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Abstract: This paper proposes Parallelized Linear Time-Variant Acceleration
Coefficients and Inertial Weight of Particle Swarm Optimization algorithm
(PLTVACIW-PSO). Its designed has introduced the benefits of Parallel com-
puting into the combined power of TVAC (Time-Variant Acceleration Coeffi-
cients) and IW (Inertial Weight). Proposed algorithm has been tested against
linear, non-linear, traditional, and multiswarm based optimization algorithms.
An experimental study is performed in two stages to assess the proposed
PLTVACIW-PSO. Phase I uses 12 recognized Standard Benchmarks meth-
ods to evaluate the comparative performance of the proposed PLTVACIW-
PSO vs. IW based Particle Swarm Optimization (PSO) algorithms, TVAC
based PSO algorithms, traditional PSO, Genetic algorithms (GA), Differ-
ential evolution (DE), and, finally, Flower Pollination (FP) algorithms. In
phase II, the proposed PLTVACIW-PSO uses the same 12 known Benchmark
functions to test its performance against the BAT (BA) and Multi-Swarm
BAT algorithms. In phase III, the proposed PLTVACIW-PSO is employed to
augment the feature selection problem for medical datasets. This experimental
study shows that the planned PLTVACIW-PSO outpaces the performances
of other comparable algorithms. Outcomes from the experiments shows that
the PLTVACIW-PSO is capable of outlining a feature subset that is capable
of enhancing the classification efficiency and gives the minimal subset of the
core features.

Keywords: Particle swarm optimization (PSO); time-variant acceleration
coefficients (TVAC); genetic algorithms; differential evolution; feature
selection; medical data

1 Introduction

The Concept of swarm intelligence (SI) principle, is highly inspired by the recent advancement
in the field of Neuroscience and the Behavioral Science, commonly known as intelligent paradigm in
Intelligence Computational domain, to solve the optimization issues of various problems in absence of
any global models [1,2]. As a result, the swarm concept, inspired by the mutual attitudes of gregarious
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animals (like a herd of animals, birds, fishes, ants, cats, and fireflies), is used to discuss intelligent agents
in a distributed system [3]. A swarm is an aggregation of identical objects which may accomplish some
task, may interact among themselves in a predefined manner, may react to surrounding environments,
in absence of any central governing entity. Algorithms which are based upon this kind of behavior,
imitate natural appearing phenomenon, an efficient and viable solution to several complex problems
[4]. In these circumstances, Particle Swarm Optimization or better known as PSO, open horizons for
meta-heuristic global optimization techniques evolved from concepts of swarm intelligence [5].

Kennedy et al., proposed a particle swarm optimization algorithm, based on meta-heuristics
evolved from swarm intelligence methodologies, it can emulate cordial movement patterns of flocks of
birds and flying patterns of birds, it has capabilities for intercommunication among group members,
to assist them in decision making processes, in a coherent synchronized manner [5].

Swarms are simulated, as if flocks are out in search of their food, any particular individual
in the flock, determines its relative speed and position by calculating these two attributes of its
neighbors speed and positions among the flock members. During Optimization of solution space,
a swarm particle in a PSO changes its positions in a multidimensional space. This phenomenon
reconciles location of particle under solution space for the problem being optimized. These particles
are controlled by a tradeoff of memory between the group and the individuals. As stated in [5,6], the
main idea of particle swarm optimization was influenced by bird flocks hunting food sources. Previous
research has demonstrated that optimization using the PSO method yields accurate results. In a PSO
algorithm, a particle’s movement is determined by its location and velocity.

Iteratively, the particle velocity determines its route. The particle velocity is determined by three
key factors. The first component, a social component, tries to dominate the best position for all
particles I during a single iteration or to keep the global best position till the next iteration, which is
termed the current global best position (gbesti), where i is the particle’s index. The second component,
a cognitive component, tries to dominate each particle I in the swarm individually, or the personal
best for a given particle, until the present iteration, dubbed the current best for particle i. (pbesti). The
third component, a momentum component, determines the influence of each particle’s past velocity
and is considered a modification of the original PSO described in [7]. The PSO’s position and velocity
are determined by Eqs. (1) and (2).

vi(t + 1) = wvi(t) + ((c1r1) × pbesti(t) − xi(t)) + ((c2r2) × gbesti(t) − xi(t)) (1)

xi(t + 1) = xi(t) + vi(t + 1) (2)

where xi(t) denotes the location of a particle i at time t, and vi(t) denotes the velocity of a particle i
at time t. w is the inertial weight that prevents particles from drifting away from their optimal places
without attaining convergence; The time-variant acceleration coefficients (TVAC) c1 and c2 strive to
alter the weight of two components, social and cognitive, in order to dominate personal and local
optimal attitudes [8]; pbesti(t) is the best-known position of particle i at a specific time t; gbesti(t) is
the best-known position of a neighbor particle to i; and r1 and r2 are independent random values in a
range of [0, 1]. The PSO algorithm begins its computational steps to determine the current position
of each particle, and then checks if this position is optimal to attain the best position. The next step
involves computing the velocity of the particle using Eq. (1) and then updating the position of the
particle using Eq. (2). Initially, when a cognitive component is large and a social component is small,
the particles move around the search space instead of moving across the best population. Furthermore,
when the cognitive component is low, and the social component is large, the particles converge at the
global optima of the latter part of optimization.
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The proposed Parallelized Linear Time-Variant Acceleration Coefficients and Inertial Weight
of PSO (PLTVACIW-PSO) algorithm, based on a hybridization of the linearity of time-variant
acceleration coefficients and a linear decrease of the inertial weight associated with the parallel
processing of PSO fitness evaluation, will be used in this paper. The proposed algorithm will be used
to optimize 12 known benchmark functions, varying in their properties and scales. The optimization
of these functions tends to minimize the errors generated in the sequential iterations of the proposed
PLTVACIW-PSO vs. other PSO TVAC algorithms, PSO IW algorithms, GA and DE algorithms, and,
lastly, BAT and Multi-swarm BAT algorithms. The four categories mentioned before are shown in
Tab. 1. The first category is the “IW family”, which consists of four parallelized and non-parallelized
inertial weight-based PSO algorithms called PLIW-PSO, LIW-PSO, PNLIW-PSO, and NLIW-PSO.
The second category is the “TVAC family”, which consists of four parallelized and non-parallelized
TVAC based PSO algorithms called PLTV-PSO, LTV-PSO, PNLTV-PSO, and NLTV-PSO. The third
category includes traditional algorithms: PSO, the Differential Evolution algorithm (DE), the Genetic
algorithm (GA), and the Flower Pollination Algorithm (FPA). Finally, two bio-inspired algorithms are
compared: the BAT and Multi swarm-BAT algorithms.

Table 1: Related algorithms

Algorithm
name

Short
name

Category Referenced or
implemented

Description

Linear Inertial
Weight PSO

LIW-PSO IW family [9] Inertial weight w varies
linearly over time.

Parallelized
Linear Inertial
Weight PSO

PLIW-
PSO

Implemented Parallelized version of
LIW-PSO

Non-Linear
Inertial Weight
PSO

NLIW-
PSO

[10] Inertial weight w varies
non-linearly over time.

Parallelized
Non-Linear
Inertial Weight
PSO

PNLIW-
PSO

Implemented Parallelized version of
NLIW-PSO

Linear
Time-Variant
PSO

LTV-PSO TVAC
family

[8] PSO acceleration variables
c1 and c2 linearly vary over
time.

Parallelized
Linear Time
Variant PSO

PLTV-
PSO

[11] Parallelized version of
LTV-PSO

Non-Linear
Time-Variant
PSO

NLTV-
PSO

[12] PSO acceleration variables
c1 and c2 non-linearly vary
overtime.

(Continued)
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Table 1: Continued
Algorithm
name

Short
name

Category Referenced or
implemented

Description

Parallelized
Non-Linear
Time Variant
PSO

PNLTV-
PSO

[11] Parallelized version of
NLTV-PSO

Particle Swarm
Optimization

PSO Traditional
algorithms

[5] A nature-inspired
algorithm based on the
behavior of bird swarms
and fish schools.

Differential
Evolution

DE [13] A modified version of
genetic algorithms

Genetic
Algorithms

GA [14] A nature-inspired
optimization algorithm
based on human genes and
their crossover and
mutation

Flower
Pollination
Algorithm

FPA [15] A nature-inspired
optimization algorithm
based on flower
pollination behavior.

Bat BAT Bat
algorithms

[16] A bio-inspired stochastic
algorithm based on a
swarm of bats

Multi-swarm
BAT

MBAT [16] A bio-inspired stochastic
algorithm based on
multiple swarms of bats.

2 Preliminaries

The PSO algorithm utilises meta-parameters, which controls the swarm actions for efficient
optimization and it effective in enhancing searchability of a particle in the swarm. The convergence
characteristics parameters of PSO algorithm are dependent upon controlling parameters, hence impact
on controlling parameters also impacts convergence characteristics. Therefore, the functions of these
meta-parameters and their influence on the conclusive results are crucially importance for designing
an efficient optimization algorithm [7].

2.1 Swarm Initialization

The random position of each particle is the initialization step in the PSO algorithm, which starts
inside an iteration to keep searching for optimal solutions. The velocities and positions for each particle
are determined in every iteration until the final iteration or until any stopping criteria are provided.

Non-uniformly disseminated introductory particles impact the minimal stability properties of the
PSO algorithm. Furthermore, the convergence of the particle’s velocity in the swarm is dependent on
the initial population [17].
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2.2 Parameter Determination

The PSO algorithm’s control parameters are the inertial weight and acceleration coefficients. The
correct setting of these parameters can have an impact on the PSO’s convergence. The PSO algorithm’s
cognitive and social components are influenced by the acceleration coefficients c1 and c2 [18,19]. The
acceleration coefficients [20] refer to the speed at which the particles are moved to the swarm’s most
precise location and superior position. They tweak a particle’s distance and timing to get it into the best
possible spot. If the acceleration coefficients are excessively great, the particle may go past the right
place by accident. If the acceleration coefficients are too little, the particle will not be able to reach its
intended position. This maximum particle’s velocity (Vmax) identifies the intention, which controls
the areas between the current particle’s position and the target particle’s position [21]. If Vmax value
is too high, the particles could miss well-known locations. However, if Vmax is too small, the particles
may not reach very distant places. Therefore, the determination of Vmax should be tuned by using a
weight factor, which should be added to the PSO equation (Eq. (1)) [20]. This weight is understood
as inertial weight (w), which aims to dominate the speed of the arrival at the best location during the
final iteration. An increase in the value of w enhances global searchability, whereas a decrease in the
value of w enhances partial searchability.

2.3 Parameters Enhancements

To increase the performance of the PSO algorithm, the TVAC was upgraded [8,11]. TVAC may
raise or reduce the swarm’s cognitive and social behavior in a linear fashion. In other words, allowing
the swarm to travel the whole search area by enhancing cognitive aspects and minimizing social
factors in the early phases of the optimization process. The convergence of all particles toward the
global optima at the conclusion of the optimization process is improved by reducing cognitive aspects
and enhancing social ones. Nonlinear inertial weight variation might be used as a benchmark for
nonlinearly enhancing acceleration coefficients [10]. Instead of manually establishing the inertial
weight parameters, the speed of convergence of the relevant particles in the swarm might be enhanced.
The following equations indicate improvements to c1 and c2:

c1 = (
c1f − c1i

) ×
(

iter
MAXITER

)
+ c1i (3)

c2 = (
c2f − c2i

) ×
(

iter
MAXITER

)
+ c2i (4)

where c1i, c1f and c2i, c2f are the initial and final values of c1 and c2, respectively; iter is the currently
running iteration; and MAXITER is the maximum number of iterations the algorithm will perform.

Another strategy for enhancing the swarm’s particle convergence rate is linear inertial weight w
adaptation [9]. The upper and lower inertial weight limits are established, and a new inertial weight
value is computed and evaluated in each iteration to adjust the swarm to the optimal location in the
search space. The improvement in inertial weight w is seen in the following equation:

w = (wmax) −
(

iter × (wmax − wmin)

MAXITER

)
(5)

where w1 and w2 are the initial and final values of w, respectively.
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2.4 Parallel Processing of the PSO Algorithm

The PSO algorithm’s execution time was reduced and the fitness assessment of individual
particles in the swarm was reduced by parallel processing of objective functions across multiples
of the independent machine in the form of a cluster [22]. Before calculating a new velocity and
location in subsequent rounds of the PSO algorithm, all participating machines must achieve global
synchronization to ensure that each particle’s fitness is computed and finished. The study in [11] uses
an updated version of the parallelization of the PSO method based on the distribution of the objective
function evaluation and the available identified cores, which is based on the previous perspective. This
viewpoint is used in this study.

3 Proposed Algorithm

The capacity of particles in the swarm to cover the search space and give consistent results will be
restricted if the social factor is smaller than the cognitive element utilized in classic PSO algorithms
(such as those demonstrated in [5]). As seen in [7], an incorrectly set inertial weight slows down the
PSO algorithm’s convergence speed. Furthermore, as the optimization issue becomes more intricate
in its intricacies, the swarm performance degrades, resulting in a longer PSO method execution time.

By introducing the technique that will be proven in this work, the aforementioned issues are
alleviated. The Parallelized linear TVAC and inertial weight of PSO, or “PLTVACIW-PSO,” is
a suggested method that takes use of the benefits of linearity for each time-variant acceleration
coefficient described in [8,11] and the linearity of the inertial weight presented in [9]. PLTVACIW-
PSO also employs the parallelization viewpoint described in [11,22]. Algorithm 1 shows the proposed
PLTVACIW-PSO.

Algorithm 1: The Parallelized Linear Time-Variant Acceleration Coefficients and Inertial Weight of
PSO (PLTVACIW-PSO) algorithm
Inputs: Objective function F , a swarm of particles P = {P1, P2, P3, . . . , Pn}, a number of processing
unit “cores” Co = {Co1,Co2,Co3, . . . ,Con}, predefined iterations MAXITER, iteration counter iter = 1.
Output: Optimized fitness value for a given function F .
Procedures:
1. The velocity and position VP and XP are initialized for all particles in the swarm.
2. The personal best pbestp and local best gbestp are determined for all particles in the swarm.
3. Repeat

3.1- The objective function F evaluation is distributed across Cos.
3.2 The global synchronization is done to ensure that the fitness of all particles in P is evaluated in

a consistent manner.
3.3 Personal best and global best are updated for all particles in the swarm.
3.4 if (iter ≤ MAXITER) then

• Update c1, c2, and w using Eqs. (3)–(5) .
• Updated c1, c2, and w will be used to update Vp and Xp using Eqs. (1) and (2), respectively.
• iter = iter + 1
• go to steps 3.1, 3.2, and 3.3.
else

• Final evaluated value for F is produced.
end if
Until (MAXITER is reached or any stopping criterion)
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The proposed method PLTVACIW-PSO takes a benchmark function as input and treats it as the
goal function. The swarm iterates in PLTVACIW-PSO based on changes made to the inertial weight w
and TVAC parameters, as well as parallelization of the objective function evaluation and the optimized
value produced for the given objective function at each iteration; finally, the smallest optimized value
is chosen from all values produced by all executed iterations.

4 Results, Analysis, and Discussions

There are two stages to the experiment described in this study. Phase one compares three kinds
of algorithms to the proposed method PLTVACIW-PSO, which is utilized to optimize twelve distinct
benchmark functions. The “IW family” is the first category, which contains algorithms that use PSO’s
parallelized and non-parallelized inertial weight. The “TVAC family,” which comprises algorithms
based on PSO’s parallelized and non-parallelized TVAC, is the second category. Traditional algorithms
such as PSO, differential evolution (DE), the genetic algorithm (GA), and the flower pollination
algorithm (FPA) are included in the third category [11]. In phase two, the proposed PLTVACIW-PSO
algorithm is compared against a group of algorithms that comprises two bio-inspired optimizations,
the BAT and Multi-swarm BAT algorithms [16]. The experimental results found in [11,16] are also
compared with the results achieved from the proposed algorithm. These functions’ definitions and
attributes are used to show how efficient and successful any particular optimization strategy [23,24].
The benchmark functions utilized in this study were chosen based on two criteria. Modality (single
mode or multi-mode) and separability are two of these requirements (separable or non-separable).
The multi-mode function has two or more local optima, while the unimodal function has just
one. A separable function is one that has no interrelations between the variables that make up the
function, while a non-separable function contains interrelations between the variables that make up
the function. Twelve benchmark functions from [11,16] are utilized in this study to compare the
proposed PLTVACIW-PSO method to the other algorithms listed in Tab. 1 (functions F11 and F12
are mentioned in [11] only).

4.1 Model Evaluation

The proposed PLTVACIW-PSO algorithm used in phase one is a stochastic iterative PSO
algorithm by nature, which indicates that an optimized result will be produced during each iteration
for any given function listed in Appendix A. Therefore, the values of Worst, Best, and Mean of Mean
Square Error (MSE), represented in Eq. (6), are recorded for any set of iterations produced by any
given function.

MSE =
∑n

i=1 (Ei − Pi)
2

n
(6)

where Ei is the actual experimental values, Pi are predictive values, and n are test data being used. The
value of “Worst” indicates the most significant value of MSE along with the optimization iterations.
The value of “Best” is the smallest MSE value given along with the optimization iterations. Finally, the
value of “Mean” is delivered by calculating the average of all MSE values along with their optimization
iterations.

A series of independent runs is used to generate accurate findings from the stochastic based
methods indicated in Tab. 1 [11,16]. Fifty different algorithm executions are done in this work, and the
best run is picked. This run provides the best overall results for the proposed PLTVACIW-PSO method
and all other algorithms for Worst, Bestm, and Mean. In this experiment, the same fifty separate
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runs were performed, and the best overall performance was chosen. Furthermore, for all algorithms,
including the proposed PLIWTVAC-PSO, the average of the Worst, Best, and Mean values for the
fifty separate executions is chosen for functions F1–3.

For the proposed PLIWTVAC-PSO, 100 separate executions are done, and the average values of
Worst, Best, and Mean, as well as the best overall execution for the proposed PLIWTVAC-PSO, are
chosen and compared to the BAT and MBAT algorithms.

4.2 Experimental Platform

In this paper, the implementation of both PLTVACIW-PSO algorithms was done using R language
version 3.3.0, executed on a virtualized CentOS Linux operating system with a 2 GHz dual-core
processor, 5 GB RAM, and 20 GB of non-volatile storage.

4.3 Experimental Parameters

For the IW family algorithms used in phase 1, inertial weight wrang = (0.4, 09), swarm size = 50,
and iterations = 100. For the TVAC family algorithms used in phase one, inertial weight w = 0.721,
c1rang = (1.28: 1.05), c2rang = (1.05: 1.28), and iterations = 100. For PSO, swarm size = 50, w = 0.721,
c1 = 1.193, c2 = 1.193, and iterations = 100. For the DE algorithm used in phase I, population
size = 50, crossover probability = 0.5, differential weighting factor = 0.8, and iterations = 100. For
the GA used in phase I, population size = 50, crossover probability = 0.8, mutation probability = 0.1,
and iterations = 100. For the FPA used in phase 1, population size = 25, probability switch = 0.8, and
iterations = 100.

In phase II, the same configurations for phase I are used for PLTVACIW-PSO.

4.4 Result Analysis

Phase I

Three different experiments were conducted in phase one to illustrate the capabilities of the
proposed PLTVACIW-PSO algorithm. The first experiment compares the proposed PLIWTVAC-PSO
with the IW family mentioned earlier in Tab. 1. These experimental results are illustrated in Tab. 2.

Table 2: Performance of PLIWTVAC-PSO vs. the IW family (best execution of 50 independent
executions)

Functions Values PLTVACIW-PSO PLIW-PSO LIW-PSO PNLIW-PSO NLIW-PSO

F1 Worst 18.67 18.94 18.72 19.18 18.9
Best 2.98 3.98 3.75 3.65 4.59
Mean 6.5 7.28 7.58 7.55 8.43

F2 Worst 180.4 266.8 250.5 237 265.02
Best 1.47 2.11 1.95 2.31 2.41
Mean 16.46 27.4 23.9 27.2 30.3

F3 Worst 8.17E03 1.15E04 9.90E03 1.26E04 8.78E03
Best 1.00E0 1.94E0 1.85E0 6.65E0 2.96E0
Mean 4.38E02 5.74E02 5.40E02 4.69E03 4.67E02

(Continued)
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Table 2: Continued
Functions Values PLTVACIW-PSO PLIW-PSO LIW-PSO PNLIW-PSO NLIW-PSO

F4 Worst 305.2 330.80 331.5 331.5 324.7
Best 26.14 105.4 100.2 59.7 83.1
Mean 127.02 169 173.28 153.88 169.62

F5 Worst 3.51E03 1.15E05 1.79E05 6.15E04 1.55E05
Best 1.25E − 01 1.10E − 05 1.26E − 04 1.84E − 04 6.28E − 04
Mean 1.65E02 4.37E03 4.66E03 3.88E03 4.42E03

F6 Worst 48.43 135.6 114.7 152.9 106.5
Best 0.09 0.04 0.04 0.02 0.03
Mean 1.80 2.45 2.48 6.39 2.03

F7 Worst 81.26 98.71 96.61 112.2 94.99
Best 0.38 1.28 0.55 0.61 0.78
Mean 6.26 10.1 6.32 7.74 7.64

F8 Worst 42.75 43.43 44.82 61.91 46.9
Best 0.16 0.54 0.60 2.02 0.78
Mean 6.4 7.34 7.52 15.46 8.12

F9 Worst 5.54E04 6.03E04 6.41E04 6.08E04 6.93E04
Best 6.05E − 01 2.47E0 2.09E0 9.28E − 01 2.12E0
Mean 2.72E03 3.10E03 2.45E03 2.75E03 3.76E03

F10 Worst 1.58 1.64 1.63 1.62 1.61
Best 0.17 0.33 0.51 0.77 0.52
Mean 0.53 0.82 0.76 0.98 0.8

F11 Worst 2.27E04 2.68E04 2.49E04 2.81E04 2.46E04
Best 1.51E01 7.35E01 7.40E01 1.18E02 2.13E01
Mean 2.07E03 2.41E03 2.41E03 2.55E03 2.09E03

F12 Worst 3.11E07 4.78E07 4.12E07 4.47E07 4.95E07
Best 4.75E02 4.10E02 4.09E02 1.60E03 2.01E03
Mean 1.42E06 2.06E06 1.85E06 1.76E03 2.10E06

The second experiment compares the proposed PLIWTVAC-PSO with the TVAC family, includ-
ing the PLTV-PSO algorithm; this family is mentioned in Tab. 1. These experimental results are
illustrated in Tab. 3.
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Table 3: Performance of PLIWTVAC-PSO vs. the TVAC family (best execution of 50 independent
executions)

Functions Values PLTVACIW-
PSO

PLTV-PSO LTV-PSO PNLTV-PSO NLTV-PSO

F1 Worst 18.67 20.67 20.73 20.73 20.87
Best 2.98 2.71 3.91 3.82 4.31
Mean 6.5 9.02 9.8 9.97 10.09

F2 Worst 180.4 587.16 706.1 671.8 653.9
Best 1.47 1.51 2.1 1.99 2.09
Mean 16.46 65.36 65.36 62.08 72.79

F3 Worst 8.17E03 6.82E04 9.27E04 7.82E04 7.28E04
Best 1.00E0 2.86E00 1.74E00 3.35E00 3.62E00
Mean 4.38E02 2.75E03 3.79E03 2.84E03 3.32E03

F4 Worst 305.2 460.9 461.7 463.9 466.7
Best 26.14 54.65 146.15 112.41 93.36
Mean 127.02 189.59 227.32 208.47 205.96

F5 Worst 3.51E03 5.58E05 6.36E05 1.30E07 1.30E06
Best 1.25E − 01 3.64E − 01 8.36E − 05 8.96E − 04 3.82E − 04
Mean 1.65E02 2.30E04 2.80E04 1.94E05 2.88E04

F6 Worst 48.43 126.6 183.1 156.4 192.6
Best 0.09 0.02 0.03 0.09 0.09

Mean 1.80 6.39 7.79 7.21 7.43
F7 Worst 81.26 210.8 219.1 242.7 240.3

Best 0.38 0.79 1.54 1.23 1.21

Mean 6.26 20.85 22.96 23.78 24.94
F8 Worst 42.75 61.91 72.49 67.4 67.72

Best 0.16 2.02 3.28 3.57 3.77

Mean 6.4 15.46 18.12 17.17 18.94
F9 Worst 5.54E04 5.57E05 5.16E05 5.59E05 1.30E06

Best 6.05E − 01 8.13E − 01 1.65E00 4.54E00 3.82E − 04

Mean 2.72E03 2.32E04 2.37E04 2.49E04 2.88E04
F10 Worst 1.58 1.59 1.73 1.65 1.7

Best 0.17 0.5 1 1.01 1.01

\ Mean 0.53 0.97 1.18 1.24 1.24
F11 Worst 2.27E04 6.39E04 8.39E04 8.12E04 7.83E04

Best 1.51E01 5.17E01 8.37E01 8.33E01 7.17E01
Mean 2.07E03 6.07E03 6.91E03 7.01E03 6.41E03

(Continued)
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Table 3: Continued
Functions Values PLTVACIW-

PSO
PLTV-PSO LTV-PSO PNLTV-PSO NLTV-PSO

F12 Worst 3.11E07 2.61E08 3.06E08 3.69E08 3.11E08
Best 4.75E02 1.29E03 2.22E03 1.64E03 2.28E03
Mean 1.42E06 1.23E07 1.32E07 1.34E07 1.32E07

Finally, the third experiment aims at comparing the proposed PLIWTVAC-PSO with the tradi-
tional algorithms and the BAT algorithms as mentioned earlier in Tab. 1. The third experiment’s results
are presented in Tab. 4. The same 50 independent executions were also carried out in this experiment,
and the best overall execution is determined.

Table 4: Performance of PLIWTVAC-PSO vs. traditional algorithms and the BAT algorithms (best
execution of 50 independent executions)

Functions Values PLTVACIW
-PSO

PSO GA DE FPA BAT MBAT

F1 Worst 18.67 20.78 20.68 21.89 20.81 19.95 19.95
Best 2.98 4.13 12.42 21.45 18.42 17.04 11.91
Mean 6.5 10.46 17.02 21.69 19.87 19.43 15.79

F2 Worst 180.4 780.7 587.16 1695.23 651.64 317.48 324.29
Best 1.47 2.95 29.05 1269.96 104.78 120.66 30.54
Mean 16.46 79.97 159.34 1466.61 297.13 257.51 91.67

F3 Worst 8.17E03 9.99E + 04 7.38E + 04 4.85E + 05 7.86E + 04 3.40E + 05 4.20E + 04
Best 1.00E0 5.37E + 00 1.87E + 02 2.74E + 05 1.78E + 03 5.20E + 03 3.00E + 03
Mean 4.38E02 3.41E + 03 1.05E + 04 3.87E + 05 1.83E + 04 3.70E + 05 4.10E + 04

F4 Worst 305.2 497.4 474.25 888.75 436.37 303.88 303.88
Best 26.14 91.23 154.06 686.73 265.6 179.98 51.11
Mean 127.02 211.18 245.58 779.01 347.81 252.81 93.2

F5 Worst 3.51E03 1.28E + 06 7.92E + 05 1.80E + 10 6.16E + 06 4.00E + 03 3.40E + 05
Best 1.25E − 01 7.34E + 04 1.50E − 02 1.64E + 10 2.10E + 01 843.7 77.47
Mean 1.65E02 4.13E + 04 3.28E + 04 1.35E + 10 1.25E + 05 6.10E + 05 847.42

F6 Worst 48.43 180.2 149.72 648.07 229.28 85.31 85.31
Best 0.09 0.07 1.41 417.57 5.53 2.03 0.24
Mean 1.80 7.77 23.55 531.11 50.23 26.52 3.46

F7 Worst 81.26 221.2 234.51 970.31 240.11 85.31 4.20E + 04
Best 0.38 1.76 16.42 689.64 67.67 40.31 6.86
Mean 6.26 26.07 62.92 852.97 122.61 93.88 25.02

F8 Worst 42.75 68.01 65.79 162.11 69.15 31.88 19.95
Best 0.16 4.13 16.16 65.76 34.41 25.67 6.07
Mean 6.4 17.05 31.08 125.18 46.94 36.49 14.31

F9 Worst 5.54E + 04 7.54E + 05 3.73E + 05 2.44E + 06 5.36E + 05 3.40E + 05 3.40E + 05
Best 6.05E − 01 3.09E + 00 2.27E + 03 1.60E + 06 1.76E + 04 1.50E + 04 1.00E + 03
Mean 2.72E03 2.76E + 04 7.70E + 04 1.99E + 06 1.55E + 05 1.00E + 05 1.20E + 04

F10 Worst 1.58 1.74 1.53 3.87 1.62 1.10E + 06 1.10E + 06
Best 0.17 1.02 0.75 2.46 0.01 1.09 0.54
Mean 0.53 1.29 1.02 3.47 0.53 3.69 3.09

(Continued)
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Table 4: Continued
Functions Values PLTVACIW

-PSO
PSO GA DE FPA BAT MBAT

F11 Worst 2.27E04 8.89E + 04 6.97E + 04 1.75E + 05 6.73E + 04
Best 1.51E01 1.69E + 02 4.03E + 04 9.79E + 04 1.03E + 04
Mean 2.07E03 8.24E + 03 2.09E + 04 1.38E + 05 3.21E + 04

F12 Worst 3.11E07 4.05E + 08 2.71E + 08 1.17E + 09 2.88E + 08
Best 4.75E02 2.14E + 03 1.88E + 06 7.41E + 08 1.04E + 07
Mean 1.42E06 1.42E + 07 4.83E + 07 9.36E + 08 8.31E + 07

Setting the IW to the highest value, which permits particles to travel at a fast speed and participate
in extensive exploration, increases the exploration behavior of particles in the proposed PLIWTVAC-
PSO algorithm towards the nearest position of the optimal value. Following that, IW repeatedly
declines linearly to lower levels, causing the particles to travel slowly and engage in more deliberate
investigation. As a consequence, lowering the Worst values acquired in early iterations provides the
swarm with greater Best values during its final rounds than other IW family algorithms. Furthermore,
the mean value indicates that the proposed PLIWTVAC-PSO yields modest Worst values in early
iterations and converges to optimal Best values in middle and final iterations. Tab. 3 demonstrates that
there are many more improvements to the PLTV-PSO algorithm by linearly decreasing the IW method
in the form of the proposed PLIWTVAC-PSO. The linear TVAC and IW may help the swarm’s overall
behavior. When linear TVAC is combined with linearly decreasing IW, the exploration behavior of all
particles in the swarm is significantly improved; the worst values obtained during earlier iterations are
significantly reduced, and the best values are obtained during the final iterations, affecting the overall
Mean values obtained by all iterations of the proposed PLIWTVAC-PSO. Tab. 4 shows demonstrates
the suggested PLIWTVAC-PSO outperforms other standard algorithms for the Worst, Best, and Mean
values, respectively, than PSO, DE, GA, and FPA algorithms. Other algorithms, like as GA and DE,
have a lot more parameters to tune, such as crossover and mutation probabilities.

The average values of the Worst, Best, and Mean are acquired from 50 different executions for
the proposed PLIWTVAC-PSO, IW family algorithms, TVAC family algorithms, and conventional
algorithms to verify that the proposed algorithm PLIWTVAC-PSO obtains trustworthy results.
Functions F1–3 are used in this supplementary experiment. These findings are shown in Tabs. 5–7.
The data in Tabs. 5–7 demonstrate that the proposed PLIWTVAC-PSO algorithm is successful, and
that the linearity of both TVAC and IW combined effectively manages the swarm toward the best
outcomes. Furthermore, the optimized outcomes from 50 separate executions do not differ much from
one to the next.

Table 5: Performance of PLIWTVAC-PSO vs. the IW family (average of worst, best, and mean values
of 50 independent executions)

Functions Values PLTVACIW-
PSO

PLIW-PSO LIW-PSO PNLIW-PSO NLIW-PSO

F1 Worst 18.90 20.56 20.77 20.86 20.92
Best 3.81 4.71 4.64 4.62 4.76
Mean 7.75 8.96 8.90 8.91 9.88

(Continued)
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Table 5: Continued
Functions Values PLTVACIW-

PSO
PLIW-PSO LIW-PSO PNLIW-PSO NLIW-PSO

F2 Worst 231.35 232.56 238.92 232.27 232.65
Best 1.64 1.68 1.82 1.73 1.81
Mean 21.19 21.61 22.67 21.26 21.55

F3 Worst 1.06E + 04 1.06E + 04 1.06E + 04 1.06E + 04 1.07E + 04
Best 2.15E + 00 2.56E + 00 2.41E + 00 2.43E + 00 2.71E + 00
Mean 4.39E + 02 4.66E + 02 4.51E + 02 4.43E + 02 4.46E + 02

Table 6: Performance of PLIWTVAC-PSO vs. the TVAC family (average of worst, best, and mean
values of 50 independent executions)

Functions Values PLTVACIW-PSO PLTV-PSO LTV-PSO PNLTV-PSO NLTV-PSO

F1 Worst 18.90 21.76 21.9 21.84 21.82
Best 3.81 3.62 4.81 4.76 5.77
Mean 7.75 11.46 11.77 1.85 12.23

F2 Worst 231.35 675.81 886.54 891.97 865.28
Best 1.64 1.64 1.63 1.62 1.55
Mean 21.19 73.56 83.56 82.51 82.58

F3 Worst 1.06E + 04 7.90E + 04 8.03E + 04 8.31E + 04 8.22E + 04
Best 2.15E + 00 5.77E + 00 6.41E + 00 4.55E + 00 4.04E + 00
Mean 4.39E + 02 4.20E + 03 4.27E + 03 4.41E + 03 4.34E + 03

Table 7: Performance of PLIWTVAC-PSO vs. traditional algorithms (average of the worst, best, and
mean values of 50 independent executions)

Functions Values PLTVACIW-PSO PSO GA DE FPA

F1 Worst 18.90 22.78 22.74 24.80 22.82
Best 3.81 5.31 14.03 22.45 19.42
Mean 7.75 12.52 19.98 23.69 20.39

F2 Worst 231.35 871.85 2720.27 690.13 770.07
Best 1.64 1.68 1750.84 40.23 80.53
Mean 21.19 74.78 1907.92 90.71 357.11

F3 Worst 1.06E + 04 1.09E + 04 8.89E + 05 6.80E + 06 1.51E + 05
Best 2.15E + 00 7.98E + 00 2.35E + 02 2.11E + 05 4.77E + 03
Mean 4.39E + 02 4.89E + 03 3.76E + 04 8.91E + 05 5.91E + 04
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Phase II

We employed ten benchmark medical datasets in this phase. The datasets were taken from the
University of California, Irvine’s learning machine server [25]. A short explanation of each chosen
dataset may be found in Tab. 8. As can be seen, several entries in the adopted data sets are missing. In
this article, the median value of all known values of the functional class is substituted by all of these
missing values. The mathematical definition of the median is as follows:

si,j = mediani:si,j∈WrSi,j (7)

where si, j is the missing value for a specific ith class W’s jth feature. For missing categorical values,
the most typically replaced value is the missing value for a specific class function.

Table 8: Medical dataset description

ID Dataset No. of instances No. of features Total no. of classes

DS1 Erythemato-squamous 366 34 6
DS2 Breast cancer 569 32 2
DS3 Hepatitis 155 19 2
DS4 SPECTF heart data set 267 45 2
DS5 Cervical cancer (Risk factors) 858 36 2
DS6 Parkinson 1208 26 2
DS7 Lung cancer 32 56 3
DS8 Thyroid disease 7200 21 3
DS9 Hepatitis C Virus (HCV) for

Egyptian patients
1385 29 4

DS10 Parkinson’s disease
classification

197 23 2

Three parameters are used to test PLIWTVAC-PSO selected features. Other requirements include
accuracy of classification, number of specified features and CPU processing time have been considered
[26]. Tab. 9 provides a distinction between feature selection, classification accuracy and processing time
before and after applying PLIWTVAC-PSO.

Table 9: Feature selection and classification accuracy before and after applying PLIWTVAC-PSO for
medical datasets

Before applying PLIWTVAC-PSO After applying PLIWTVAC-PSO

Datasets Total no. of
features

Accuracy
(%)

Time (sec) Selected
features

Accuracy
(%)

Time (sec)

DS1 34 91.9814 0.7199 21 94.9467 0.4129
DS2 32 90.2838 0.0969 14 94.6010 0.0477
DS3 19 83.7006 0.0939 5 91.0359 0.0356

(Continued)
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Table 9: Continued
Before applying PLIWTVAC-PSO After applying PLIWTVAC-PSO

Datasets Total no. of
features

Accuracy
(%)

Time (sec) Selected
features

Accuracy
(%)

Time (sec)

DS4 45 75.8929 0.0992 20 81.5087 0.0371
DS5 36 63.9529 0.0995 18 74.3023 0.0523
DS6 26 89.5345 0.2912 15 92.3475 0.1986
DS7 56 87.2746 0.0950 20 90.7859 0.0355
DS8 21 89.5345 0.2912 13 93.6982 0.1986
DS9 29 88.1434 0.1230 14 91.1285 0.1023
DS10 23 85.1255 0.5118 10 92.9413 0.4269

The number of features and the mean accuracy of 10 folds are presented together with CPU
processing time. Only a subset of characteristics may reduce classification efficiency, but computation
time and storage can be greatly reduced. Fig. 1 depicts a comparison of feature selection and
classification accuracy before and after PLIWTVAC-PSO application. Such findings illustrate the
superiority of the PLIWTVAC-PSO selection method. These traits may also be utilized to increase
clustering performance. Clusters made consisting of a selection of important qualities are more
realistic and understandable than clusters made up of all of them, such as noise. It may also aid in
the interpretation and comprehension of facts.

Figure 1: Feature selection and classification accuracy before and after applying PLIWTVAC-PSO for
medical datasets
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5 Conclusions

The suggested PLTVACIW-PSO algorithm outperforms PSO IW-based algorithms, TVAC algo-
rithms, GA and DE algorithms, and even multi-swarm-based algorithms in terms of efficiency and
efficacy. This demonstrates that combining the linearity of IW and TVAC may adjust a single swarm-
based PSO algorithm to get optimal outcomes. Furthermore, the suggested PLTVACIW-PSO method
tends to reduce the worst values from earlier iterations in order to attain the best value during the final
rounds, demonstrating that the proposed algorithm is an effective and reliable global optimization
technique. The suggested PLTVACIW-PSO Algorithm was used to verify ten medical datasets. The
findings suggest that PLTVACIW-PSO can increase classification, consistency, the number of features
picked, and convergence speed by a substantial amount.

Future work could include switching between the linearity of IW and the non-linearity of TVAC
and vice versa, replacing PSO parallelization across multiple cores with a dedicated board of CPUs,
and finally, instead of using a single swarm, the proposed PLTVACIW-PSO can use multiple swarms
of particles. PLTVACIW-results PSO’s may be used to verify increasingly difficult challenges in science
and contemporary engineering in the future.
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