 database. The experimental results again exhibit the
advantages of using transformer as it requires less training time compared to CNN and the best
accuracy of 0.57 was achieved as shown in Tab. 8.

Subsequently, the results shown in Tab. 4 illustrate that ESC-50 is the highly affected dataset
compared to ESC-10 because of the overfitting issue. To overcome the issue of overfitting, three data
enhancement methods were applied on ESC-50 dataset. The experimental results as presented in Tab. 5
demonstrate the improvement related to the overfitting issues. The highest achieved accuracy was
0.94 by again transformer model and outperformed the CNN in both accuracy and training time.
Moreover, the training vs. validation accuracy of transformer and CNN models on the original and
enhanced ESC-50 dataset is illustrated in Fig. 5.

Table 4: Results on the original ESC-50 database

Class Accuracy Precision Recall F1-Score
CNN Transformer CNN Transformer CNN Transformer CNN Transformer

Dog 0.75 0.29 0.50 0.29 0.75 0.29 0.27 0.29
Rooster 0.71 0.67 1.00 0.67 0.71 0.67 0.57 0.67
Pig 0.44 0.00 0.80 0.00 0.44 0.00 0.00 0.00
Cow 0.33 0.67 0.50 0.67 0.33 0.67 0.71 0.67
Frog 0.57 0.67 0.67 0.67 0.57 0.67 0.62 0.67
Cat 0.40 0.43 0.29 0.43 0.40 0.43 0.33 0.43
Hen 0.44 0.56 0.50 0.56 0.44 0.56 0.47 0.56

(Continued)
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Table 4: Continued
Class Accuracy Precision Recall F1-Score

CNN Transformer CNN Transformer CNN Transformer CNN Transformer

Insects 0.36 0.78 0.40 0.78 0.36 0.78 0.38 0.78
Sheep 0.71 0.60 0.71 0.60 0.71 0.60 0.71 0.60
Crow 0.38 0.60 0.62 0.60 0.38 0.60 0.48 0.60
Rain 0.60 0.75 0.50 0.75 0.60 0.75 0.55 0.75
Sea Waves 0.60 0.70 0.50 0.70 0.60 0.70 0.55 0.70
Cracking Fire 0.78 0.50 0.64 0.50 0.78 0.50 0.70 0.50
Crickets 0.80 0.67 0.89 0.67 0.80 0.67 0.84 0.67
Chirping Birds 0.62 0.64 1.00 0.64 0.62 0.64 0.77 0.64
Water Drops 0.40 1.00 0.67 1.00 0.40 1.00 0.50 1.00
Wind 0.50 0.29 0.56 0.29 0.50 0.29 0.53 0.29
Pouring Water 0.56 0.38 0.62 0.38 0.56 0.38 0.59 0.38
Toilet Flush 0.89 0.88 0.80 0.88 0.89 0.88 0.84 0.88
Thunderstorm 1.00 0.88 0.67 0.88 1.00 0.88 0.80 0.88
Crying Baby 0.33 0.25 0.80 0.25 0.33 0.25 0.47 0.25
Sneezing 0.90 0.75 0.82 0.75 0.90 0.75 0.86 0.75
Clapping 0.73 0.88 0.53 0.88 0.73 0.88 0.62 0.88
Breathing 0.50 0.64 0.14 0.64 0.50 0.64 0.22 0.64
Coughing 0.67 0.50 0.40 0.50 0.67 0.50 0.50 0.50
Footsteps 0.62 0.46 0.36 0.46 0.62 0.46 0.45 0.46
Laughing 0.12 0.88 1.00 0.88 0.12 0.88 0.22 0.88
Brushing Teeth 0.86 0.56 0.55 0.56 0.86 0.56 0.67 0.56
Snoring 0.60 0.36 0.43 0.36 0.60 0.36 0.50 0.36
Drinking 0.20 0.50 0.09 0.50 0.20 0.50 0.13 0.50
Door Knock 0.62 0.50 0.71 0.50 0.62 0.50 0.67 0.50
Mouse Click 0.25 0.50 1.00 0.50 0.25 0.50 0.40 0.50
Keyboard Typing 0.17 0.60 0.33 0.60 0.17 0.60 0.22 0.60
Door 0.45 0.00 0.71 0.00 0.45 0.00 0.56 0.00
Can Opening 0.67 0.78 0.40 0.78 0.67 0.78 0.50 0.78
Washing Machine 0.40 0.36 0.33 0.36 0.40 0.36 0.36 0.36
Vacuum Cleaner 0.50 0.50 0.40 0.50 0.50 0.50 0.44 0.50
Clock Alarm 0.75 0.50 0.86 0.50 0.75 0.50 0.80 0.50
Clock Tick 0.25 0.67 0.33 0.67 0.25 0.67 0.29 0.67
Glass Breaking 0.86 0.71 0.60 0.71 0.86 0.71 0.71 0.71
Helicopter 0.14 0.38 0.33 0.38 0.14 0.38 0.20 0.38
Chainsaw 0.60 1.00 0.67 1.00 0.60 1.00 0.63 1.00
Siren 0.75 0.50 0.43 0.50 0.75 0.50 0.55 0.50
Car Horn 0.36 0.56 0.80 0.56 0.36 0.56 0.50 0.56
Engine 0.12 0.75 0.17 0.75 0.12 0.75 0.14 0.75
Train 0.64 0.83 0.50 0.83 0.64 0.83 0.56 0.83
Church Bells 0.83 0.40 1.00 0.40 0.83 0.40 0.91 0.40
Airplane 0.88 0.50 0.58 0.50 0.88 0.50 0.70 0.50

(Continued)
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Table 4: Continued
Class Accuracy Precision Recall F1-Score

CNN Transformer CNN Transformer CNN Transformer CNN Transformer

Fireworks 0.70 0.50 0.78 0.50 0.70 0.50 0.74 0.50
Handsaw 0.30 0.44 0.50 0.44 0.30 0.44 0.37 0.44
Weighted 0.56 0.56 0.61 0.56 0.56 0.56 0.55 0.54

Table 5: Results on the enhanced ESC-50 database

Class Accuracy Precision Recall F1-Score
CNN Transformer CNN Transformer CNN Transformer CNN Transformer

Dog 0.94 0.91 0.86 0.97 0.94 0.91 0.90 0.94
Rooster 0.91 0.97 0.97 1.00 0.91 0.97 0.94 0.98
Pig 0.75 0.96 0.86 1.00 0.75 0.96 0.80 0.98
Cow 0.81 0.96 0.90 0.92 0.81 0.96 0.85 0.94
Frog 1.00 0.96 1.00 1.00 1.00 0.96 1.00 0.98
Cat 0.78 0.92 0.96 1.00 0.78 0.92 0.86 0.96
Hen 0.91 0.97 0.85 1.00 0.91 0.97 0.88 0.98
Insects 1.00 1.00 0.91 0.97 1.00 1.00 0.96 0.99
Sheep 0.91 1.00 0.94 1.00 0.91 1.00 0.92 1.00
Crow 1.00 0.97 1.00 1.00 1.00 0.97 1.00 0.98
Rain 0.94 0.95 0.88 0.90 0.94 0.95 0.91 0.92
Sea Waves 0.91 0.83 0.91 1.00 0.91 0.83 0.91 0.91
Cracking Fire 0.97 1.00 0.94 0.89 0.97 1.00 0.95 0.94
Crickets 0.81 1.00 0.87 1.00 0.81 1.00 0.84 1.00
Chirping Birds 0.97 0.93 0.84 1.00 0.97 0.93 0.90 0.96
Water Drops 0.84 0.81 0.96 0.96 0.84 0.81 0.90 0.88
Wind 0.88 0.93 0.97 1.00 0.88 0.93 0.92 0.96
Pouring Water 0.97 0.87 0.82 1.00 0.97 0.87 0.89 0.93
Toilet Flush 0.91 0.90 0.91 0.95 0.91 0.90 0.91 0.92
Thunderstorm 0.91 1.00 0.97 0.93 0.91 1.00 0.94 0.96
Crying Baby 0.94 1.00 0.91 1.00 0.94 1.00 0.92 1.00
Sneezing 0.94 1.00 1.00 0.88 0.94 1.00 0.97 0.94
Clapping 1.00 1.00 1.00 0.89 1.00 1.00 1.00 0.94
Breathing 0.91 0.89 0.91 0.89 0.91 0.89 0.91 0.89
Coughing 1.00 0.96 1.00 1.00 1.00 0.96 1.00 0.98
Footsteps 0.91 1.00 0.72 0.97 0.91 1.00 0.81 0.99
Laughing 0.91 0.93 0.97 1.00 0.91 0.93 0.94 0.96
Brushing Teeth 0.88 0.92 0.90 0.82 0.88 0.92 0.89 0.87
Snoring 0.88 0.94 0.93 1.00 0.88 0.94 0.90 0.97
Drinking 0.78 0.81 0.86 0.95 0.78 0.81 0.82 0.88
Door Knock 0.94 0.88 0.86 0.92 0.94 0.88 0.90 0.90
Mouse Click 0.81 0.75 0.90 0.68 0.81 0.75 0.85 0.71
Keyboard Typing 0.91 0.84 0.94 0.90 0.91 0.84 0.92 0.87

(Continued)
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Table 5: Continued
Class Accuracy Precision Recall F1-Score

CNN Transformer CNN Transformer CNN Transformer CNN Transformer

Door 0.91 0.94 0.76 0.91 0.91 0.94 0.83 0.93
Can Opening 0.97 0.97 0.76 0.94 0.97 0.97 0.85 0.95
Washing Machine 0.91 0.90 0.88 0.95 0.91 0.90 0.89 0.92
Vacuum Cleaner 0.94 1.00 0.94 0.94 0.94 1.00 0.94 0.97
Clock Alarm 0.94 1.00 0.97 0.94 0.94 1.00 0.95 0.97
Clock Tick 0.84 0.91 0.96 0.80 0.84 0.91 0.90 0.85
Glass Breaking 0.88 0.97 0.93 0.91 0.88 0.97 0.90 0.94
Helicopter 0.88 0.93 0.97 0.85 0.88 0.93 0.92 0.89
Chainsaw 0.88 0.95 0.93 0.91 0.88 0.95 0.90 0.93
Siren 0.94 0.97 0.81 0.90 0.94 0.97 0.87 0.94
Car Horn 0.91 1.00 0.88 1.00 0.91 1.00 0.89 1.00
Engine 0.88 0.94 0.82 0.91 0.88 0.94 0.85 0.92
Train 0.91 0.88 0.94 0.91 0.91 0.88 0.92 0.90
Church Bells 0.88 1.00 1.00 1.00 0.88 1.00 0.93 1.00
Airplane 0.84 0.94 0.90 0.97 0.84 0.94 0.87 0.95
Fireworks 0.94 1.00 0.91 0.97 0.94 1.00 0.92 0.98
Handsaw 0.94 0.86 0.91 0.89 0.94 0.86 0.92 0.87
Weighted 0.90 0.94 0.91 0.94 0.90 0.94 0.90 0.94

Figure 5: (Continued)
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Figure 5: Performance on ESC-50 (a) CNN performance on the original data (b) Transformer
performance on the original data (c) CNN performance on the enhanced data (d) Transformer
performance on the enhanced data

4.3 Results on the Urbansound8k Database

The overfitting issue may be insignificant in this database due to its size. The UrbanSound8K
database contains a smaller number of classes (10) and a large number of audio files (8732) for the
training of CNN and transformer models. Tab. 6 illustrates the performance of both models on the
original UrbanSound8K database. Again, the highest accuracy was 0.94 by the transformer model
combined with seven acoustic features (mel spectrogram, chromagram, MFFCs, delta delta MFCCs,
delta-delta MFCCs, Tonnetz representation and spectral contrast). The classification accuracy of
each class in this database for both CNN and transformer models is presented in Figs. 6a and 6b
respectively.

Table 6: Results on the original UrbanSound8K database

Class Accuracy Precision Recall F1-Score

CNN Transformer CNN Transformer CNN Transformer CNN Transformer

Air Conditioner 0.97 1.00 0.94 0.95 0.97 1.00 0.95 0.98
Car Horn 0.95 0.86 0.94 0.95 0.95 0.86 0.95 0.90
Children Playing 0.91 0.90 0.95 0.87 0.91 0.90 0.93 0.88
Dog Bark 0.86 0.89 0.94 0.93 0.86 0.89 0.90 0.91
Drilling 0.95 0.95 0.86 0.96 0.95 0.95 0.90 0.96
Engine Idling 0.98 0.97 0.94 0.97 0.98 0.97 0.96 0.97
Gun Shot 0.99 0.95 0.88 0.96 0.99 0.95 0.93 0.95
Jackhammer 0.97 0.97 0.95 0.95 0.97 0.97 0.96 0.96
Siren 0.95 0.99 0.94 0.95 0.95 0.99 0.95 0.97
Street Music 0.83 0.86 0.98 0.92 0.83 0.86 0.90 0.89
Weighted 0.93 0.94 0.93 0.94 0.93 0.94 0.93 0.94
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Figure 6: Confusion metric on original US8k

Tab. 7 demonstrates the experimental results of CNN and transformer models on the enhanced
UrbanSound8K database. The best achieved accuracy was 0.98 exhibited by both models. However,
the transformer model performed better than CNN as it consumed less time for training as shown
in Tab. 8. The accuracy difference between the enhanced and original UrbanSound8K database
is minimal as the original UrbanSound8K database already contains large amount of audio files.
The classification accuracy of each class in this database for both CNN and transformer models
is presented in Figs. 7a and 7b respectively. In addition, the Fig. 8 shows the training vs. validation
accuracy of transformer and CNN models on the original and enhanced UrbanSound8K dataset.
Finally, the Tab. 8 summarizes the results of the detailed comparison and analysis and of all databases.

Table 7: Results on the enhanced UrbanSound8K database

Class Accuracy Precision Recall F1-Score

CNN Transformer CNN Transformer CNN Transformer CNN Transformer

Air Conditioner 0.99 1.00 0.97 0.95 0.99 1.00 0.98 0.99
Car Horn 1.00 0.97 1.00 0.95 1.00 0.97 1.00 0.98
Children Playing 0.95 0.98 0.99 0.87 0.95 0.98 0.97 0.98
Dog Bark 0.97 0.95 0.99 0.93 0.97 0.95 0.98 0.97
Drilling 0.98 0.99 0.97 0.96 0.98 0.99 0.97 0.97
Engine Idling 0.99 0.99 0.96 0.97 0.99 0.99 0.98 0.99
Gun Shot 0.99 1.00 0.99 0.96 0.99 1.00 0.99 1.00
Jackhammer 0.99 0.97 0.97 0.95 0.99 0.97 0.98 0.98
Siren 1.00 0.98 0.99 0.95 1.00 0.98 0.99 0.98
Street Music 0.95 0.95 0.97 0.92 0.95 0.95 0.97 0.96
Weighted 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
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Table 8: Performance evaluation of CNN and transformer on original and enhanced data

Dataset CNN Transformer

Training time (s) Accuracy Training time (s) Accuracy

Original ESC-10 74 0.85 25 0.86
Enhanced ESC-10 287 0.96 104 0.97
Original ESC-50 354 0.56 116 0.56
Enhanced ESC-50 1416 0.90 467 0.94
Original US8K 1544 0.93 512 0.94
Enhanced US8K 5939 0.98 2195 0.98

Figure 7: Confusion metric using the enhanced UrbanSound8K database with data enhancement

Figure 8: (Continued)
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Figure 8: Performance on US8K (a) CNN performance on the original data (b) Transformer perfor-
mance on the original data (c) CNN performance on the enhanced data (d) Transformer performance
on the enhanced data

4.4 Comparison with Existing Methods on ESC

To investigate the significance of the proposed environmental sound classification using trans-
former based deep learning methods, we compared the proposed transformer model with existing
studies in environmental sound classification using similar datasets. Six (6) recent studies on environ-
mental sound classification were chosen. These include [21,24–28]. In [24] proposed hybrid feature
generation method to extract statistical and textual features from sound wave for ESC. Here, the
feature vectors extracted were categorized into one-dimensional local binary feature pattern (1D-
LBP), one-dimensional ternary feature (1D-TP), and statistical features such as mean, median etc.
The extracted features were fed to a 3rd polynomial order kernel-based support vector machine and
achieved a classification accuracy of 90.2%. Reference [25] proposed convolutional neural network
with data enhancement to automatically extract Mel-Spectrogram features from an audio clip. In
addition, the study used CNN model learned from scratch transfer learning mechanism and data
enhancement although signal variation applied to the audio clips. The study achieved 94.9%, 89.2%,
and 95.3% accuracy on ESC-10, ESC-50, and US8K datasets, respectively. In a similar study [26],
authors evaluated the impact of deep convolutional neural networks and denoised sound wave using
STFT for ESC. The authors deployed pretrained CNN models such as VCGNet16, VCGNet19, and
DenseNet201 for automatic feature extraction. Then the extracted feature sets were fed to the support
vector machine for ESC. Furthermore, authors [21] proposed regularized deep convolutional neural
networks for ESC. The study extracted features such as MFCC, Mel-Spectrogram, and Log-Mel
from the sound wave. To avoid overfitting the CNN model and improve the performance results, the
authors applied data enhancement techniques such as shifting, adding white noise, and positive pitch
to increase the size of the data.

Other studies having similar implementation approaches to the current studies are the ones
proposed by [27,28]. While [27] introduced temporal attention based deep convolutional neural
networks for ESC, [28] proposed implementation of urban sound classification on-board embedded
systems. The proposed implementation was evaluated using conventional machine learning models.
The performance results obtained by these studies using ESC-10, ESC-50, US8K dataset, and different
machine learning models are presented in Tab. 9. The result obtained by our proposed transformer
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model and data enhancement is shown in the last row of Tab. 9. From the table, it is clear that the
proposed model clearly outperformed other baseline studies for ESC. The high performance of the
proposed transformer model is as a result of its ability to utilize the data enhancement to automatically
extract the relevant features from the sound waves. Hence, the performance of the transformer model
was improved on all used databases as compared to other baseline studies presented in Tab. 9.

Table 9: Comparison of proposed model with other existing models used on the evaluated databases

Study. Methodology ESC-10 ESC-50 US8K

[28] Conventional machine learning (k-NN) + statistical
features

73.8 48.7 50.6

[27] Temporal attention based convolutional filter + data
augmentation

93.7 86.1 –

[21] Regularized CNN + data augmentation 94.9 89.2 95.3
[24] Statistical and textual features + SVM 90.2 – –
[25] Mel-Spectrogram features + RESNet-152 +

DenseNet161
94.9 89.2 95.3

[26] STFT + CNN (VCGNet16, VCGNet19, DenseNet201)
+ data augmentation

94.8 81.4 78.1

This study Transformer model, CNN + data augmentation 97.0 94.1 98.0

5 Conclusion

ESC is a challenging problem because of the extraction of relevant features and classification. In
this paper, 1D CNN and transformer models for ESC were evaluated on the original and enhanced
data using seven different features. The performances of the proposed CNN and transformer models
were examined using the ESC-10, ESC-50, and UrbanSound8K datasets to demonstrate the robustness
and significance. The reported results showed that the proposed transformer model coupled with seven
features using all three datasets outperforming the baseline models. The transformer model achieved
97.0% accuracy for the ESC-10 enhanced dataset, 94.1% for the ESC-50 enhanced dataset, and 98.0%
for the UrbanSound8K enhanced dataset. In addition, the proposed transformer model achieved 86%,
56%, and 94% accuracy on ESC-10, ESC-50, and UrbanSound8K dataset, respectively, without using
data enhancement techniques. This article shows that the proposed transformer model can achieve
the best accuracy for the ESC task. The future work may be on the study of the selection of optimal
features and the evaluation of other deep learning models to obtain high-level features. Because of the
size constraints and computational complexity, in future the environmental sound classification (ESC)
models will be trained and deployed on the cloud. To use these cloud-based trained deep learning
models in real time, mobile applications will transfer input voice over the network.
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