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Abstract: Cloud computing has taken over the high-performance distributed
computing area, and it currently provides on-demand services and resource
polling over the web. As a result of constantly changing user service demand,
the task scheduling problem has emerged as a critical analytical topic in cloud
computing. The primary goal of scheduling tasks is to distribute tasks to avail-
able processors to construct the shortest possible schedule without breaching
precedence restrictions. Assignments and schedules of tasks substantially
influence system operation in a heterogeneous multiprocessor system. The
diverse processes inside the heuristic-based task scheduling method will result
in varying makespan in the heterogeneous computing system. As a result,
an intelligent scheduling algorithm should efficiently determine the priority
of every subtask based on the resources necessary to lower the makespan.
This research introduced a novel efficient scheduling task method in cloud
computing systems based on the cooperation search algorithm to tackle an
essential task and schedule a heterogeneous cloud computing problem. The
basic idea of this method is to use the advantages of meta-heuristic algorithms
to get the optimal solution. We assess our algorithm’s performance by run-
ning it through three scenarios with varying numbers of tasks. The findings
demonstrate that the suggested technique beats existing methods New Genetic
Algorithm (NGA), Genetic Algorithm (GA), Whale Optimization Algorithm
(WOA), Gravitational Search Algorithm (GSA), and Hybrid Heuristic and
Genetic (HHG) by 7.9%, 2.1%, 8.8%, 7.7%, 3.4% respectively according to
makespan.
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1 Introduction

The cloud computing model emerged with the growth of the Internet and the services that the
Internet provides to its users. The cloud model is based on distributed computing and consists of
different virtual computers that can be interconnected and dynamic to form computing resources.
The vacant resources should be used globally to increase the utilization and gain of the resources by
increasing the economic efficiency of these resources. The cloud model best serves this. The primary
goal of the cloud computing concept is to enable users to share data and resources. It is a platform to
provide applications and services to its users. There are three forms of cloud computing: platform as
a service (paas), software as a service (saas), and infrastructure as a service (iaas) [1]. These services
are available to users on a pay-on-demand basis and share servers, computing resources, applications,
networks, and data storage. The licenced software is delivered to the user on a subscription basis for
the services in a saas service. These services may be accessed from any device using a web browser. In
paas, users can create their services using the available cloud services and then publish those services
on their devices. In iaas, the organizational infrastructure for clients is available online. To use this, the
consumer does not need to comprehend the internal nature of the infrastructure [1]. Instead of buying
the entire infrastructure for business requirements, which the customer takes as basic rent when there
are no more infrastructure requirements, the customer uses the amount paid for the services. In the
last year, the number of cloud users has increased, so the volume of tasks you need to manage by
default for this task is required for scheduling [1]. To solve the problem of scheduling tasks better,
we have proposed a novel efficient approach based on the cooperation search algorithm called the
Efficient Cooperation Search Algorithm (ECSA) to minimize the makespan of the user requests on
the resources. In the cooperation search algorithm, the representation of a vector is a continuous value,
so we use two methods to convert the continuous value to a discrete value. We assess our algorithm’s
performance by running it through three cases with varying numbers of tasks.

The following is the paper’s structure: Section 2 contains the notations. Related work for problems
of scheduling tasks is given in Section 3. The problem description is given in Section 4. Section 5 shows
the cooperation search algorithm. Section 6 describes the ECSA approach. The results were obtained
by applying the ECSA and compared with the other results and discussion presented in Section 7.
Section 8 concludes and offers future work.

2 Notations

TG represents the graph of tasks

Tasi represents the task i

Prosi represents the processor i

NMP represents the processor’s number

NMT represents the task’s number

C(Tasi, Tasj) The communication cost between Tasi and Tasj

Start_Time(Tasi, Prosj) represents the task’s start time i on a processor Prosj

Finish_Time(Tasi, Prosj) represents the task’s finish time i on a processor Prosj

Ready_Time(Prosi) represents the processor’s ready time i

LT represents a list of jobs arranged in directed acyclic graph topological
order

Data_Arrive(Tasi, Prosj) represents the time of data arrival of task i to processor j
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3 Related Work

In terms of cloud computing, scheduling tasks directly influences resource utilization and oper-
ational expenses. Many metaheuristic approaches and variants for optimizing scheduling have been
created to boost the efficiency of task executions in the cloud. This study [2] introduces the Whale
Optimization Algorithm (WOA) for scheduling tasks in the cloud using a multiobjective improvement
model, intending to increase the cloud system performance with limited resources for computing.
Based on that assumption, an improved method called Improved Whale Optimization Algorithm
(IWC) for scheduling tasks in the cloud was created to boost the whale optimization algorithm-
based method’s best solution search capability. The algorithm aims to Improve convergence speed
and accuracy and increase the resource utilization cost.

Cloud computing is a relatively new paradigm for exploiting distant resources for computing; It
is also becoming a more robust and popular technology that enables on-demand resource allocation
and release in near real-time. Scheduling tasks are crucial in cloud computing and are one of the
most challenging things to master in this field. As a result, a strong and effective scheduling system
is necessary to better resource utilization. An excellent algorithm for scheduling tasks can improve
the quality of service, overall performance, and end-user experience. As the number of available
tasks grows, so does the complexity of the problem, resulting in a huge search space. To offer a
technique capable of finding a near-optimal solution for a multiobjective scheduling task issue in a
cloud computing environment while also reducing search time. The authors provide the hybridized bat
algorithm, a swarm-intelligence-based technique for multiobjective task scheduling [3]. The algorithm
aims to utilize makespan, cost, and Hyervolume indicator.

The most critical need in a cloud computing environment is scheduling tasks since it is vital to
the overall functioning of cloud computing facilities. In cloud computing, scheduling tasks implies
allocating the possible resources for the work to be executed while considering dependability, time, scal-
ability, cost, makespan, throughput, resource consumption, availability, etc. The suggested approach
takes reliability and availability into account. Because of the difficulties of achieving these criteria,
most scheduling methods do not incorporate cloud computing ecosystem stability and availability.
A mathematical model for cloud computing that uses mutation of load balancing and a particle
swarm optimization based allocation and schedule that considers the time of transmission, time of
the round trip, reliability, time of execution, load balancing, makespan, cost of transmission, and
between virtual machines and tasks is presented [4]. It can contribute to the dependability of the cloud
computing environment by considering the availability of resources and rescheduling tasks that fail to
allocate them.

Several advantages are provided by central cloud facilities based on virtual computers, including
reduced costs of scheduling and improved service accessibility and availability. The cloud computing
strategy is viable because of the combination of security measures and online services. The feature
spaces of the source and destination domains differ in task transfer. This problem is exacerbated by
network traffic, which causes data transmission delays and prevents some vital operations from being
completed on time. This work introduces a hybrid multi-verse optimizer with a genetic algorithm as a
practical optimization approach for job scheduling. The suggested algorithm is intended to improve
the performance of the tasks transported over the cloud network based on the workload of resources
in the cloud. It is required to give suitable decisions of transfer to reschedule the transfer tasks in the
cloud based on the efficiency weight of the acquired jobs. The suggested technique considers a variety
of cloud resource attributes, including throughput, capacity, number of virtual machines, number and
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size of tasks, and speed [5]. The algorithm aims to optimize the transfer time of large cloud tasks,
which reflects its effectiveness.

Cloud computing is a type of on-demand Internet-based computing widely used by both working
and non-working individuals throughout the world. One of the essential applications utilized by cloud
service providers and end-users is task scheduling. The task scheduler’s main challenge is to locate the
best resource for the given input job. A hybrid electro search combined with a genetic algorithm is
proposed [6] to optimize scheduling task behaviour by considering load balancing, makespan, multi-
cloud cost, and resource usage criteria. The proposed solution leveraged the benefits of both an
electrical search algorithm and a genetic algorithm. The genetic algorithm gives the best solutions
within the local optimum, whereas the electro-search method delivers the best solutions within the
global optimal. The algorithm aims to decrease makespan, cost, and response time.

The scheduling task is essential to improving the performance of collaborative and distributed
e-science and e-business applications at scale. This typical application includes multiple communica-
tion tasks that are performed on virtual machines. The primary objective of any scheduling method
is to reduce the extent of the configuration, which reflects the exit task completion time. Focusing on
downsizing for allocating or scheduling multiple tasks across heterogeneous virtual machines, in this
paper [7] a model based on the Crow Search Algorithm (CSA) was proposed and the main objective
of this model is to reduce the makespan.

Scheduling tasks is the primary issue in cloud computing, which reduces the system’s performance.
It’s an effective method to organize the user’s requirements and achieve multiple goals. An efficient
scheduling task algorithm is required to improve the system’s performance. A Genetic Algorithm (GA)
has been described for task assignment and execution. The algorithm aims to decrease the execution
cost and makespan of tasks and increase resource utilization [8].

4 Problem Description

During this work, the task scheduling model is defined as distributed Number of Tasks (NMT)
tasks to be implemented on Number of Processors (NMP) processors. The processors may be different
in general. Task Graph (TG) may be mapped to describe the problem structure. TG is a Directed
Acyclic Graph (DAG) made up of NMT tasks: Tas1, Tas2, Tas3, . . . Tasn. Every node in the graph is
termed a task. A task is assumed to be a set of instructions that must be implemented sequentially by
an assigned processor. A task (node) might have pre-demanded data (inputs) before implementation.
When all the inputs are received, the task can be triggered to be implemented. These inputs are expected
to be delivered after some other tasks end their implementation, as these tasks evaluate them. We call
this relying on task dependency. If a task is dependent on other tasks’ data, then we consider that task
as the parent of the task, and the task is their child. A task with no parents is called an entry task,
and a task with no children is called an exit task [9]. The execution time of a task is what we call the
computation cost. Whenever the computation cost of a task Tasi is denoted by weight (Tasi, Prosj), the
graph additionally has directed edges representing a partial order among the tasks. The partial order
introduces a precedence-constrained DAG and implies that if (Tasi → Tasj), then Tasj is a child, which
means it cannot start until its parent Tasi finishes. The weight on edge represents the communication
cost between the tasks and is denoted by C(Tasi, Tasj); the communication cost is considered only if
Tasi and Tasj are assigned to different processors; otherwise, it’s calculated to be zero. In that case,
Tasi and Tasj are assigned to the same processor. If a node Tasi is assigned to processor Prosj, the
task’s start time and finish time are denoted by Start_Time(Tasi, Prosj) and Finish_Time(Tasi, Prosj),
respectively. After scheduling the tasks, the makespan is defined as the max {Finish_Time(Tasi, Prosj)}
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across all processors. The task scheduling problem is to find a schedule for the tasks in the processors
such that the makespan is decreased over possible schedules, where the task dependency constraints are
preserved. Task dependency constraints state that any task can’t start until all parents have finished.
Assume that Prosj is the processor and that the Kpath parent task Task of task Tasi, is scheduled.
The Data_Arrive of Tasi at processor Prosj is the time at which the per-demanded data for the task
execution becomes available. This is defined in [9] by the following:

Data_Arrive(Tasi, Prosj) = max
{
Finish_Time

(
Task, Prosj

) + C (Tasi, Task)
}

where kpa = 1, 2, 3 . . .

Number of Parent (1)

Start_Time(Tasi, Prosj) = max
{
Ready_Time(Prosj), Data_Arrive

(
Tasi, Prosj

)}
(2)

Finish_Time(Tasi, Prosj) = Start_Time
(
Tasi, Prosj

) + weight
(
Tasi, Prosj

)
(3)

Ready_Time(Prosj) = Finish_Time
(
Tasi, Prosj

)
(4)

Makespan = max
{
Finish_Time

(
Tasi, Prosj

)}
where i = 1, 2, 3 . . . NMT (5)

5 Cooperation Search Algorithm

The specifics of the Cooperation Search Algorithm (CSA) approach [10] are provided in this part
to provide a unique additional tool for global optimization problems: The cooperative team behaviours
in current organizations are explained first, followed by the search concept of the CSA approach. The
following are some examples of frequent restricted minimization optimization problems:

min g (y) y = [
y1, . . . ., yj, . . . .., yJ

] ∈ RJ

Such that ggee (y) ≤ 0 ee = 1, 2, 3, . . . .., EE (6)

hhg (y) = 0 g = 1, 2, 3, . . . .., G

yj ≤ yj ≤ yj j = 1, 2, 3, . . . .., J

where g(x) denotes the J-dimensional solution’s objective value. yj denotes the jth variable in solution
y, yj and yj are the upper and lower bounds of the jth variable, respectively. The number of possible
decision factors is denoted by the letter J. The inequality constraint is ggee (y). The gth equality
constraint is expressed as hhg (y). The variables G and EE represent the number of equality and
inequality constraints, respectively.

5.1 Insights from Teamwork Behaviour in Modern Businesses

In recent years, all types of businesses have played an increasingly essential part in economic
and social growth. Cooperative team conduct is critical to one company’s normal functioning. The
boards of supervisors and directors, the chairman, and the staff are four different positions frequently
used in the corporate cooperation process. The board of directors, which comprises shareholders who
have been chosen to represent them, oversees the company’s business operations and administers the
productive duties inside. In other words, the board of directors oversees all of the company’s affairs
and transactions. The board of supervisors is tasked with supervising the executive directors and
promoting the interests of the shareholders [10]. In contrast, the boards of supervisors and directors
can’t participate in the firm’s corporate decision-making process and can’t represent the organization
externally. As an executive elected by the board of directors, the chairman is primarily responsible
for the company’s scientific activities. Furthermore, as the firm’s spokesman, the chairman frequently
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has significant, if not decisive, influence over the company to ensure smooth and orderly operations
before reaching a consensus on board decisions. The staff is required to participate in specific tasks
under the direction of the board of directors, which typically has the authority to select members of
the boards of supervisors and directors. It is generally recognized that human people are one of the
essential components in increasing productivity, implying that growing staff strength is a critical aspect
of the company’s scientific development. In order to achieve this aim, it is vital to assist individual
staff members in gaining as much information as possible. In general, a group of leaders on the
boards of supervisors and directors and a chairperson can all impact staff knowledge at the same time.
Because of their role as team leaders, the chairman on duty frequently has the most power. At the same
time, members of the boards of supervisors and directors supply ample information to minimize or
even eliminate potential mistakes. After some time, each staff member is urged to contemplate self-
improvement methods and given the option to assume the position of their superior leaders once
their performance has improved. In other words, the chairman and the members of the board of
directors and supervisors can be dynamically updated to boost the company’s market competitiveness.
It has been discovered that there are close connections among members of various social statuses;
underperforming leaders or staff might be replaced by promising young people, while ordinary staff
has the opportunity to improve their knowledge and advance their job positions through hard work.
As a result, the firm can continue to operate to achieve sustainable development [10].

5.2 The CSA Method’s Search Principle

In CSA, the optimization process of the target problem is viewed as the development of an
enterprise; each solution is viewed as a staff member, while a group of staff members forms an
enterprise team; the value of the fitness of the problem is equal to the performance per staff member;
the board of supervisors is made up of personal best-known solutions; the board of directors is
made up of the external archive set (M global best-known solutions found by far); the chairman
on duty is rando. The population may then gradually develop high-quality solutions by replicating
team cooperation behaviours in the modern industry by employing three evolutionary operators: The
team communication operator is used to assist employees in capturing useful leaders’ knowledge;
The operator for reflective learning is used to increase the staff’s overall strength by drawing lessons
from the past. The internal competition operator improves the top solutions’ work experiences and
leadership vision. Following that, the technical elements of the CSA technique are as follows [10]:

The team-building phase: The equation determines all team members at random Eq. (7). After
evaluating all solutions’ performances, Mε [1, I] solutions for leaders will be picked from the original
swarm to create the external elite set.

yk
i,j = O(yj, yj), where i ∈ [1, I] , j ∈ [1, J] , k = 1 (7)

where I is the current swarm’s number of solutions. The jth value of the ith solution during the kth cycle
is represented by yk

i,j. O (Lower Bound (LOB), Upper Bound (UPB)) is a function that generates a
random number with a uniform distribution in the range [LOB, UPB] [10].

The operator of team communication: Each staff member may learn new messages by sharing
information with the chairman and the board of supervisors and directors. As shown in Eq. (8),
the team communication process consists of the chairman’s knowledge W, E the board of directors’
collective knowledge, and the collective knowledge Z from the board of supervisors. The chairman
is picked randomly from the board of directors to replicate the rotating mechanism. In contrast, all
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supervisors and directors’ board members are assigned identical positions in calculating E and Z [10].

qk+1
i,j = yk

i,j + Wk
i,j + Ek

i,j + Zk
i,j , where i ∈ [1, I] , j ∈ [1, J] , k ∈ [1, K] (8)

Wk
i,j = log

(
1

O(0, 1)

)
.
(
globestk

inde,j − yk
i,j

)
(9)

Ek
i,j = α .O(0, 1).

[
1
M

∑M

m=1
globestk

m,j − yk
i,j

]
(10)

Zk
i,j = β.O(0, 1).

[
1
I

∑I

i=1
perbestk

i,j − yk
i,j

]
(11)

qk+1
i,j denotes the jth value of the ith group solution during the (k + 1)th cycle. The jth value of the ith

personal best-known solution during the kth cycle is given by perbestk
i,j. The jth value of the indeth global

best-known solution from the beginning of the kth cycle is represented by globestk
inde, j. The index inde

is chosen at random from the set of {1, 2, . . . , M}. Wk
i,j represents the information obtained from the

chairman, who was randomly picked from the external elite group. Ek
i,j and Zk

i,j represent the average
knowledge acquired from M global best-known solutions discovered by far and I personal best-known
solutions, respectively. α and β are the learning coefficients used to alter the influence degrees of Ek

i,j

and Zk
i,j, respectively [10].

The operator of reflective learning: Aside from learning from the leader’s solutions, the staff may
also receive new information by summarising their own experience in the other way, as seen below [10]:

lk+1
i,j =

{
hk+1

i,j if
(
qk+1

i,j ≥ zj

)
sk+1

i,j if
(
qk+1

i,j < zj

) , where i ∈ [1, I] , j ∈ [1, J] , k ∈ [1, K] (12)

hk+1
i,j =

⎧⎨
⎩

O
(

yj + yj − qk+1
i,j , zj

)
if

(∣∣qk+1
i,j − zj

∣∣ < O(0, 1).
∣∣∣yj − yj

∣∣∣)
O

(
yj, yj + yj − qk+1

i,j

)
otherwise

(13)

sk+1
i,j =

⎧⎨
⎩

O
(

zj, yj + yj − qk+1
i,j

)
if

(∣∣qk+1
i,j − zj

∣∣ < O(0, 1).
∣∣∣yj − yj

∣∣∣)
O

(
yj + yj − qk+1

i,j , yj

)
otherwise

(14)

zj = 1
2

.
(

yj + yj

)
(15)

lk+1
i,j denotes the jth value of the ith reflective solution during the (k + 1)th cycle.

The operator of internal competition: The team steadily improves its competitiveness in the market
by ensuring that all employees with superior performance are always retained, as shown below [10]:

yk+1
i,j =

{
qk+1

i,j if
(
G

(
qk+1

i

) ≤ G
(
lk+1
i

))
lk+1
i,j if

(
G

(
qk+1

i

)
> G

(
lk+1
i

)) , where i ∈ [1, I] , j ∈ [1, J] , k ∈ [1, K] (16)

G(y) denotes the value of fitness of the solution y. In order to implement multiple physical con-
straints, Eq. (17) is used to modify all the variables in y to the feasible zone. Then the penalty functions
approach in Eq. (18) is used to achieve the fitness value G (y) by combining the value of constraint
violation with the objective value g (y). Then, all constraints are well fulfilled for feasible solutions,
resulting in the original objective value being equal to a fitness value; for infeasible alternatives, the
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constraint violation value becomes positive, resulting in a fitness value more significant than the
objective value. As a result, the swarm may be directed to a practical search region [10].

yj = max
{

min
{
yj, yj

}
, yj

}
(17)

G(y) = g(y) +
∑EE

ee=1
z1

ee. max
{
ggee (y) , 0

} +
∑G

g=1
z2

g.
∣∣hhg(y)

∣∣ (18)

where yj is the jth value to be evaluated from the solution y. The eeth inequality constraint penalty
coefficient is denoted by z1

ee. For the gth inequality constraint, the penalty coefficient is z2
g.

Cooperation Search Algorithm [10]

Define the goal function and all physical limitations.
By using Eq. (7), generate a random swarm in the feasible space
By using Eq. (18), determine the fitness values of the initial solutions
Make the group and reflective solutions the same as the original one.
iteration = 1
While (iteration <= max of iteration)
For the current swarm, update I (personal best-known solutions)
Update M global best-known solutions found
By using Eqs. (8)–(11), obtain I group solutions for global exploitation
By using Eqs. (12)–(15), obtain I reflective solutions for local exploration
By using Eq. (18), calculate the fitness values of the group and reflective solutions
For the next cycle, use Eq. (16) to select I better solutions
iteration = iteration + 1
End while
The final solution to the problem is the global best-known individual

6 The Proposed Algorithm

We can see that the representation of a vector is a continuous value; therefore, we will apply the
Smallest Position Value (SPV) rule [11] and the Largest Position Value (LPV) rule [12], as well as the
modulus function with the number of processors and increasing the value by 1, as shown in Fig. 1.

2.3 1.9 1.4 2.8 2.1 1.6 2.2

Pops 

3 6 2 5 7 1 4
SPV 

1 1 3 3 2 2 2

Modulus with SPV and number of processors =3 

2.3 1.9 1.4 2.8 2.1 1.6 2.2

Pops 

4 1 7 5 2 6 3
LPV 

Modulus with LPV and number of processors =3 

2 2 2 3 3 1 1

Figure 1: An example of the proposed schedule
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Where the tasks Tas1 and Tas3 are scheduled into processor 1. The tasks Tas2, Tas6, and Tas7 are
scheduled into processor 2. The tasks Tas4 and Tas5 are scheduled into processor 3, as shown in Fig. 2.

1 2 1 3 3 2 2

Figure 2: The proposed schedule

The proposed algorithm

Input: DAG’s computation cost and communication cost
Output: the best solution for makespan
Define all physical limitations
By using Eq. (7), generate a random swarm in the feasible space
Convert the generated swarm by using Algorithm 2
Calculate the makespan by using Algorithm 1
Make the group and reflective solutions the same as the original one.
iteration = 1
While (iteration <= max of iteration)
For the current swarm, update I (personal best-known solutions)
Update M global best-known solutions found
By using Eqs. (8)–(11), obtain I group solutions for global exploitation
By using Eqs. (12)–(15), obtain I reflective solutions for local exploration
Convert the obtained solutions by using Algorithm 2
Calculate the makespan by using Algorithm 1
For the next cycle, use Eq. (16) to select I better solutions
iteration = iteration + 1
End while
The final solution to the problem is the global best-known individual

Algorithm 1: Calculate the makespan of the task schedule using the Standard Genetic Algorithm
(SGA) [9]
Input the schedule of tasks as shown in Fig. 2
Ready_Time[Prosj] = 0 where j = 1, 2, 3 . . . . . . NMP.
For i = 1 to NMT
{

Remove the first task Tasi from the list LT.
For j = 1 to NMT

{
If Tasi is scheduled to processor Prosj

By using Eq. (2), compute start_time
By using Eq. (3), compute finish_time
By using Eq. (4), compute ready_time

End If
}

}
By using Eq. (5), compute the makespan
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Algorithm 2: The function that converts a continuous value to a discrete value
Function Convert (s)
R = random number between [1, 2]
If (R == 1) then

Use the SPV rule as shown in Fig. 1
Else

Use the LPV rule as shown in Fig. 1
End if
End function

We can see as shown above that Algorithm 1 is used to compute the makespan by taking the
schedule after converting it by Algorithm 2, which detects the method that is used to convert the
continuous value to a discrete value by generating a random number, the number maybe 1 or 2.
The proposed algorithm uses the operation of a cooperation search algorithm to find the best solution
for the makespan. We can see that the value of speedup, efficiency, and throughput depends on the
makespan. The smaller the makespan, the higher the speedup, efficiency, and throughput.

7 Evaluation of the ECSA

In this part, we demonstrate the ECSA’s efficacy by applying it to three cases. The first case is
of three heterogeneous processors and eleven tasks. The second case consists of three heterogeneous
processors and ten tasks. The third one consists of a different number of tasks and processors. ECSA
was implemented as a system by MATLAB 2016. We set the initial values of the parameters initial
population = 100, α = 0.10, β = 0.15, max of iteration = 100.

Speedup is the ratio between the results obtained by assigning all tasks to a processor that gives the
minimum makespan and the results obtained by executing tasks in parallel. It is calculated as shown
in Eq. (19) [7].

Speedup = min
prosj

(∑
Tasi

weighti,j

makespan

)
(19)

Efficiency is the ratio between the obtained speedup results and the total number of processors
used. It is calculated as shown in Eq. (20) [7].

Efficiency = Speedup
NMP

(20)

Throughput: The value of the throughput metric can be defined as the number of tasks executed
per unit of time. It is calculated as shown in Eq. (21) [13].

Throughput = NMT
makespan

(21)

7.1 Case 1

In this case, the tasks {Tas0, Tas1, Tas2, Tas3, Tas4, Tas5, Tas6, Tas7, Tas8, Tas9, Tas10} will be executed
on three heterogeneous processors {Pros1, Pros2, Pros3}. The cost of executing each task on different
processors is shown in Tab. 1 [14]. The schedule obtained by ECSA and other algorithms is shown in
Tab. 2. The results obtained by the proposed ECSA are compared with those obtained by the Genetic
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Algorithm (GA) [8], and New Genetic Algorithm (NGA) [14]. The task priority of ECSA {Tas0, Tas2,
Tas3, Tas4, Tas1, Tas6, Tas8, Tas7, Tas5, Tas9, Tas10}, task priority of NGA {Tas0, Tas4, Tas3, Tas2, Tas8,
Tas1, Tas6, Tas5, Tas7, Tas9, Tas10}, GA {Tas0, Tas2, Tas6, Tas4, Tas1, Tas3, Tas8, Tas7, Tas5, Tas9, Tas10}.
Figs. 3–6 represent the results obtained by the ECSA, NGA, and GA in terms of makespan, speedup,
efficiency, and throughput.

Table 1: Computation cost for case 1

Tas/Pros Pros1 Pros2 Pros3

Tas0 10 11 12
Tas1 11 12 13
Tas2 12 8 13
Tas3 14 10 18
Tas4 27 20 19
Tas5 15 12 18
Tas6 9 14 19
Tas7 19 12 14
Tas8 14 10 15
Tas9 15 12 15
Tas10 18 10 17

Table 2: Schedule obtained by ECSA and other algorithms for case 1

NGA GA ECSA

Pros1 Pros2 Pros3 Pros1 Pros2 Pros3 Pros1 Pros2 Pros3

Tas0 0–10 - - - 0–11 - - 0–11 -
Tas1 - - 38–51 38–49 - - 36–47 - -
Tas2 - 29–37 - - 11–19 - - 11–19 -
Tas3 - - 20–38 - 39–49 - - 19–29 -
Tas4 10–37 - - - 19–39 - - 29–49 -
Tas5 - - 51–69 49–64 - - 47–62 - -
Tas6 47–56 - - 29–38 - - - - 29–48
Tas7 - 67–79 - - 49–61 - - 59–71 -
Tas8 - 37–47 - - - 28–43 - 49–59 -
Tas9 - 79–91 - - 73–85 - - 71–83 -
Tas10 - 91–101 - - 85–95 - - 83–93 -

Figure 3: Comparison of makespan for case 1
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Figure 4: Comparison of speedup for case 1

Figure 5: Comparison of efficiency for case 1

Figure 6: Comparison of throughput for case 1

7.2 Case 2

In this case, the tasks {Tas1, Tas2, Tas3, Tas4, Tas5, Tas6, Tas7, Tas8, Tas9, Tas10} are executed on three
heterogeneous processors {Pros1, Pros2, Pros3}. The cost of executing each task on different processors
is shown in Tab. 3, [9]. The schedule obtained by ECSA and other algorithms is shown in Tab. 4. The
results obtained by the ECSA are compared with those obtained by the Whale Optimization Algorithm
(WOA) [15]. Gravitational Search Algorithm (GSA) [16], and Hybrid Heuristic and Genetic (HHG)
[17]. The task priority of ECSA {Tas1, Tas6, Tas4, Tas5, Tas2, Tas3, Tas8, Tas9, Tas7, Tas10}, task priority
of WOA {Tas1, Tas3, Tas5, Tas2, Tas4, Tas6, Tas7, Tas8, Tas9, Tas10}, task priority of GSA {Tas1, Tas3,
Tas2, Tas6, Tas4, Tas5, Tas7, Tas8, Tas9, Tas10}, task priority of HHG {Tas1, Tas2, Tas6, Tas3, Tas4, Tas5,
Tas8, Tas7, Tas9, Tas10}. Figs. 7–10 represent the results obtained by the ECSA, WOA, GSA, and HHG
in terms of makespan, speedup, efficiency, and throughput.

Table 3: Computation cost for case 2

Tas/Pros Pros1 Pros2 Pros3

Tas1 22 21 36
Tas2 22 18 18
Tas3 32 27 43
Tas4 7 10 4
Tas5 29 27 35
Tas6 26 17 24
Tas7 14 25 30
Tas8 29 23 36

(Continued)
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Table 3: Continued
Tas/Pros Pros1 Pros2 Pros3

Tas9 15 21 8
Tas10 13 16 33

Table 4: Schedule obtained by ECSA and other algorithms for case 2

WOA GSA HHG ECSA

Pros 1 Pros 2 Pros 3 Pros 1 Pros 2 Pros 3 Pros 1 Pros 2 Pros 3 Pros 1 Pros 2 Pros 3

Tas1 - 0–21 - - 0–21 - - 0–21 - - 0–21 -
Tas2 - - 38–56 - - 38–58 - 21–39 - - 21–39 -
Tas3 - 21–48 - - 21–48 - - 39–66 - - 39–66 -
Tas4 - 48–58 - 50–57 - - - - 50–54 64–71 - -
Tas5 34–63 - - - - 56–91 - - 54–89 - - 34–69
Tas6 - 58–75 - - 48–65 - 38–64 - - 38–4 - -
Tas7 64–78 - - 64–78 - - - 66–91 - - 66–91 -
Tas8 - 75–98 - - 68–91 - 65–94 - - 71–100 - -
Tas9 86–101 - - - - 91–99 - - 89–97 - - 78–86
Tas10 - 108–124 - 106–122 - 104–117 - - 100–113 - -

Figure 7: Comparison of makespan for case 2

Figure 8: Comparison of speedup for case 2

Figure 9: Comparison of efficiency for case 2
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Figure 10: Comparison of throughput for case 2

7.3 Case 3

To analyze the behavior of the ECSA, we consider four cases with M = 2, 3, 4, and 8 processors.
The number of tasks is 20, 30, 50, and 70 tasks in the first, second, third, and fourth cases (N = 20,
30, 50, and 70). The communication cost between the tasks and the computation cost of each task on
different processors are randomly generated from 1 to 20, and 1 to 5, respectively. We run our proposed
algorithm one more time. The results obtained by the proposed algorithm are shown in Tab. 5.

Table 5: The results obtained by ECSA for case 3

Number of
tasks

Makespan Speedup Efficiency Throughput Number of
processors

20 28 1.392 0.696 0.714 2
26 1.5 0.5 0.769 3
28 1.392 0.348 0.714 4
33 1.181 0.147 0.606 8

30 33 1.575 0.787 0.909 2
32 1.625 0.541 0.937 3
34 1.529 0.382 0.882 4
35 1.485 0.185 0.857 8

50 60 1.5 0.75 0.833 2
62 1.451 0.483 0.806 3
67 1.343 0.335 0.746 4
74 1.216 0.152 0.675 8

70 87 1.436 0.718 0.804 2
86 1.453 0.484 0.795 3
94 1.329 0.332 0.744 4
101 1.237 0.154 0.693 8

7.4 Discussion

According to the results in Figs. 3–6, it is found that the makespan of the ECSA is reduced by
(7.9%) and (2.1%) about NGA and GA respectively. The speedup of the ECSA is improved by (8.5%)
and (2.1%) for NGA and GA respectively. The efficiency of the ECSA is improved by (8.5%) and
(2.1%) for NGA and GA respectively. The throughput of the ECSA is improved by (9.2%) and (2.6%)
about NGA and GA respectively. According to the results in Figs. 7–10, it is found that the makespan
of the ECSA is reduced by (8.8%), (7.7%), (3.4%) about WOA, GSA, HHG, respectively. The speedup
of the ECSA is improved by (9.7%), (7.9%), and (3.5%) about WOA, GSA, and HHG, respectively.
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The efficiency of the ECSA is improved by (9.6%), (7.8%), and (3.4%) about WOA, GSA, and HHG,
respectively. The throughput of the ECSA is improved by (10%), (8.6%), and (3.5%) about WOA, GSA,
and HHG, respectively.

8 Conclusion and Future Work

To get near-optimal results for the problem of scheduling tasks in a cloud computing environ-
ment, efficient strategies for the optimal mapping of the tasks are required. In this research, we
propose a novel efficient approach based on the cooperation search algorithm called the Efficient
Cooperation Search Algorithm (ECSA) to solve the problem of scheduling tasks in a cloud computing
environment. The system is made up of a limited number of fully connected heterogeneous processors.
The comparison of the algorithm has been made against the algorithms in terms of makespan,
speedup, efficiency, and throughput. The comparative analysis explains that the proposed algorithm
performance is significantly better in all cases, it reduces the makespan by (7.9%), (2.1%), (8.8%),
(7.7%), (3.4%) about New Genetic Algorithm (NGA), Genetic Algorithm (GA), Whale Optimization
Algorithm (WOA), Gravitational Search Algorithm (GSA), and Hybrid Heuristic and Genetic (HHG)
respectively according to makespan. In our future work, we will develop an efficient coronavirus herd
immunity optimizer algorithm for optimizing scheduling tasks in cloud computing.
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