
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScienceComputers, Materials & Continua
DOI: 10.32604/cmc.2023.032664

Article

Value-Based Test Case Prioritization for Regression Testing Using Genetic
Algorithms

Farrukh Shahzad Ahmed, Awais Majeed and Tamim Ahmed Khan*

Department of Software Engineering, Bahria University, Islamabad, Capital, Pakistan
*Corresponding Author: Tamim Ahmed Khan. Email: tamim@bahria.edu.pk

Received: 25 May 2022; Accepted: 12 July 2022

Abstract: Test Case Prioritization (TCP) techniques perform better than
other regression test optimization techniques including Test Suite Reduction
(TSR) and Test Case Selection (TCS). Many TCP techniques are available, and
their performance is usually measured through a metric Average Percentage
of Fault Detection (APFD). This metric is value-neutral because it only
works well when all test cases have the same cost, and all faults have the
same severity. Using APFD for performance evaluation of test case orders
where test cases cost or faults severity varies is prone to produce false results.
Therefore, using the right metric for performance evaluation of TCP tech-
niques is very important to get reliable and correct results. In this paper, two
value-based TCP techniques have been introduced using Genetic Algorithm
(GA) including Value-Cognizant Fault Detection-Based TCP (VCFDB-TCP)
and Value-Cognizant Requirements Coverage-Based TCP (VCRCB-TCP).
Two novel value-based performance evaluation metrics are also introduced
for value-based TCP including Average Percentage of Fault Detection per
value (APFDv) and Average Percentage of Requirements Coverage per value
(APRCv). Two case studies are performed to validate proposed techniques
and performance evaluation metrics. The proposed GA-based techniques
outperformed the existing state-of-the-art TCP techniques including Original
Order (OO), Reverse Order (REV-O), Random Order (RO), and Greedy
algorithm.

Keywords: Average percentage of fault detection; test case prioritization;
regression testing; and value-based testing; value-based test case
prioritization; genetic algorithms

1 Introduction

There are limited time and costs available for regression testing. There is a chance to stop, or halt
testing earlier due to these resource constraints and leave it incomplete. Incomplete regression testing
is always a threat to the application, and it can harm business operations. The intelligent utilization
of testing resources and smart execution of test cases is key to testing success. There are three types
of regression optimization techniques including TCS, TSR, and TCP. TCS is widely applied in the

https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2023.032664
mailto:tamim@bahria.edu.pk


2212 CMC, 2023, vol.74, no.1

industry, but it is not risk-free because it is based on selection. Similarly, TSR cannot guarantee that
only unrelated test cases are eliminated from the test suite. On the other hand, TCP does not reduce
or remove test cases from the test suite. That is why it is more secure, reliable, and popular in practice
and a lot of research work is being done in this field.

TCP is one of the ways for optimized regression testing [1]. Gregg Rothermel et al. defined the
TCP problem as follows [2]. Suppose T is a test suite, PT is a set of permutations of T, and f is a function
from PT to real numbers, f: PT→R. Prioritization Goal: To find a TI∈ PT that maximizes f .

The core objectives of TCP include early fault detection, quick product maturity, efficient
utilization of testing resources, and an increased APFD rate. There are several TCP techniques
available to achieve these objectives. Some of the categories of TCP techniques include risk-based [3],
history-based, coverage-based, fault-based, search-based, and requirements-based [4]. Search-based
TCP techniques help in finding the best test case order by searching in the global search space. Search-
based techniques include greedy algorithm, genetic algorithm, additional greedy, hill climbing, etc.
The search-based TCP techniques may produce suboptimal results because they may construct results
that denote only local minima in the global search space [5].

Most of the existing TCP techniques are designed in a value-neutral fashion. The performance
evaluation of these techniques is also done in a value-neutral fashion. The metric commonly used for
their performance evaluation is the APFD and it is based on the assumption that all faults have the
same severity and all test cases have the same cost [6]. This assumption rarely holds in practice. The
existing TCP techniques are based on traditional coverage metrics like statement coverage, function
coverage, method coverage, and branch coverage. Recent studies are evident that 100% coverage
does not mean 100% bug detection [7]. All software requirements and code segments are not of
equal worth because they have different values. Therefore, the traditional coverage metrics are not
the best adequacy criterion for TCP. Similarly, there is a notion that all faults are of equal severity
[8]. The traditional APFD metric is completely based on this notion. The existing TCP approaches
have been dominantly validated through APFD without considering the severity and criticality of
the faults. The APFD rate is not an appropriate criterion for the performance evaluation of TCP
techniques where test cases vary in terms of cost and faults vary in terms of severity. A cost-cognizant
metric APFDc is available for fault-severity detection based on TCP [6]. But as per the best of the
authors’ knowledge, there is no value-cognizant metric available for coverage-based TCP. Due to
these limitations, TCP techniques and their performance evaluation metrics are likely to produce
unsatisfactory and unreliable results. Therefore, a mechanism is required to overcome these limitations
by taking value considerations into account.

To address these limitations, two value cognizant TCP approaches are proposed here includ-
ing Value-Cognizant Faults Detection-Based Test Case Prioritization (VCFDB-TCP) and Value-
Cognizant Requirements Coverage-Based Test Case Prioritization (VCRCB-TCP). The case study
method is adopted as a research methodology. The proposed techniques are searched based and
implemented using GA. These are different from other GA-based techniques because they are based on
business value. Their objective function is to improve fault detection in terms of business value and to
improve requirement coverage in terms of business value. For performance evaluation of the proposed
techniques two value cognizant metrics are proposed in this paper including Average Percentage of
Fault Detection per Value (APFDv), and Average Percentage of Requirements Coverage per Value
(APRCv). The proposed techniques have been evaluated through two case studies by using the dataset
of multiple versions of different health care applications developed using .Net technologies. These
are developed by a US-based software company to support care management of Accountable Care



CMC, 2023, vol.74, no.1 2213

Organization (ACO)-based population. We used this company’s original dataset because they are
managing the business value of requirements and bug severity and test cases. They have a traceability
matrix of test cases vs. bugs and test cases vs. requirements. There is no public dataset available with
a business value-based test case vs. bugs coverage matrix and test cases vs. requirements coverage
matrix. The proposed techniques are evaluated by using the proposed metrics APFDv and APRCv.
The results are compared with the state-of-the-art TCP techniques. The proposed techniques produced
better results than other techniques. The rest of the paper is organized as follows. Section 2 gives
an overview of the related work and Section 3 presents proposed value-based TCP techniques and
evaluation metrics. The evaluation and results of the case studies are presented in Section 4. Threats
to validity are presented in Section 5 and the conclusion and future work are given in Section 6.

2 Related Work

In this section, the existing TCP techniques have been summarized. An algorithm is proposed for
automatic prioritization of test cases based on output diversity as a representation of fault revealing
probability and test coverage information [9]. In this technique, a dynamic prioritization based on the
greedy algorithm is taken because test coverage information was already there and the size of the test
suite to be prioritized was small containing around 500 test cases. A TCP technique is proposed using
the Firefly Algorithm with a fitness function using a similarity distance model [10]. This technique
outperformed Particle Swarm Optimization (PSO), Local Beam Search (LBS), Greedy algorithm,
and Genetic Algorithm (GA). A supportive tool sOrTES is introduced to measure independence
and ranking of integration test cases based on execution time and requirements coverage [11]. An
approach for ordering JUnit test cases is proposed by using optimization heuristics including the
Genetic Algorithm (GA), Simulated Annealing (SA), Ant Colony Optimization (ACO), and Multi-
Objective Genetic Algorithm (MOGA) [12]. Ant Colony Optimization (ACO) based techniques are
used to solve coverage-based TCP problems and are better than Genetic Algorithm based techniques
[13].

A dissimilarity clustering-based TCP technique has been proposed using historical data and
is reported to be better than random and similarity-based techniques, therefore this adequacy
criterion for test prioritization can be risky [14]. A structural coverage-based TCP technique has
been proposed as an optimal process including branch coverage, decision coverage, or statement
coverage [15]. An epistasis-based Ant colony optimization algorithm is proposed for TCP [16]. It
provides better results than traditional ACO-based techniques and NSGA-II algorithms in terms
of APSC, and execution time. A tie-breaking coverage-based prioritization technique is proposed
using lexicographical ordering through a Greedy Algorithm [17]. Alessandro Marchetto et al. [18],
has proposed a multi-objective TCP technique that uncovers both technical and business faults early.
The proposed technique is a metric-based approach implemented through NSGA II and is evident to
improve both fault detection and execution time. It considers code coverage, requirements coverage,
and execution time. A dissimilarity-based TCP technique has been proposed by using historical failure
data analysis [19]. It generates clusters of similar test cases and prioritizes the test cases based on
dissimilarity. The proposed technique has been validated with random ordering, untreated ordering,
and similarity order. It provided better APFD values than other comparison techniques. A TCP
technique has been proposed for JUnit test cases without having coverage information [20]. It is based
on static call graphs to estimate the code coverage ability of JUnit test cases. The prioritization of
test cases is then made based on estimated code coverage instead of real code coverage information.
The performance of this technique is then evaluated and compared with untreated, random, and
dynamic coverage-based techniques. It is found that the proposed technique is better than random,



2214 CMC, 2023, vol.74, no.1

and untreated prioritization but almost near to dynamic TCP in terms of APFD. A prioritization
approach (MR-TCP) has been proposed based on method-level risk computation [3]. The risk value
of test cases is calculated based on risk values of correlating methods within a system under test. Then
test cases are prioritized based on associated risk values. The reported empirical evaluation shows that
MR-TCP produced good results in terms of APFD in comparison with original order (OO-TCP),
random order (RO-TCP), and reverse order (REO-TCP), ANN approach (ANN-TCP), and total
method coverage approach (TMC-TCP). A hybrid criteria TCP technique is proposed for a higher
average fault detection rate [21]. An adaptive randomized TCP technique has been proposed in [22].
This technique is input-based and was validated through experience, and it showed that it provides
higher APFD than the other code coverage-based techniques including greedy, GA, and ART. This
technique is more efficient than greedy and genetic but less efficient than ART.

A FAST family of prioritization techniques has been described in [23]. The FAST techniques
handle huge size test suites by utilizing Big Data techniques to achieve scalability in TCP to meet
current industrial demands. The coverage-based technique usually does not consider non-code-based
software artifacts like configuration files [24]. An empirical study was performed in [25], which is
a clustering approach that combines fault prediction for TCP. This claims an improvement in the
effectiveness of TCP. A Total coverage-based TCP approach using a modified genetic algorithm has
been proposed in [26]. This approach targets to improve condition coverage and execution time. A
similarity-based risk-driven TCP in combination with fault prediction has been proposed in [27]. In
this approach, the risk of a test case increases if it is similar to a failing test case. It is better than the
conventional risk measure where the risk of a test case rises if it is the very same test case, that failed in
the past. A history-based TCP approach has been proposed in [28] by using TITAN technology. The
objective of this approach was to maximize fault detection and test coverage. A machine learning-
based TCP technique has been proposed for black-box testing [29]. This technique showed that the
natural language description of test cases plays a very important role in TCP. Due to this feature APFD
value can be increased for all machine learning algorithms. An optimized test prioritization technique
has been proposed by using an ant colony optimization (ACO) algorithm [30]. The objective of this
technique is to increase the fault detection rate and reduce regression testing costs and time. For active
learning of relationship extraction, lexical dependency paths have been employed [31,32].

A bat-inspired algorithm BITCP is proposed for TCP providing a good complexity percentage
of fault detection correlation [33]. The cost of individual test cases is considered for prioritizing the
test cases. A multi-perspective technique for TCP is proposed for a time constraint environment. It
considers the technical perspective, business perspective, and performance perspective. The objective
of this technique is faster fault detection with maximum test case execution with higher failure
frequency and cross-functional coverage [34]. A quality-aware TCP (QTEP) technique is proposed
considering the likely dispersal of the faults in the code [35]. Test cases are prioritized based on the
fault proneness of the source code. The test cases covering fault-prone source code are awarded high
priority. A technique is proposed for the prioritization of the combinatorial tests set by using data flow
techniques [36]. It provides a higher fault detection rate than unordered test cases. The similarity of
test cases, tuples covered, and length of test cases are considered for combinatorial testing. A value-
based PSO algorithm is proposed for TCP that is claimed to be more robust and efficient than random
prioritization [37]. The value-based cost-cognizant TCP techniques deal with the severity of faults and
the cost of test cases in the prioritization process [38]. The value-based TCP takes the challenge of
integrating value consideration into the prioritization process. The value orientation in TCP ensures
that prioritization satisfies its value objectives. In practice, 80% of the value exists in a 20% portion
of the software [39,40]. This fact supports the need for value-orientation in software testing. But a



CMC, 2023, vol.74, no.1 2215

limited number of value-based cost-cognizant TCP techniques are available in the literature. Systematic
literature is performed that reveals that value-orientation is vital in the TCP process to achieve its
intended goals and there is great potential in this research domain [41]. Using the right metric for
performance evaluation of TCP is very imperative to get reliable and correct results. Different metrics
have been developed to measure the performance of different permutations of test cases in a test
case suite. APFD is a standard metric used for performance evaluation of TCP techniques and was
introduced by Sebastian Elbaum et al. in 2000 [42]. It is the most popular metric and is dominantly
used by researchers who worked to solve the TCP problem. APFD is presented by Eq. (1).

APFD = 1 −
∑n

i=1 TFi

mn
+ 1

2n
(1)

In this formula, m is the total number of faults detected and n is the total number of test cases,
and TFi is the order of the first test case that reveals fault Fi. This is a value-neutral metric based on
the assumption that all faults have the same severity, and that all test cases have the same cost [24].
This assumption rarely holds in practice. This metric is very likely to produce unsatisfactory results in
cases where the severity of faults and cost of test cases vary. APFDc metric was proposed to overcome
the shortcomings of the APFD metric [6]. APFDc considers varying test cases cost and fault severity.
This new cost-cognizant metric was proposed in a value-based fashion. It accounts for units of faults’
severity exposed by units of test cases’ cost. APFDc is presented in Eq. (2).

APFDC =
∑m

i=1(fi × (
∑n

j=TFi
tj − 1

2
tTFi))

∑n

i=1 ti × ∑m

i=1 fi

(2)

In Eq. (2), fi is the severity of fault i, ti is the cost of test case i, and TFi is the order of the first
test case that detects fault i. APFDc is also widely used as a performance evaluation metric for TCP
techniques. Two cost-cognizant prioritization techniques have been discussed including additional
statement coverage prioritization (st-addtl) and additional function coverage prioritization (fn-addtl)
in [6]. In st-addtl, the author estimated the criticality of the statement by the severity of faults that
occurred in that statement. Similarly, the criticality of function is estimated by the severity of faults
that occurred in that function. Test cases are then prioritized on the “statement criticality ratio cost of
test case”for st-addtl prioritization. Similarly, test cases are prioritized on the “function criticality ratio
cost of the test case” for fn-addtl prioritization. Estimating the criticality of statements, and functions
through the severity of their associated faults is not an appropriate method used in prioritization. We
believe that the term “value” is more appropriate instead of criticality. The value of statements and the
value of functions should be estimated through the business value of the requirement with which they
are associated instead of estimated through fault severities.

3 Proposed Value-Based TCP Technique

The proposed technique has two variants. The first variant is VCFDB-TCP shown in Fig. 1 and its
performance evaluation metric is represented by Eq. (4). The second variant is VCRCB-TCP shown
in Fig. 2 and its performance evaluation metric APRCv is represented by Eq. (6). Two case studies
are performed to validate the proposed techniques. Case study 1 is applied to VCFDB-TCP and the
results are presented in the “evaluation and results” section. Case study 2 is applied to VCRCB-TCP
and the results are presented in the “evaluation and results” section.



2216 CMC, 2023, vol.74, no.1

3.1 Value-Cognizant Fault Detection-Based TCP (VCFDB-TCP)

The purposed technique assumes that regression test cases are already there along with their
execution history and bugs association. A traceability matrix of test cases vs. bugs is designed based
on the execution history of test cases available in DevOps. In this technique, test cases are prioritized
based on their value of Severity Detection Score (SDS). The measure “SDS” for a test case is the fault
severity detection per execution time of a test case. The proposed VCFDB-TCP is depicted in Fig. 1.
The formula for severity detection score can be represented by Eq. (3).

Severity detection score = Sum of fault severity detected
Test case execution time

(3)

For a test case, the Severity Detection Score (SDS) is the sum of the severity of faults detected that
are not already detected by any other test case. For the test cases presented in Tab. 1, the measure SDS
is presented in Tab. 2.

Table 1: Test cases with cost vs. faults with severity

Test cases with cost Faults with severities

F1 = 2 F2 = 1 F3 = 4 F4 = 3

A = 3 x x
B = 1 x
C = 2 x x

Table 2: Test cases fault severity detection score

Test case S/C SDS

A 6/3 2
B 1/1 1
C 3/2 1.5

According to SDS in Tab. 2, A, C, B is the best order of execution. Tab. 3 is showing the
performance results of different orders of test cases in the test case suite evaluated in terms of APFDv.
The value of APFDv is calculated by using the formula given in Eq. (4). In this paper, a new metric
Average Percentage of Fault Detection Per Value (APFDv) is proposed.



CMC, 2023, vol.74, no.1 2217

Figure 1: Overview of Value-based TCP

Table 3: Performance in terms of APFDv

Test case order APFDv

B, A, C 92.00%
B, C, A 91.00%
C, B, A 92.00%
C, A, B 94.00%
A, B, C 94.00%
A, C, B 95.00%

This metric provides the measure of average percentage detection of fault severity ratio test case
execution time for a given order of test cases in a test suite. For test case execution the term test case
cost is used. The metric formula is given in Eq. (4).

APFDv = 1 −
∑n

i=1(TFi × Si
Ci

)
∑n

i=1 (Ci) × ∑m

j=1 (Si)
+ 1

2 × ∑n

i=1 ci

(4)

In this equation, TFi is the order of the first test case that detects fault Fi, Si is the severity of fault
Fi, and Ci is the cost of the test case. This formula is derived from the native formula of APFD proposed
by Sebastian Elbaum et al. in 2000 [42]. The metric APFDv accommodates varying test case costs and
fault severity. It is also applicable when test case cost and fault severities are the same. The metric



2218 CMC, 2023, vol.74, no.1

APFDv is supposed to evaluate the performance of different prioritization orders. It is not supposed
to estimate fault severities and test case costs. It works when fault severities and test case costs are
already known. If severity and cost values are not known, it still works by considering that each test
case has a cost 1 and each fault has a severity of 1. It deals with cost and severity as equal units. To
understand the working of the proposed metric, consider the example given in Tab. 4 containing test
cases with cost vs. faults with a severity which is depicted in Fig. 2. We calculate the APFDv value for
the orders T5, T2, T1, T4, T3.

Table 4: Test cases with cost and Fault with severity

Test cases with cost Faults with severity

F1 = 2 F2 = 4 F3 = 1 F4 = 3

T1 = 4 x
T2 = 1 x
T3 = 2 x
T4 = 1 x
T5 = 3 x x

Figure 2: Cost vs. severity

The graph in Fig. 2 shows that 72% of tests detected 100% severity. In percentage, the resultant
value of APFDv is 86.00%. The minimum value of APFDv can be 0 and the maximum can be 100.
Now we consider four different cases to understand the working of the proposed metric. Tab. 5 shows
Case 1 where all test cases have the same and all faults have severity. Tab. 6 shows Case 2 where all
test cases have the same cost, but fault severity varies. Tab. 7 presents Case 3 where all faults have the
same severity, but test case cost varies. Tab. 8 presents Case 4, where both test cases’ cost and fault
severities vary.

Table 5: Same severity and same cost

Test cases with cost Faults with severities
F1 = 1 F2 = 1 F3 = 1

T1 = 1 x
T2 = 1 x

(Continued)



CMC, 2023, vol.74, no.1 2219

Table 5: Continued
Test cases with cost Faults with severities

F1 = 1 F2 = 1 F3 = 1

T3 = 1 x

Notes: (Case 1) For order (T1, T2, T3) APFDv = 0.50.
For order (T2, T1, T3) APFDv = 0.50.

Table 6: Varying severity and same cost

Test cases with cost Faults with severities

F1 = 2 F2 = 1 F3 = 1

T1 = 1 x
T2 = 1 x
T3 = 1 x
Notes: (Case 2) For order (T1, T2, T3) APFDv = 0.50.

For order (T2, T1, T3) APFDv = 0.59.

In Case 1, the value of APFDv is equal for both the orders T1, T2, T3 and T2, T1, T3. The exchange
of T1 and T2 order does not affect the result because they both detect 1 fault each. In Case 2, the value
of APFDv for the order T2, T1, T3 is higher than that of the order T1, T2, T3 because the detection
per cost of faults severities of T2 is higher than T1. The APFDv metric distinguished the order T2, T1,
T3 from T1, T2, T3 and demonstrated better results for it.

In Case 3 presented in Tab. 7, the value of APFDv for the order T1, T2, T3 is higher than that of
order T2, T1, T3 because the detection per cost of faults severities of T1 is higher than T2. The APFDv

metric distinguished the order T1, T2, T3 from T2, T1, T3 and demonstrated better results for it. In
Case 4 presented in Tab. 8, the value of APFDv for the order T1, T2, T3 is higher than that of order T3,
T2, T1 because the detection per cost of faults severities of T1 is higher than T3. The APFDv metric
distinguished the order T1, T2, T3 from T3, T2, T1 and demonstrated better results for it.

GA is used for VCFDB-TCP. GA is a search technique used to find approximate or true solutions
for search-based problems. In this paper, we consider the APFDv metric as a suitable fitness function
to guide value-based TCP. We used GA for the proposed technique because it is widely used to solve
optimization problems. Value-based regression test prioritization is also an optimization problem.
GA works on a search space and begins with a random population of permutations. It is based on
natural genetics and provides better results. It is highly parallelizable as compared to other search-
based algorithms [43].



2220 CMC, 2023, vol.74, no.1

Genetic Algorithm
Input: Test cases suite T= (t1, t2, t3, . . . , tn)

Execution cost of test cases (c1, c2, c3, . . . , cn)
Severity of faults (f1, f2, f3, . . . , fm)
Test cases vs. fault coverage matrix coverage
Performance goal is maximizing APFDv

Result: Permutation of test cases with maximum APFDv

1 Begin
/∗Initialization∗/

2 Read test cases vs. fault coverage matrix from the sheet in coverage
3 Calculate total severity of ‘m’ faults TotSev
4 Calculate the total cost of ‘n’ test cases TotCost
5 Record test case order in TestOrder
6 Read termination criteria from the user in Iterations
7 while (not Termination condition) do
8 begin
9 Generate n random permutations in the iteration
10 Evaluate fitness function against each permutation
11 Assign the best APFDv value to fitmax1 and assign its permutation to parent A
12 Assign the second-best APFDv value to fitmax2 and assign its permutation to

parent B
13 Update BestAPFD v and its permutation with fitmax1 and parent A
14 Perform order crossover on permutation with BestAPFDv

15 Perform swap mutation after crossover
16 end
17 Display permutation with BestAPFDv

18 end

Table 7: Varying cost and the same severity

Test cases with cost Faults with severities

F1 = 1 F2 = 1 F3 = 1

T1 = 1 x
T2 = 2 x
T3 = 1 x
Notes: (Case 3) For order (T1, T2, T3) APFDv = 0.71.
For order (T2, T1, T3) APFDv = 0.67.



CMC, 2023, vol.74, no.1 2221

Table 8: Varying severity and varying cost

Test cases with cost Faults with severities

F1 = 2 F2 = 1 F3 = 1

T1 = 1 x
T2 = 1 x
T3 = 3 x
Notes: (Case 4) For order (T1, T2, T3) APFDv= 0.80.
For order (T3, T2, T1) APFDv= 0.73.

We followed the order crossover of genes within a chromosome and this style was adopted by
Antoniol et al. [44] An order crossover is performed to generate a new chromosome. An order crossover
is performed at the middle position. The first half of genes are shifted to the second half and the second
half of genes are shifted to the first half. Swap mutation is used as a mutation process. New test orders
or permutations are generated by randomly swapping the position of two test cases.

3.2 Value-Cognizant Requirements Coverage-Based TCP (VCRCB-TCP)

The purposed technique assumes that regression test cases are already there along with their
execution history and requirements association. A traceability matrix of test cases vs. requirements
is designed based on the execution history of test cases available in DevOps. In this technique, test
cases are prioritized based on their business value coverage. The measure of “Business value coverage”
for a test case is the ratio of requirements for business value coverage per execution time of a test case.
The value-cognizant requirements coverage-based TCP is depicted in Fig. 3.

Figure 3: Value-cognizant requirements coverage-based TCP



2222 CMC, 2023, vol.74, no.1

The formula for business value coverage can be represented by Eq. (5).

Business value coverage = Business value covered
Test case execution time

(5)

The requirements total business value coverage of a test case is the sum of the covered business
value of requirements by the test case that is not already covered by any other test case. In Eq. (5),
if the sum of business value covered is V, and the test case execution time is C then for the test cases
presented in Tab. 9, the Business Value Coverage (BVC) is presented in Tab. 10.

The test case T1 covers R3 which has a business value of 4 and the execution time of T1 is 3.
Dividing 4 by 3 results in 1.33 so the BVC of T1 is 1.33. The test case T2 covers R1 and R2 having
business values 2 and 1, respectively. The total business value covered by T2 is 3 and its cost is 1 so
its BVC is 3. The test case T3 covers R1 but it is already covered by T2 therefore BVC of T3 is 0.
Now test cases can be prioritized by greatest to least business value coverage. According to coverage
score criteria, T2, T1, T3 is the best order of execution. Tab. 11 is showing the performance results of
different orders of test cases in the test case suite in terms of the Average Percentage of Requirements
Coverage Per Value (APRCv). The value of APRCv is calculated by using the formula given in Eq. (6).

Table 9: Test cases vs. requirements

Test cases with cost Requirements with business value

R1 = 2 R2 = 1 R3 = 4

T1 = 3 x
T2 = 1 x x
T3 = 2 x

Table 10: Test cases business value coverage

Test case V/C BVC

T1 4/3 1.33
T2 3/1 3
T3 0/2 0

Table 11: Performance of test orders in terms of APRCv

Test case order APRCv

T2, T1, T3 94.00%
T2, T3, T1 91.00%
T3, T2, T1 84.00%
T3, T1, T2 80.00%
T1, T2, T3 90.00%
T1, T3, T2 83.00%



CMC, 2023, vol.74, no.1 2223

In this paper, we propose a new metric APRCv. It is a value cognizant metric that provides the
measure of the average percentage of business value coverage of requirements per cost of test cases for
a given order of test cases in a test suite. The metric formula is given in the following Eq. (6).

APRCv = 1 −
∑n

i=1 TRi × Ri
Ci∑n

i=1 Ci × ∑m

j=1 Ri

+ 1
2 × ∑n

i=1 ci

(6)

In Eq. (6), TRi is the order of the first test case that covers requirement i, Ri is the business
value of requirement i, and Ci is the cost of a test case. The metric APRCv is supposed to evaluate
the performance of different test case orders for the requirements coverage-based TCP technique. It
assumes that the business value of requirements is already known. According to the test case set and
requirements set presented in Tab. 9, the value of APRCv for the test case order T2, T1, T3 is 94.00%
which is the best order.

4 Evaluation and Results

Every testing technique, approach, and methodology is proposed to add value to the testing
process. This is important to analyze and evaluate what value a new technique has added. To evaluate
the effectiveness of the proposed techniques, the case study method is adopted. Two case studies are
performed and are described in Sections 4.1 and 4.2. To compare the performance of the proposed
VCFDB-TCP we took two already published example cases. We used the same dataset tables and
our proposed technique. We compared the performance of the proposed technique with the existing
value-based metrics APFDc and APFDv. APFDc is an existing cost-cognizant metric that incorporates
varying test case costs and fault severity [6]. This was introduced to overcome the limitations of the
APFD metric. APFDc is not derived from APFD and is a little bit complex. On the other hand,
the metric APFDv proposed in this paper is as simple as APFD. APFDv is derived from the native
evaluation metric APFD. From the performance point of view, APFDv is better than APFDc and it
produces better results. For performance comparison of APFDv and APFDc, let us take two example
cases.

Example Case 1: Example 1 shown in Tab. 12 is reported in [6]. It contains five test cases and ten
faults. The authors assumed that test case B has cost 2 and all other test cases have cost 1. Similarly,
faults F6 and F7 have a severity of 3 and all other faults have a severity of 1. Tab. 13 shows the
comparison of results of APFDc and APFDv for the test case orders A, B, C, D, E, and B, A, C,
D, E. It demonstrates that APFDv has better results than APFDc.

Table 12: Test cases with cost vs. Faults with severity

Test
cases
with cost

Faults with severities

F1 = 1 F2 = 1 F3 = 1 F4 = 1 F5 = 1 F6 = 3 F7 = 3 F8 = 1 F9 = 1 F10 = 1

A = 1 x x
B = 2 x x
C = 1 x x x x x x x
D = 1 x
E = 1 x x x



2224 CMC, 2023, vol.74, no.1

Table 13: Results comparison of APFDc and APFDv

Test case order APFDc APFDv

A, B, C, D, E 52.38% 70.00%
B, A, C, D, E 54.76% 72.00%

Example Case 2: Example 2 shown in Tab. 14 is reported in [45]. It contains five test cases and four
faults. The test case cost and severity of faults are shown in Tab. 14. Tab. 15 shows the comparison
of the results of APFDc and APFDv for the test case orders E, D, C, B, A, and A, B, C, D, E. It
demonstrates that APFDv provides better results than APFDc.

Table 14: Test cases with cost vs. faults with severity

Test cases with cost Faults with severities

F1 = 2 F2 = 1 F3 = 4 F4 = 3

A = 3 x x
B = 1 x
C = 2 x x
D = 1 x
E = 4 x x x

Table 15: Results comparison of APFDc and APFDv

Test case order APFDc APFDv

E, D, C, B, A 75.90% 88.00%
A, B, C, D, E 75.00% 97.00%

Both Example Case 1 and Example Case 2 proved that the performance of the APFDv metric is
better than the APFDc metric. Both example datasets are taken from already published papers. Hence
APFDv is the right metric for performance evaluation of value-cognizant TCP techniques.

4.1 Case Study 1

This section describes a case study conducted to evaluate the performance of VCFDB-TCP. The
purpose is to answer the following abstract-level research question.

RQ1: What is the performance of VCFDB-TCP compared to the existing state-of-the-art TCP
techniques in terms of APFDv?

4.1.1 Context of Study

As an object of our study, two software products are selected from the healthcare domain that is
developed by a US-based Healthcare IT company. These are developed to support the Accountable
Care Organizations (ACO) business. An ACO is an Accountable Care Organization that comprises a



CMC, 2023, vol.74, no.1 2225

group of doctors, health care providers, and physicians who voluntarily join to manage high-quality
coordinated care of Medicare patients attributed to them [46]. The dataset used for the case study is
described in Tab. 16 which is related to two healthcare products to evaluate the performance of the
proposed VCFDB-TCP technique in terms of specified performance goals. The dataset is collected
from the Azure DevOps system in which the population care management projects are managed
through the scrum model. Product development is managed through the scum model. Each release is
comprised of a set of features. A feature can have many requirements. Test cases are designed against
requirements. Bugs or faults are filed against the execution of test cases. Each fault is associated
with a test case and each test case is associated with a requirement. A complete traceability matrix
is developed through a fully automated process. Microsoft configuration management tools Azure
DevOps, and Microsoft Test Manager (MTM) is used for the automated testing life cycle. The
extracted dataset comprises test cases, faults, and fault detection information. The test cases also
include their execution time or cost, and faults include their severities. Test case execution time is
recorded by Microsoft Test Manager and fault severities are defined by test experts by using standard
guidelines. The test cases and fault data are collected for the last three releases against Product A and
Product B. Product A is a healthcare management system developed for care analytics. Its current
version is V7, it has 87132 lines of code and was developed using .Net/MVC technologies. Product B
is a healthcare-related application developed for the care management of patients. Its current version
is V7, it has 97450 LOC and was developed using .Net/MVC technologies. The dataset specifications
are given in Tab. 16.

Table 16: Dataset for Product A and Product B

Product A Product B

Release Regression test cases Faults Release Regression test cases Faults

R1 102 156 R1 108 135
R2 114 188 R2 115 165
R3 123 212 R3 101 124

4.1.2 Testing Criteria

To answer the established research question, fault detection capability is used as the testing criteria.
This fault detection capability is taken in a value-based fashion where the severity of faults and test
cases cost is considered. The fault detection capability of a test case is the ratio value of total severity
detected and total cost consumed. We extracted the test cases vs. faults matrix along with test cases
cost and severity of faults. Fault severity detection is the coverage criteria to be optimized.

4.1.3 Evaluation Algorithms

The performance of the proposed technique is compared with four other state-of-the-art tech-
niques including OO, REV-O, RO, and Greedy algorithm [3,5,47]. A greedy Algorithm is a search-
based algorithm that is implemented to find the “next best” [5]. The element with the highest weight
is selected first followed by the second highest, third highest, and so on. A greedy algorithm is used to
solve TCP problems in many research papers [2,48].



2226 CMC, 2023, vol.74, no.1

4.1.4 Evaluation Metrics

The dominant metric for performance evaluation of TCP techniques is APFD but this is not
applicable for value-based TCP where test cases execution time, the severity of faults, or business value
of elements may vary. There are two value-based cost-cognizant APFDc and APFDv for performance
evaluation of our proposed value-based TCP technique. Example case 1, and example case 2 proved
that APFDv is producing better results than APFDc. Therefore, we used APFDv as a performance
evaluation metric because the performance goal of the proposed VCFDB-TCP is to increase the
average percentage of faults severity detection per value.

4.1.5 Results of the Study

In this section, the results have been presented to answer the defined research question. The results
of the case study are compared in terms of APFDv for the proposed and existing state-of-the-art
approaches and are presented in Tabs. 17 and 18.

Table 17: APFDv of Products A releases

Release Regression
test cases

Faults APFDv Execution time of
value-based GA

Original
order

Reverse
order

Random Greedy Value-based
GA

R1 102 156 0.931289 0.919303 0.917786 0.927850 0.940793 35.112045

R2 114 188 0.933171 0.926244 0.926256 0.927495 0.944529 38.535858

R3 123 212 0.922124 0.935641 0.931310 0.928593 0.943699 48.118243

Average of all releases 0.928861 0.927063 0.925117 0.927979 0.943007 40.58872

Table 18: APFDv of the three releases for two Products B

Release Regression
test
cases

Faults APFDv Execution
time of
value-based
GA

Original
order

Reverse
order

Random Greedy Value-
based GA

R1 101 124 0.938544 0.933980 0.936699 0.937366 0.947692 40.857836

R2 108 135 0.945611 0.918793 0.927839 0.933598 0.950164 55.695979

R3 115 165 0.934840 0.940986 0.938633 0.942335 0.947210 44.788168

Average of all releases 0.939665 0.931253 0.93439 0.937766 0.948355 47.11399

The performance results of all three releases are averaged out. Tab. 17 shows that the performance
of the proposed technique is better than OO, RO, REVO, and Greedy approaches in terms of APFDv

against all releases of Product A. The proposed technique outperformed state-of-the-art techniques.
The performance of RO approach was the worst among all the techniques. The performance of OO
was second best. The results are presented in a box plot chart in Fig. 4.

Tab. 18 depicts the performance results of different releases of product B. It shows that the
performance of the proposed technique is better than OO, RO, REVO, and Greedy approaches in
terms of APFDv against product B.



CMC, 2023, vol.74, no.1 2227

A pictorial representation of the results is given in the box plot chart in Fig. 5. The proposed
technique outperformed existing state-of-the-art techniques in terms of APFDv. OO is the second-best
performer and REVO is the least performer. The reason for the better performance of the proposed
GA-based TCP is that it gives higher priority to test cases with higher severity detection rate with
respect to cost resulting in a higher APFDv value as compared to other comparison techniques.

Figure 4: Performance results of Product A releases

Figure 5: Performance results of Product B releases

The proposed technique is the GA-based search optimization TCP technique implemented using
python language. The execution of GA is based on some termination criteria. The algorithm will
terminate its execution if reached an optimal solution that is 100% APFDv reached. In this paper,
termination criteria are based on the number of iterations. The number of iterations is a value taken
as user input. The user can increase the number of iterations if results are being improved gradually.
Each iteration processes five permutations and calculates APFDv against the dataset. The execution
time of implemented technique is based on the number of iterations. Against each release dataset,
we executed it with 25, 50, 100, 200, 400, and 800 iterations and recorded its APFDv and maximum
execution time. Tabs. 19 and 20 show the value of APFDv and maximum execution time for a different
number of iterations against each release. The average maximum execution time of products A and B
are 40.02367 s and 47.11399 s respectively.



2228 CMC, 2023, vol.74, no.1

Table 19: APFDv of value-based TCP using GA against different numbers of iterations for releases of
Products A

Release Regression
test cases

Faults APFDv of value-based TCP Using GA per Iterations Maximum
execution time

25
Iterations

50
Iterations

100
Iterations

200
Iterations

400
Iterations

800
Iterations

R1 102 156 0.933991 0.935932 0.937261 0.937567 0.940075 0.940793 33.416900

R2 114 188 0.941505 0.942467 0.942462 0.943598 0.944456 0.944528 38.535858

R3 123 212 0.939006 0.941558 0.941796 0.943317 0.943332 0.943699 48.118243

Average of all releases 0.938167 0.939986 0.940506 0.941494 0.942621 0.943007 40.02367

Table 20: APFDv of value-based TCP using GA against different number of iterations for releases of
Products B

Release Regression
test cases

Faults APFDv of value-based TCP Using GA per iterations Maximum
execution time

25
Iterations

50
Iterations

100
Iterations

200
Iterations

400
Iterations

800
Iterations

R1 101 124 0.9436960.9435480.946456 0.946614 0.946773 0.947692 40.857836

R2 108 135 0.9445430.9440680.948084 0.945446 0.949321 0.950163 55.695979

R3 115 165 0.9442840.9438130.945092 0.946407 0.946163 0.947210 44.788168

Average of all releases 0.944174 0.94381 0.946544 0.946156 0.947419 0.948355 47.11399

The APFDv value trend with the different numbers of iterations for Product A is depicted in Fig. 6.
The graph shows that as the number of iterations increases, the APFDv value increases gradually. The
growth trend in all three releases of product A is almost consistent.

Similarly, the APFDv value trend with the different numbers of iterations for Product B is depicted
in Fig. 7. The graph shows that as the number of iterations increases, the APFDv value increases
gradually. The growth trend in releases R1 and R3 of product B is consistent. For R2, the APFDv

value declined with 200 iterations and then improved with 400, and 800 iterations gradually. The overall
trend of increase in APFDv value with a greater number of iterations is consistent. A different number
of iterations are exercised for different releases of Product A and Product B. With 800 iterations, the
results almost got mature.

4.2 Case Study 2

This section describes a case study conducted to evaluate the performance of VCRCB-TCP. The
purpose is to answer the following research question.

RQ2: What is the performance of VCRCB-TCP compared to the existing TCP techniques in terms
of APRCv?



CMC, 2023, vol.74, no.1 2229

Figure 6: APFDv trend per number of iterations for Product A

Figure 7: APFDv trend per number of iterations for Product B

4.2.1 Context of Study

This section describes the context of the case study. As an object of our study, two healthcare
applications developed by a US-based software company are selected. These applications are devel-
oped to support ACO business in the USA. The performance goal of the proposed VCRCB-TCP is to
increase the average percentage of requirement coverage in a value context. The dataset for this study
is comprised of a test case set, requirements set, and coverage information. The test cases also include
their execution time or cost, and requirements include their business value. The test case execution
time is recorded by MTM, and requirements business value is defined by the business analysis team
by using expert judgment techniques. Data is collected against three releases. The dataset is collected



2230 CMC, 2023, vol.74, no.1

from the Azure DevOps system in which the population care management projects are managed. Test
cases are designed against requirements. Each requirement is associated with a test. The test cases set,
requirements set and coverage information for the last three releases are collected against Application
A and Application B. Application A is a healthcare management system developed for care analytics.
Its current version is V12, it has 65028 lines of code and was developed using .Net/MVC technologies.
Application B is a healthcare-related application developed for the care management of patients. Its
current version is V12, it has 88210 LOC and was developed using .Net/MVC technologies. The dataset
specifications are given in Tab. 21.

Table 21: Dataset for Application A and Application B

Application A Application B

Release Test cases Requirements Release Test cases Requirements

R1 41 48 R1 36 42
R2 44 52 R2 40 50
R3 48 60 R3 44 53

4.2.2 Testing Criteria

To answer the established research question, requirements coverage is used as the testing criteria.
This coverage is taken in a value-based fashion where the business value of requirements and test cases
cost is considered. The business value coverage of a test case is the ratio value of total requirements
business value covered and total cost consumed. The test cases vs. requirements coverage matrix along
with test cases cost and business value of requirements are extracted. The requirement’s business value
is the coverage criteria to be optimized.

4.2.3 Evaluation Algorithms

The performance of the proposed technique is compared with four other state-of-the-art tech-
niques including Original Order (OO), Reverse Order (REV-O), Random Order (RO), and Greedy
algorithm.

4.2.4 Evaluation Metrics

Coverage-based methods are most prominent in TCP, therefore most of the researchers evaluated
the performance of their proposed techniques with this method [38]. The metric for performance
evaluation of requirements coverage-based TCP techniques is APRC but this is not applicable for
value-based requirements coverage-based TCP where test cases execution time and the value of
requirements vary. In this study, the proposed performance evaluation metric APRCv is used for the
performance evaluation of VCRCB-TCP. The metric APRCv is presented by Eq. (6) in Section 3.2.

4.2.5 Results of the Study

In this section, the results of the study have been presented to answer the defined research question.
The results of the case study are compared in terms APRCv for the proposed and existing state-of-the-
art approaches and are presented in Tabs. 22 and 23.



CMC, 2023, vol.74, no.1 2231

Table 22: APRCv of Application A releases

Release Test cases Requir-
ements

APRCv Execution
time of
value-based
GA

Original
order

Reverse
order

Random
order

Greedy Value-
based
GA

R1 41 48 0.912121 0.888825 0.901261 0.628221 0.936636 38.538602

R2 44 52 0.951084 0.940408 0.940526 0.797661 0.959413 42.872361

R3 48 60 0.938770 0.904897 0.927107 0.704162 0.940949 56.102902

Average of all releases 0.933992 0.911377 0.9229645 0.710015 0.945666 45.837955

The performance results of all three releases are averaged out. Tab. 22 shows that the performance
of the proposed VCRCB-TCP technique is better than the OO, RO, REVO, and Greedy approach in
terms of APRCv against all releases of Application A. The proposed technique outperformed state-of-
the-art techniques. The performance of the Greedy approach was the worst among all the techniques.
The performance of OO was second best. The results are presented in a box plot chart in Fig. 8.

Figure 8: Performance results of Application A releases

Tab. 23 depicts the performance results of different releases of Application B. It shows that the
performance of the proposed technique is better than the OO, RO, REVO, and Greedy approaches
in terms of APRCv against Application B. The reason for the better performance of the proposed
GA-based TCP is that it gives higher priority to test cases with higher business value coverage of
requirements with respect to cost resulting in a higher APRCv value as compared to other comparison
techniques.



2232 CMC, 2023, vol.74, no.1

Table 23: APRCv of the three releases for two Application B

Release Test cases Requirements APRCv Execution time
of value-based
GAOriginal

order
Reverse
order

Random Greedy Value-
based
GA

R1 36 42 0.911895 0.927043 0.908779 0.687028 0.944492 51.313348

R2 40 50 0.928919 0.927324 0.925164 0.696133 0.949216 83.059638

R3 44 53 0.914388 0.921470 0.911893 0.675940 0.945357 70.202975

Average of all releases 0.918399 0.925279 0.915278 0.686367 0.946355 68.191987

A pictorial representation of the results is given in the box plot chart in Fig. 9. The proposed
technique outperformed existing state-of-the-art techniques in terms of APRCv. REVO is the second-
best performer and Greedy is the worst among all other techniques. The proposed technique is the
GA-based search optimization TCP technique implemented using python language. The execution
of GA is based on some termination criteria. Algorithm will terminate its execution if reached an
optimal solution that is 100% APRCv reached. In this paper, termination criteria are based on the
number of iterations. The number of iterations is a value taken as user input. User can increase number
of iterations if results are being improved gradually. Each iteration processes five permutations and
calculates APRCv against the dataset. The execution time of implemented technique is based on the
number of iterations. Against each release dataset, we executed it with 25, 50, 100, 200, 400, and 800
iterations and recorded its APRCv and maximum execution time. Tabs. 24 and 25 show the value of
APRCv and maximum execution time for the different number of iterations against each release.

Figure 9: Performance results of Application B releases

The average maximum execution time of Application A and B are 45.83796 s and 68.19199 s
respectively.



CMC, 2023, vol.74, no.1 2233

Table 24: APRCv of value-based TCP using GA for different number of iterations for releases of
applications A

Release Test
cases

Requirements APRCv of value-based TCP Using GA per iterations Maximum exe-
cution time

25
Iterations

50
Iterations

100
Iterations

200
Iterations

400
Iterations

800
Iterations

R1 41 48 0.919100 0.922852 0.924212 0.926004 0.927807 0.936636 38.538602

R2 44 52 0.954470 0.95870740.956626 0.956968 0.959004 0.959413 42.872361

R3 48 60 0.938513 0.937668 0.937822 0.939164 0.939361 0.940949 56.102902

Average of all releases 0.93736 0.939743 0.939553 0.940712 0.942057 0.945666 45.83796

Table 25: APRCv of value-based TCP using GA for different number of iterations for releases of
Applications B

Release Test
cases

Requirements APRCv of value-based TCP using GA per iterations Maximum
execution
time

25
Iterations

50
Iterations

100
Iterations

200
Iterations

400
Iterations

800
Iterations

R1 36 42 0.933404 0.936739 0.936716 0.938110 0.937483 0.944492 51.313346

R2 40 50 0.942410 0.944824 0.945241 0.947101 0.947187 0.949216 83.059638

R3 44 53 0.937215 0.940678 0.940694 0.942000 0.944983 0.945357 70.202975

Average of all releases 0.937676 0.940747 0.940883 0.942434 0.943217 0.946355 68.19199

The APRCv value trend with the different number of iterations for Application A is depicted
in Fig. 10. The graph shows that as the number of iterations increases, the APRCv value increases
gradually. The growth trend in all three releases of Application A is almost consistent.

Similarly, the APRCv value trend with the different number of iterations for Application B is
depicted in Fig. 11. The graph shows that as the number of iterations increases, the APRCv value
increases gradually. The growth trend in releases R2 and R3 of Application B is consistent. For R1,
the APRCv value declined with 400 iterations and then significantly improved by 800 iterations. The
overall trend of increase in APRCv value with a greater number of iterations is consistent. The different
number of iterations for different releases of Application A and Application B is exercised. With 800
iterations, the results almost got mature.



2234 CMC, 2023, vol.74, no.1

Figure 10: APRCv trend per number of iterations for Application A

Figure 11: APRCv trend per number of iterations for Application B

5 Threats to Validity

Our defined research questions only cover fault detection and requirements coverage and don’t
include other coverage criteria like statement coverage, branch coverage, function coverage, etc. This
is a construct validity threat and we addressed it in future work directions. The study assumes that one
unit of severity is equivalent to one unit of test case cost or execution time. Similarly, one unit of the
business value of a requirement is equivalent to one unit of the test case time to cover it. It assumes that
the business value of requirements and test case execution time is already known in the case of VCRCB-
TCP. Similarly, the severity of faults and test case cost is already known in the case of VCFDB-TCP. In
this study, it is considered that both test case cost and fault severity are equally important. However,
in some scenarios, there might require a tradeoff between cost and severity. Similarly, there might be a
tradeoff between test case cost and business value of requirements. The number of iterations for GA
execution is taken as user input. This is an internal validity threat, and it is addressed through multiple
executions of GA for improving the results. The datasets used for the study are of smaller size and
are collected against different products/applications from a single company. The results may vary with
the variety of other software applications developed by different software development organizations.



CMC, 2023, vol.74, no.1 2235

This is an external validity threat, and it is addressed by performing two independent case studies with
real-world projects on two different software products with multiple releases.

6 Conclusion and Future Work

Prioritizing test cases with a business perspective is vital because different features of software
applications have different business values. Two value-based cost cognizant TCP techniques have
been introduced in this work including VCFDB-TCP and VCRCB-TCP. Two performance evaluation
metrics have also been introduced including APFDv and APRCv. To validate the proposed techniques
and performance evaluation metrics, two case studies have been performed. The proposed techniques
are implemented by using GA. The performance of VCFDB-TCP is evaluated in terms of APFDv and
the performance of VCRCB-TCP is evaluated in terms of APRCv. The performance of the proposed
techniques is found better as compared to the OO, RO, REVO, and Greedy approaches. Incorporating
business value in TCP is highly likely to produce reliable and satisfactory results. The novelty of
proposed techniques is that these are business value-centric instead of considering the only frequency
of faults or frequency of requirement coverage. The proposed techniques ensure that regression testing
time is utilized on the items with greater business value. Value-orientation can be applied to different
coverage-based TCP techniques like it can be applied to statement coverage, branch coverage, function
coverage, or any other element coverage. Similarly, value-cognizant performance evaluation metrics
can be derived following the APFDv pattern. It can bring a shift from value-neutral TCP to value-
based TCP. Value-based TCP still has many dimensions to be investigated in the future. Introducing
business value in coverage-based TCP can ensure that the regression effort is utilized to cover those
aspects of the application that have greater business worth. More diverse datasets should be used in
the future.

Acknowledgement: We are thankful to Wiseman Innovations for providing testing data for their real
projects.

Funding Statement : The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] N. Gupta, A. Sharma and M. K. Pachariya, “An insight into test case optimization: Ideas and trends with

future perspectives,” IEEE Access, vol. 7, pp. 22310–22327, 2019.
[2] G. Rothermel, R. H. Untch and M. J. Harrold, “Prioritizing test cases for regression testing,” IEEE

Transactions on Software Engineering, vol. 27, no. 10, pp. 929–948, 2001.
[3] H. Jahan, Z. Feng and S. M. H. Mahmud, “Risk-based test case prioritization by correlating system

methods and their associated risks,” Arabian Journal for Science and Engineering, vol. 45, no. 4, pp. 6125–
6138, 2020.

[4] R. Huang, Q. Zhang, T. Y. Chen, J. Hamlyn-Harris, D. Towey et al., “An empirical comparison of fixed-
strength and mixed-strength for interaction coverage-based prioritization,” IEEE Access, vol. 6, pp. 68350–
68372, 2018.

[5] Z. Li, M. Harman and R. M. Hierons, “Search algorithms for regression test case prioritization,” IEEE
Transactions on Software Engineering, vol. 33, no. 4, pp. 225–237, 2007.



2236 CMC, 2023, vol.74, no.1

[6] S. Elbaum, A. Malishevsky and G. Rothermel, “Incorporating varying test costs and fault severities into test
case prioritization,” in Proc. of the 23rd Int. Conf. on Software Engineering. ICSE, Toronto, Ont., Canada,
pp. 329–338, 2001.

[7] A. Bajaj and O. P. Sangwan, “A systematic literature review of test case prioritization using genetic
algorithms,” IEEE Access, vol. 7, pp. 126355–126375, 2019.

[8] B. Miranda and A. Bertolino, “An assessment of operational coverage as both an adequacy and a selection
criterion for operational profile-based testing,” Software Quality Journal, vol. 26, no. 4, pp. 1571–1594,
2018.

[9] R. Matinnejad, S. Nejati, L. C. Briand and T. Bruckmann, “Test generation and test prioritization for
simulink models with dynamic behavior,” IEEE Transactions on Software Engineering, vol. 45, no. 9, pp.
919–944, 2019.

[10] M. Khatibsyarbini, M. A. Isa, D. N. A. Jawawi, H. N. A. Hamed and M. D. Mohamed Suffian, “Test case
prioritization using firefly algorithm for software testing,” IEEE Access, vol. 7, pp. 132360–132373, 2019.

[11] S. Tahvili, R. Pimentel, W. Afzal, M. Ahlberg, E. Fornander et al., “sOrTES: A supportive tool for
stochastic scheduling of manual integration test cases,” IEEE Access, vol. 7, pp. 12928–12946, 2019.

[12] R. Mukherjee and K. S. Patnaik, “Prioritizing JUnit test cases without coverage information: An optimiza-
tion heuristics-based approach,” IEEE Access, vol. 7, pp. 78092–78107, 2019.

[13] C. Lu, J. Zhong, Y. Xue, L. Feng and J. Zhang, “Ant colony system with sorting-based local search for
coverage-based test case prioritization,” IEEE Transactions on Reliability, vol. 69, no. 3, pp. 1–17, 2019.

[14] M. Abdur, M. Abu and M. Saeed, “Prioritizing dissimilar test cases in regression testing using historical
failure data,” International Journal of Computer Applications, vol. 180, no. 14, pp. 1–8, 2018.

[15] D. Hao, L. Zhang, L. Zang, Y. Wang, X. Wu et al., “To be optimal or not in test-case prioritization,” IEEE
Transactions on Software Engineering, vol. 42, no. 5, pp. 490–505, 2016.

[16] Y. Bian, Z. Li, R. Zhao and D. Gong, “Epistasis based ACO for regression test case prioritization,” IEEE
Transactions on Emerging Topics in Computational Intelligence, vol. 1, no. 3, pp. 213–223, 2017.

[17] S. Eghbali and L. Tahvildari, “Test case prioritization using lexicographical ordering,” IEEE Transactions
on Software Engineering, vol. 42, no. 12, pp. 1178–1195, 2016.

[18] A. Marchetto, M. M. Islam, W. Asghar, A. Susi and G. Scanniello, “A multi-objective technique to
prioritize test cases,” IEEE Transactions on Software Engineering, vol. 42, no. 10, pp. 918–940, 2016.

[19] M. Abu Hasan, M. Abdur Rahman and M. Saeed Siddik, “Test case prioritization based on dissimilarity
clustering using historical data analysis,” in International Conference on Information, Communication and
Computing Technology, In: S. Kaushik, D. Gupta, L. Kharb and D. Chahal (Eds.), vol. 750, Singapore:
Springer, pp. 269–281, 2017.

[20] H. Mei, D. Hao, L. Zhang, L. Zhang, J. Zhou et al., “A static approach to prioritizing JUnit test cases,”
IEEE Transactions on Software Engineering, vol. 38, no. 6, pp. 1258–1275, 2012.

[21] M. R. N. Dobuneh, D. N. Jawawi, M. Ghazali and M. V. Malakooti, “Development test case prioritization
technique in regression testing based on hybrid criteria,” in 8th Software Engineering Conf. (MySEC),
Langkawi, Malaysia, pp. 301–305, 2014.

[22] B. Jiang and W. K. Chan, “Input-based adaptive randomized test case prioritization: A local beam search
approach,” Journal of Systems and Software, vol. 105, no. 2, pp. 91–106, 2015.

[23] B. Miranda, “FAST approaches to scalable similarity-based test case prioritization,” in IEEE/ACM 40th
Int. Conf. on Software Engineering (ICSE), Gothenburg, Sweden, pp. 222–232, 2018.

[24] A. Nanda, S. Mani, S. Sinha, M. J. Harrold and A. Orso, “Regression testing in the presence of non-code
changes,” in Fourth IEEE Int. Conf. on Software Testing, Verification and Validation, Berlin, Germany, pp.
21–30, 2011.

[25] L. Xiao, H. Miao, W. Zhuang and S. Chen, “An empirical study on clustering approach combining fault
prediction for test case prioritization,” in IEEE/ACIS 16th Int. Conf. on Computer and Information Science
(ICIS), Wuhan, China, pp. 815–820, 2017.



CMC, 2023, vol.74, no.1 2237

[26] P. Konsaard and L. Ramingwong, “Total coverage-based regression test case prioritization using genetic
algorithm,” in 12th Int. Conf. on Electrical Engineering/Electronics, Computer, Telecommunications and
Information Technology (ECTI-CON), Hua Hin, Thailand, pp. 1–6, 2015.

[27] T. B. Noor and H. Hemmati, “Test case analytics: Mining test case traces to improve risk-driven testing,”
in IEEE 1st Int. Workshop on Software Analytics (SWAN), Montreal, QC, Canada, pp. 13–16, 2015.

[28] D. Marijan, M. Liaaen, A. Gotlieb, S. Sen and C. Ieva, “TITAN: Test suite optimization for highly
configurable software,” in IEEE Int. Conf. on Software Testing, Verification and Validation (ICST), Tokyo,
Japan, pp. 524–531, 2017.

[29] R. Lachmann, “Machine learning-driven test case prioritization approaches for black-box software test-
ing,” in The European Test and Telemetry Conf., Von-Münchhausen-Str 49 31515 Wunstorf Ger, AMA
Serv. GmbH, 2018.

[30] A. Ansari, A. Khan, A. Khan and K. Mukadam, “Optimized regression test using test case prioritization,”
Procedia Computer Science, vol. 79, pp. 152–160, 2016.

[31] H. Sun and R. Grishman, “Employing lexicalized dependency paths for active learning of relation
extraction,” Intelligent Automation & Soft Computing, vol. 34, no. 3, pp. 1415–1423, 2022.

[32] H. Sun and R. Grishman, “Lexicalized dependency paths based supervised learning for relation extraction,”
Computer Systems Science & Engineering, vol. 43, no. 3, pp. 861–870, 2022.

[33] M. M. Öztürk, “A bat-inspired algorithm for prioritizing test cases,” Vietnam Journal of Computer Science,
vol. 5, no. 1, pp. 45–57, 2018.

[34] D. Marijan, “Multi-perspective regression test prioritization for time-constrained environments,” in IEEE
Int. Conf. on Software Quality, Reliability and Security, Vancouver, BC, Canada, pp. 157–162, 2015.

[35] S. Wang, J. Nam and L. Tan, “QTEP: Quality-aware test case prioritization,” in Proc. of the 11th Joint
Meeting on Foundations of Software Engineering-ESEC/FSE 2017, Paderborn, Germany, pp. 523–534,
2017.

[36] M. Aggarwal and S. Sabharwal, “Combinatorial test set prioritization using data flow techniques,” Arabian
Journal for Science and Engineering, vol. 43, no. 2, pp. 483–497, 2018.

[37] E. Ashraf, K. Mahmood, T. Ahmed and S. Ahmed, “Value based PSO test case prioritization algorithm,”
International Journal of Advanced Computer Science and Applications, vol. 8, no. 1, pp. 389–394, 2017.

[38] C. Catal and D. Mishra, “Test case prioritization: A systematic mapping study,” Software Quality Journal,
vol. 21, no. 3, pp. 445–478, 2013.

[39] B. W. Boehm, “Value-based software engineering: Overview and agenda,” in Value-Based Software Engi-
neering, In: S. Biffl, A. Aurum, B. Boehm, H. Erdogmus and P. Grünbacher (Eds.), Berlin, Heidelberg:
Springer, pp. 3–14, 2006.

[40] R. Ramler, S. Biffl and P. Grünbacher, “Value-based management of software testing,” in Value-Based
Software Engineering, Berlin, Heidelberg: Springer, pp. 225–244, 2006.

[41] F. S. Ahmed, A. Majeed, T. A. Khan and S. N. Bhatti, “Value-based cost-cognizant test case prioritization
for regression testing,” PLOS ONE, vol. 17, no. 5, pp. 1–26, 2022.

[42] S. Elbaum, A. G. Malishevsky and G. Rothermel, “Prioritizing test cases for regression testing,” in Proc. of
the 2000 ACM SIGSOFT Int. Symp. on Software Testing and Analysis, New York, NY, USA, pp. 102–112,
2000.

[43] G. Luque and E. Alba, Parallel genetic algorithms: Theory and real-world applications. Malaga, Spain:
Springer, 2011.

[44] G. Antoniol, M. Di Penta and M. Harman, “Search-based techniques applied to optimization of project
planning for a massive maintenance project,” in 21st IEEE Int. Conf. on Software Maintenance (ICSM’05),
Budapest, Hungary, pp. 240–249, 2005.

[45] M. Tulasiraman, N. Vivekanandan and V. Kalimuthu, “Multi-objective test case prioritization using
improved pareto-optimal clonal selection algorithm,” 3D Research, vol. 9, no. 3, pp. 1–13, 2018.

[46] K. J. Kelleher, J. Cooper, K. Deans, P. Carr, R. J. Brilli et al., “Cost saving and quality of care in a pediatric
accountable care organization,” Pediatrics, vol. 135, no. 3, pp. 582–589, 2015.



2238 CMC, 2023, vol.74, no.1

[47] S. W. Thomas, H. Hemmati, A. E. Hassan and D. Blostein, “Static test case prioritization using topic
models,” Empirical Software Engineering, vol. 19, no. 1, pp. 182–212, 2014.

[48] S. Yoo and M. Harman, “Pareto efficient multi-objective test case selection,” in Int. Symp. on Software
Testing and Analysis-ISSTA, London, United Kingdom, pp. 140–150, 2007.


	Value-Based Test Case Prioritization for Regression Testing Using Genetic Algorithms
	1 Introduction
	2 Related Work
	3 Proposed Value-Based TCP Technique
	4 Evaluation and Results
	5 Threats to Validity
	6 Conclusion and Future Work


