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Abstract: Construction Industry operates relying on various key economic
indicators. One of these indicators is material prices. On the other hand, cost
is a key concern in all operations of the construction industry. In the uncertain
conditions, reliable cost forecasts become an important source of information.
Material cost is one of the key components of the overall cost of construction.
In addition, cost overrun is a common problem in the construction industry,
where nine out of ten construction projects face cost overrun. In order to carry
out a successful cost management strategy and prevent cost overruns, it is
very important to find reliable methods for the estimation of construction
material prices. Material prices have a time dependent nature. In order to
increase the foreseeability of the costs of construction materials, this study
focuses on estimation of construction material indices through time series
analysis. Two different types of analysis are implemented for estimation of the
future values of construction material indices. The first method implemented
was Autoregressive Integrated Moving Average (ARIMA), which is known
to be successful in estimation of time series having a linear nature. The
second method implemented was Non-Linear Autoregressive Neural Network
(NARNET) which is known to be successful in modeling and estimating of
series with non-linear components. The results have shown that depending on
the nature of the series, both these methods can successfully and accurately
estimate the future values of the indices. In addition, we found out that
Optimal NARNET architectures which provide better accuracy in estimation
of the series can be identified/discovered as result of grid search on NARNET
hyperparameters.
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1 Introduction

Construction Industry operates relying on different economic indicators ranging from construc-
tion material prices to sales volumes and prices. Nearly all economic indicators have temporal (time-
dependent) nature. The stakeholders in the industry either employers/investors or contractors/sup-
pliers keep close eye on economic indicators to decide whether to start a new project, to complete a
project in a planned or longer time period or abandon a project completely (to prevent bankruptcy).
As the construction industry related economic indicators change over time, forecasts regarding these
indicators are made using different econometric models, and mostly with time series analysis. For
instance, indicators such as cost indices, price indices and sales volumes can be estimated using time
series analysis [1–4]. Construction cost is a key concern in construction management. It is crucial
for construction companies to know about the future variation of construction prices. In conditions
with low certainty, reliable cost forecasts become an important source of information for decision
making. Material cost is one of the key components of the overall cost of construction. Increasing the
accuracy of material price prediction can improve the accuracy of cost estimates, as around 1/4 of the
total cost of construction projects is the material cost [5]. Estimation of material cost is known to be a
difficult task due to the material price fluctuations during the construction period [6]. Thus, in order
to carry out a successful cost management strategy it becomes important to find reliable methods for
the estimation of construction material prices. In addition, cost overrun is a common problem in the
construction industry, where 9/10 of construction projects face cost overrun [7,8]. Cost overrun causes
numerous issues in the construction projects’ performance. Cost overrun occurs either due to a change
in material/workforce prices or by a change order. Building materials have a huge impact on the costs
of construction projects. The literature states that the major cause of cost overrun is the price increase
of construction materials [9]. To prevent cost overruns in the projects, the estimation of material prices
is of critical importance.

To increase the foreseeability of the costs of construction materials, this study focuses on
estimation of construction material indices. Time series analysis has been chosen as the estimation
approach as the indicators of the indices have a time-dependent nature. Two different types of analysis
are implemented for estimation of the future values of the indicators of material indices. The first
approach was Box-Jenkins (ARIMA) method which is known to be successful in estimation of time
series having a linear nature. The second method implemented was Non-Linear Autoregressive Neural
Network (NARNET) which is known to be successful in modeling and estimation of series with
non-linear components along with a linear nature. In addition, in this study, we have developed a
grid search algorithm (for identifying best hyperparameters for the network) and an accompanying
software tool to explore an optimal NARNET architecture for realizing most accurate estimation
with NARNETs. Following the background section on the use of time series analysis techniques
in construction industry, an exploratory analysis of the data is provided. This is followed by an
elaboration on the details of ARIMA and NARNET based estimation procedures. In the final sections
the results of the analysis are presented and discussed.

2 Background

According to the literature, ARIMA models were used in many fields for different purposes
including economics, to model and predict the exchange rates [10,11], to model and predict stock
market movements [12–14], for forecasting in the crypto money market [15,16], in agriculture for
predicting production and consumption [17–19] and in the health sector to model expenditures and to
predict the spread of pandemic diseases [20,21]. ARIMA based (linear) and ANN based (non-linear)
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methods have also been implemented and tested for different purposes in construction industry. For
instance, [22] used the Box-Jenkins model technique to model and predict three different variables
of the construction industry in Singapore, namely tender price, construction demand, and industry-
level productivity. The first model deals with public industrial building tender prices, the second
model deals with residential construction demand, and the third model deals with construction
efficiency at the industry level. Each of these case studies served a different purpose to meet the
specific needs of the Singapore construction industry. For the first case, a total of 49 quarterly data
from 1980-Q1 and 1992-Q1 were used. The first 47 quarters formed the modeling dataset, while
the remaining 2 quarters were used to test the model’s accuracy for out-of-sample predictions. The
second case study consisted of a total of 77 observations from the first quarter of 1975 to the
first quarter of 1994. The first 72 quartiles were used to generate the modeling dataset and the
remaining 5 quartiles were used for out-of-sample estimates. The third case study consisted of a
total of 22 observations from 1975 to 1996. The first 20 periods were used for modeling and the
last two periods were used for testing. Two accuracy measures were adopted, root mean-square-error
(RMSE) and mean absolute percentage error (MAPE). The results show that the predictive RMSE of
all three models is consistently smaller than the model’s standard error, indicating that the models
have good predictive performance. Among these models, the lowest MAPE value belongs to the
demand model, followed by the price model and the efficiency model.Reference [23] used quarterly
time series statistics for the period 1983Q1–2002Q4 to analyze and forecast five key indicators in
the Hong Kong construction labor market. The variables used in the models were employment level,
productivity, unemployment rate, underemployment rate and real wage. The data used in the analysis
were collected by the HKSAR Government’s Department of Census and Statistics (C&SD). The
first 80 quarters created the modeling dataset to build the forecast model, while the remaining five
quarters were used to evaluate the model for out-of-sample forecasts. According to the results, MAPE
and Theil U statistics showed good predictive performance in majority of models, except for the
construction employment situation. Among the five models, the most accurate was the construction
real wage model. Finally, multivariate structural forecasting analysis should be adopted to obtain
accurate estimates of construction employment in Hong Kong.Reference [24] focused on estimating
the quarterly total gross value of residential, commercial, industrial, and total construction output
using ARIMA models with quarterly data from 1983Q1 to 2008Q1. According to the results, Box-
Jenkins models reliably predicted medium-term aggregate construction demand and housing demand
covering increases and decreases in construction demand. The purpose of [25] was to compare the
accuracy of Autoregressive Integrated Moving Average (ARIMA) and Autoregressive Neural Network
(ARNET) models. Four quarterly time series datasets from C&SD between 1983Q1 and 2014Q4 were
used to predict fluctuations in the construction industry. The results show that the ARNET model is a
reliable estimation method for aggregate, private and other construction outputs in the medium term.
It is found out the ARNET outperforms the ARIMA model in terms of accuracy.Reference [26] aimed
to improve the Construction Cost Index (CCI) estimation performance by addressing the long memory
concept. For this purpose, the presence of long memory in CCI was investigated by performing a
rescaled interval analysis on data from 1990-January and 2016-August. Then, the Autoregressive
Fractional Integrated Moving Average (ARFIMA) model, which reflects the characteristics of long
memory, was fit to the data. According to the results, ARFIMA’s forecast performance outperformed
ARIMA by an average of 9.5%. The ARFIMA model has achieved higher CCI prediction performance
with the features of long memory.Reference [27] used Artificial Neural Networks (ANN), Linear
Regression and Autoregressive Time Series (ARIMA) methods to estimate CCI. These three models
were used to predict the CCI until 2025. With the MAPE value of 3.5, ARIMA was found as the
most accurate method.Reference [28] aimed to estimate the number of people injured in occupational
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accidents in the construction industry in Poland between 2007 and 2019. A mathematical model
was created in the nonlinear regression class. The model provided a high-accuracy estimation of the
number of people injured in the construction industry in certain years and months. The prediction
errors obtained from models such as ARIMA, Seasonal ARIMA (SARIMA), linear and polynomial
models, and the errors obtained from the developed model were compared. The mean estimation
error for the developed model was found as 8.9%, and this demonstrated that the developed model
reflects the randomness phenomenon in the construction industry well and is performing better than
linear and polynomial regression, ARIMA, SARIMA models.Reference [29,30] proposed an ARIMA-
ANN model to estimate construction costs and investigated whether this model can have higher
accuracy than the solo ARIMA or solo ANN model. Construction cost indices were estimated for
short, medium and long-term forecast periods using ARIMA, ANN and ARIMA-ANN models.
According to the results, it was determined that the ARIMA-ANN model performs better than other
models for long-term forecasting periods.Reference [31] aimed to help managers find and analyze the
factors affecting the construction cost estimation to make good decisions. The research was focused
on analyzing construction costs from the point of adopting multivariate cost prediction models in
predicting construction cost index (CCI) and other independent variables from September 2021 to
December 2022. Independent variables include Building Permits (BP), Consumer Price Index (PPI),
Unemployment Rate (UNEMP), Employment Rate (EMP), Crude Oil Prices (BOIL), Money Supply
(MS), Producer Price Index (PPI), Gross Domestic Products (GDP) and Import Price Index (IPI).
SPSS and R applications were used for analysis of the data. According to the results of this research,
the ARIMA model was the best predictive model with the highest model-fit correlation. The literature
indicates that different linear and non-linear models can be used to represent the relationships of
time dependent variables/indicators that are used in the construction industry. The choice of models
ranges from ARIMA, SARIMA, ARFIMA to ANN, ARNET and hybrid ARIMA-ANN models.
Some studies reported that ANN and ARNET models perform better than ARIMA, but others
reported better accuracies with ARIMA models, and a few studies implemented hybrid ARIMA-ANN
models and found them more accurate when compared with the others. It can be concluded that in
modeling time dependent indicators of the construction industry there is no one-size-fits-all solution
or model, and different modeling techniques have to be employed and tested for series of different
nature. The following section first provides an exploratory analysis of the data used in this study, and
later elaborates on the analysis/modeling techniques implemented.

3 Methodology
3.1 The Dataset

The Association of Turkish Construction Material Producers (IMSAD) was founded in 1984
acts as an organization that represents Construction Materials Industry both in Turkey and inter-
nationally. IMSAD has 85 industrial (company) and 52 industry association members. The asso-
ciation follows developments in the domestic market closely, and also keeps close track of foreign
markets for increasing the continuity of success in material exports. IMSAD is well known with its
Construction Material Industry Indices which are published on a monthly basis. The main index is
known as the Compound Index and is composed of 3 main index groups, Activity Index Group,
Expectation Index Group, and Trust Index Group. The Activity Index Group is composed of 6
indictors (A1.Domestic Sales, A2.Production, A3.Exports, A4.Endorsement, A5.Collection Rate,
A6.International Sales Price) the Expectation Index Group is composed of 7 indicators focusing
on expectations regarding next 3 months (E1.Expection from Economy in General, E2.Expectation
from Construction Material Industry, E3.Expectation of Domestic Orders, E4.Expectation of Export
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Orders, E5.Expectation of Production, E6.Expectation of New Production Capacity Investments,
E7.Expectation for Employment) and Trust Index Group is composed of 5 indicators (T1.General
Course of Economy, T2.General Course of Construction Industry, T4.General Trend in Domestic
Markets, T3.General Trend in Construction Materials Industry, T5.General Trend in Export Markets.
The value of each indicator is determined on a monthly basis, based on responses to indicator questions
(which are sent to members of the association periodically each month). The values of the indicators
for a specific month have been calculated by taking 100 as the reference (base) value which refers to
the indicator value of August 2013 (base year/month).

In this study, we collected monthly data that cover the period from 2013:8 to 2021:3 regarding all
indicators A (1–6), E(1–7) and T(1–5). Fig. 1 provides time series plots of 18 indicators grouped by
index groups Activity (A), Expectation (E) and Trust (T).

Figure 1: Time series plots of indicators

Following the examination of the time series plots, in order to identify the stationarity of the time
series at level (i.e., diff = 0), Autocorrelation Plots of all indicators were generated and examined. The
autocorrelation plots indicated that all series show signs of non-stationarity at Level as the values do
not tend to degrade to zero quickly (e.g., in 3–4 lags) in all of the graphics (Fig. 2).

In the following phases of the research the applicability of Box-Jenkins (ARIMA) method and
Optimized NARNETs in making future predictions of the indicators are tested. The tests started with
a proof-of-concept exercise to demonstrate the applicability of Box-Jenkins Method for a selected
(solo) indicator. Later a toolbox is developed and tested to facilitate future predictions of all indicators
by exploring, finding, and utilizing Optimized NARNETs.
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Figure 2: Autocorrelation plots of indicators at level (diff = 0)

In the start of the modeling process, to efficiently validate the results, the data is divided into
training and testing sets. The training set covered the period between 08.2013–06.2019 (71 obs.) and the
test set covered the period between 07.2019–03.2021 (21.obs). The Root Mean Square Error (RMSE)
and Mean Absolute Error (MAE) are used as the performance metrics of the models in all training
and validation stages.
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3.2 Estimation with Box-Jenkins (ARIMA) Method

Following the exploratory analysis of the data we employed the Box-Jenkins methodology for
forecasting the values of a selected (solo) indicator. The indicator to be estimated is determined as E1,
as a result of examination of Autocorrelation Function (ACF) (Fig. 2) and Partial Autocorrelation
Function (PACF) plots of all variables. In this examination, the E1 indicator was showing the strong
signs of fitting to an ARIMA (Auto-regressive Integrated Moving Average) model equation. As
illustrated in Fig. 3, ACF and PACF plots of the series, the series E1 is not stationary at level (I �= 0)
and both ACF and PACF plots of first difference of the E1 series tend to degrade into the confidence
interval quickly i.e., at 1–2 lags. Following the examination of ACF and PACF plots of E1 series, a
range of ARIMA (p, d, q) models (p: 0 to 3, d: 1 to 2, q: 0 to 3) have been fit through a grid search
with (p × d × q: 4 × 2 × 4) 32 runs of the ARIMA model fit in EViews 10 using the training dataset
(71 obs.). Depending on the Akaike information criterion (AIC), the best ARIMA model representing
the E1 training set was found as ARIMA (2, 1, 1).

Figure 3: ACF and PACF plots of E1 at level (diff = 0) and first difference (diff = 1)
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3.3 Estimation with Optimized NARNETs

ARIMA models are used to model linear relationships in data. In fact, most time series are
characterized by high variations and rapid transient periods, thus a nonlinear approach should be used
to model these type of time series. As indicated in [32–34] it was demonstrated that a time series can also
be modeled and represented by a nonlinear autoregressive (NAR: Nonlinear Auto-Regressive) model.
As explained in [33] the classical Recurrent Neural Network (RNN) encounters some difficulties when
faced with problems with long period dependence which is the case for time series. These difficulties
originate in the gradient descent problem, and this is the case for all recurrent networks other than
Non-Linear Autoregressive Neural Network (NARNET). This makes NARNET very suitable for use
in modeling and predicting time series with non-linear components. A Nonlinear Auto-Regressive
Neural Network, NARNET, is a RNN which forms a discrete, nonlinear, autoregressive system with
endogenous inputs. The equation for the network can be written as [33] (Eq. (1)).

y (t) = h (y (t − 1) , y (t − 2) , . . . , y (t − p)) + ε (t) (1)

The equation explains how a NARNET can be utilized to predict the value of series y at time t, y(t),
using the (p) past values of the series. The function h(.) is unknown in advance, and the training of the
NARNET aims to approximate the function by means of the optimization of the weights and biases.
The error term ε(t) stands for the error of the approximation of the series y at time t. NARNET is a
multilayer, recurrent, dynamic network, with feedback connections. In a NARNET the terms y(t − 1),
y(t − 2), . . . , y(t − p), are known as feedback delays (Fig. 4).

Figure 4: NARNET architecture

The most commonly used learning rule for the NAR Network (NARNET) is the Levenberg-
Marquardt backpropagation procedure (LMBP) [32]. The Levenberg-Marquardt algorithm combines
two numerical minimization algorithms: the gradient descent method and the Gauss-Newton method.
In the gradient descent method, the sum of the squared errors is reduced by updating the parameters
in the steepest-descent direction. In the Gauss-Newton method, the sum of the squared errors is
reduced by assuming the least squares function is locally quadratic in the parameters and finding
the minimum of this quadratic. The Levenberg-Marquardt method acts more like a gradient-descent
method when the parameters are far from their optimal value and acts more like the Gauss-Newton
method when the parameters are close to their optimal value [35]. As explained in [36] the Levenberg-
Marquardt algorithm was designed to approach second-order training speed without having to
compute the Hessian matrix. This algorithm appears to be the fastest method for training moderate-
sized feedforward neural networks (up to several hundred weights). The procedure has an efficient
implementation in MATLAB software, as the solution of the matrix equation is a built-in function,
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so its attributes become even more pronounced in a MATLAB environment. The original description
of the Levenberg-Marquardt algorithm is given in [37]. The application of Levenberg-Marquardt to
neural network training is described in [38].

In this study we propose and implement a grid search algorithm to find the most accurate
NARNET (NARNET with minimum errors) through optimizing its hyperparameters. The training
function used to train the network was chosen as LMBP as it the most commonly used function in
the training of NARNETs. The hyperparameters used as the input of our objective function were
i.) the size of hidden layer and ii.) the number of feedback delays. The training can be repeated N
times to achieve better accuracies, and the number of epochs in each training are adjusted/determined
automatically by the LMBP based training of NARNET in MATLAB. The accuracy of the model
in our algorithm is calculated on the basis of test set. The pseudocode of the grid search algorithm is
given in Listing 1.

Listing 1. Grid-search algorithm

function findBestNARNET (trainset, testtest hiddenlayer_size_items, feedbackdelay_no, train-
ing_repeat)

best_rmse ← high_positive_value

best_mae ← high_positive_value

bestnet, best_record, best_rsqr

for i ← 1 to feedbackdelay_no

for j ← 1 to hiddenlayer_size_item

for k ← 1 to training_repeat

[training_record, trained_net] = train_network (trainset)

predictions = trainednet.predict (testset)

[rmse, mea, rsqr] = calculate_metrics (testset, predictions)

if best_rmse > rmse & best_mae > mae

bestnet ← trained_net

best_record ← training_record

best_rmse ← rmse

best_mea ← mae

best_rsqr ← rsqr

end if

end

end

end

return bestnet, best_record, best_rmse, best_mea

end function

The grid search algorithm has been implemented in MATLAB and embedded in a tool developed
by the authors. The tool developed is a MATLAB App and provides a Graphical User Interface (GUI)
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which can be used in data preparation, entry of hyperparameter options, training, and visualization
of the results. The tool consists of 3 parts. The first set of parameters (Prepare Data Tab) focuses on
data preparation for optimal network search. The data can be loaded in form of an Excel or CSV file
by using the “Load Data” command from the toolbar menu. Once loaded, the unprocessed/raw data
is visualized in a Data Table at the lower part of the window. The column in focus (i.e., the series in
focus when there are multiple series) can be determined as data column using this interface, and once
determined the data column is illustrated with blue color. A cut-point row can be determined also
here. The cut point row, once determined, indicates where to separate the data into train and test sets.
The last row of the training set to be prepared is colored in red, while the first row of the test set to be
prepared is colored in yellow. Graph View switch is used to provide a time series plot of the data. Once
this switch is On, any click on the data column would provide a time series plot of the data as an image.
Differencing (�) can be applied to the data if the data has trend or seasonality to remove these effects.
The data preparation interface allows the user to apply first (�1) or second (�2) order differencing to
the dataset. (Fig. 5) Once all data preparation parameters have been determined and input into the
system the toolbar command “Prepare Data” is used to generate the training and test sets. These sets
are stored as arrays in the MATLAB environment, and are visualized, and can be controlled using the
user interface.

Figure 5: Data preparation and first set of input parameters
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The second set of parameters is for inputting the hyperparameter boundaries that would be used
in the grid search to find the optimal NARNET, in parallel with the algorithm provided in Listing 1.
In Listing 1, two hyperparameters form the search space (number of feedback delays and hidden layer
size), and each configuration of combination of these two hyperparameters can be run N times. The
user can input Feedback Delays parameter as an integer value (f), which indicates that the grid search
will be conducted between 1 and (f) feedback delays for all different hidden layer sizes. Secondly the
user can provide an array of “Hidden Layer Sizes”, which indicates that the grid search will consider
each hidden layer size provided in this array, for instance if this array is [5 10 15], this indicates
that the grid search will take single layer NARNETs with 5, 10, and 15 neurons into account (for
each feedback delay) during the search for the optimal model. A training configuration (a single
combination of a feedback delay and hidden layer size e.g., [1, 5] or [5, 10]) can be run N times in order
to repeat the LMBP based training process of the NARNET N times. Each of these runs would result
in similar networks in terms of architecture (number of neurons, feedback delays) but with different
weights and biases determined in each run, and thus having different accuracies (RMSE, MAE scores).
Running a training configuration multiple times increases the chance of finding the optimal (most
accurate) NARNET for each configuration. Thus, this step contributes to the grid search not as an
hyperparameter, but by deeply searching the best weight-bias combination for each hyperparameter
configuration. The user can input number of times the training configuration will be run, i.e., run of
each config, among the second set of parameters (Fig. 6). The training is run by selecting the “Train”
command on the toolbar menu. Once the training is complete a figure showing the optimal network
architecture is displayed if the “View Best Network” switch is On.

Figure 6: Second set of input parameters

The third set of parameters provides the accuracy metrics calculated for the optimal NARNET.
These parameters are RMSE/MAE (and R2, the supplementary measure). These are calculated for
each iteration using the test set during the optimal model search (see Listing 1). Once the training is
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complete, and the optimal (most accurate) model is determined, its accuracy metrics are displayed in
the third parameter set (Results Tab). At the completion of the training, the training record is logged
by MATLAB and the optimal network is saved, both as MATLAB environment variables. The optimal
network saved can later be used for further validation studies with different training and test sets to
further assess its performance (Fig. 7).

Figure 7: Accuracy metrics

Once all the training and tests are complete, we evaluated the results achieved through Box-Jenkins
(ARIMA) and Optimal NARNET search methods, the next section of the paper elaborates on the
numerical results and provides a discussion on applicability of these techniques for estimation of
Construction Material Indices.

4 Results and Discussion
4.1 Box Jenkins (ARIMA) Model Outputs

As a result of 32 rounds of analysis with EViews 10 explained previously, the estimated coefficients
of the best fit ARIMA model is shown in Tab. 1, and the equation of the ARIMA Model is provided
in Eq. (2).

wt = 1.2434wt−1 − 0.3480wt−2 + εt + 0.9999εt−1 − 0.5923
wt = �1y = yt − yt−1

(2)

Following this, we estimated the i.) Training Set through Static (in-of-sample) and Dynamic (out-
of-sample) estimation methods, and ii.) Test Set through Static (in-of-sample) and Dynamic (out-of-
sample) estimation methods. The accuracy metrics for all these estimations are provided in Tab. 2, and
Fig. 8 provides a time series plot showing the original and estimated series.
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Table 1: The estimation results of the best ARIMA model for E1

Dependent variable: E1

Variable Coefficient Standard error t-statistic Probability

Constant −0.59227 0.08802 −6.72825 0.0000
AR(1) 1.24341 0.11351 10.95343 0.0000
AR(2) −0.34803 0.10451 −3.32988 0.0014
MA(1) −0.99979 0.00023 −4218.626 0.0000

Table 2: Accuracy metrics for ARIMA (2, 1, 1) model

Date range Estimated set No. of. obs Forecast type RMSE MAE

09.2013–06.2019 Training 70 Static 1.1256 0.8531
09.2013–06.2019 Training 70 Dynamic 1.2108 0.9083
07.2019–03.2021 Test 21 Static 1.0157 0.8917
07.2019–03.2021 Test 21 Dynamic 0.8826 0.7264

Figure 8: Time series plot of original and estimated series

4.2 The Outputs of Optimal NARNET Models

Following the Box-Jenkins (ARIMA) modeling process of E1, all indicators have been modeled
and estimated with the optimal NARNETs (discovered by the MATLAB App developed during this
study). As the Autocorrelation Plots of Indicators at Level (Fig. 2) illustrates, all indicator variables
were not stationary at level, thus first difference of all variables is used in generation of training and
test sets for estimation. The training set covered the 09.2013–06.2019 period (70 obs.), while the test
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sets covered the period between 07.2019–03.2021 (21 obs.). In-of-sample (static) estimation method is
used in the estimation process. In terms of range of hyperparameters, feedback delays evaluated by the
networks were [1, 2, 3, 4], hidden layer sizes evaluated were [15, 20, 25] and each training configuration
has been run 5 times. Tab. 3 provides the summary of the estimation results with hyperparameters of
optimal NARNETs.

Table 3: Estimation results of NARNET models

Estimated
set

Optimal
network
hidden
layer size

Optimal
network
feedback
delays

RMSE MAE σ test RMSE/σ MAE/σ

E1-test 15 1 0.710 0.585 0.806 0.881 0.726
E2-test 15 1:2 0.929 0.638 0.983 0.945 0.649
E3-test 15 1:2 1.461 1.066 1.507 0.969 0.707
E4-test 15 1 3.311 2.336 3.396 0.975 0.688
E5-test 15 1 5.675 3.746 5.399 1.051 0.694
E6-test 20 1 1.327 0.983 1.614 0.822 0.609
E7-test 15 1 1.917 1.586 2.205 0.869 0.719
A1-test 15 1:2 4.102 3.350 4.559 0.900 0.735
A2-test 20 1 5.068 4.185 5.160 0.982 0.811
A3-test 15 1 3.543 2.712 3.796 0.933 0.714
A4-test 25 1:3 5.533 4.606 5.687 0.973 0.810
A5-test 20 1 0.522 0.416 0.483 1.081 0.861
A6-test 15 1 1.107 0.890 2.006 0.552 0.444
T1-test 25 1 0.902 0.647 0.812 1.111 0.797
T2-test 20 1:2 1.036 0.750 0.905 1.145 0.829
T3-test 15 1 1.153 0.905 1.028 1.122 0.880
T4-test 20 1 0.858 0.582 0.836 1.026 0.696
T5-test 15 1 2.727 1.687 3.088 0.883 0.546

In order to compare the performance of ARIMA and NARNET models, the estimation accu-
racies for E1 were checked. For the test set of E1, the static forecast of the ARIMA model results
in RMSE:1.0157, and MAE: 0.8917, while the static forecast of the NARNET model results in
RMSE:0.710 and MAE:0.585. The NARNET model has significantly lower error rates when com-
pared with ARIMA model, RMSE: 0.881 σ vs. RMSE 1.26 σ , and MAE:0.726 σ vs. MAE:1.106 σ .

When all estimations with NARNET models complete, it is observed that the model accuracies
in terms of RMSE range between 0.552 σ–1.145 σ , and in terms of MAE, they range between 0.444
σ–0.880 σ . The results indicate that when optimal network delays were found more than one (i.e., 1:2
or 1:3) the series tend to have a relatively high variance (e.g., A1, A4, E2, E3), but not all series with
high variance (e.g., E5, A2) have been modelled optimally with networks having delays more than one.
Thus, it is not possible to argue that a correlation in optimal models exists between series variance and
number of network delays input into the system. The majority of the number of neurons in the hidden
layer of optimal networks were 15 (lowest alternative evaluated). This might be related to the size of
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training sets (70 obs.), where low complexity in networks provide better estimation results of small
datasets (following the law of parsimony). The results also demonstrated that regardless of the nature
and complexity of the time series data, NARNETs are able to model the time-dependent relationship
in data with success, which would not be the case for solo use of linear models such as ARIMA.

5 Conclusion

Cost is a key concern in the operations of the construction industry, material costs has a huge
impact on the overall cost of construction. In order to foresee the trends of the cost of construction
materials, this study concentrated on estimation of construction material indices. The literature
indicates that in modeling time dependent indicators of the construction industry there is no one-
size-fits-all solution or model, and different modeling techniques have to be employed and tested
for series of different nature. In our study, the estimation of construction material indices is accom-
plished through ARIMA and Non-Linear Autoregressive Neural Network (NARNET) methods. The
estimation with Box-Jenkins (ARIMA) Methodology has been done for the E1 indicator, where an
ARMA model is fitted to the first difference of the E1 series. The static (in of sample) estimation
of the test set of E1 resulted with RMSE 1.26 σ and MAE:1.106 σ , which can be considered as a
good accuracy. Following this, optimal NARNET architectures for all indicators have been identified
through a grid search algorithm (developed for identifying best hyperparameters for the network) and
utilizing an accompanying software tool. The optimal NARNET models provided better accuracies,
for instance, the static (in of sample) estimation of the test set of E1 resulted with RMSE: 0.881 σ

and MAE:0.726 σ . The algorithm and accompanying MATLAB App developed demonstrated that
grid search can be efficiently used in finding the NARNETs with optimal hyperparameters. The study
results have demonstrated that depending on the nature of the series, both methods can successfully
and accurately estimate the future values. The proposed approach presents a new direction and method
in estimation of construction material price indicators. The developed tool can be used by construction
industry professionals and cost managers to efficiently estimate trends related to material prices which
would lead to take more effective estimation of material prices and this in turn would enhance the
foreseeability of the material costs in the construction industry.
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