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Abstract: An exhaustive study has been conducted to investigate span-based
models for the joint entity and relation extraction task. However, these models
sample a large number of negative entities and negative relations during the
model training, which are essential but result in grossly imbalanced data
distributions and in turn cause suboptimal model performance. In order to
address the above issues, we propose a two-phase paradigm for the span-based
joint entity and relation extraction, which involves classifying the entities and
relations in the first phase, and predicting the types of these entities and
relations in the second phase. The two-phase paradigm enables our model to
significantly reduce the data distribution gap, including the gap between nega-
tive entities and other entities, as well as the gap between negative relations and
other relations. In addition, we make the first attempt at combining entity type
and entity distance as global features, which has proven effective, especially for
the relation extraction. Experimental results on several datasets demonstrate
that the span-based joint extraction model augmented with the two-phase
paradigm and the global features consistently outperforms previous state-of-
the-art span-based models for the joint extraction task, establishing a new
standard benchmark. Qualitative and quantitative analyses further validate
the effectiveness the proposed paradigm and the global features.

Keywords: Joint extraction; span-based; named entity recognition; relation
extraction; data distribution; global features

1 Introduction

Span-based joint entity and relation extraction models simultaneously conduct NER (Named
Entity Recognition) and RE (Relation Extraction) in text span forms. Typically, these models are
constructed as follows: given an unstructured text, the model divides it into text spans; it then
constructs ordered span pairs (a.k.a. relation tuples); and finally, it obtains entities and relations by
performing classifications on the semantic representations of spans and relation tuples, respectively.
We present a typical case study in Fig. 1: the “In”, “In 1831”, and “James Garfield” are three
span examples; the <“James Garfield”, “U.S.”> and <“James Garfield”, “Ohio”> are two relation
tuple examples; a span-based model predicts the types of spans and relation tuples by performing
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classifications on related semantic representations. For instance, the “In” is classed as the Not-Entity
type, and the <“James Garfield”, “Ohio”> is classified as the Live type.1

Figure 1: An example of the span-based joint extraction. The Loc and Per are two pre-defined
entity types, and the Live is a pre-defined relation type. × denotes the <“James Garfield”, “U.S.”>,
supposedly classified into the Live type, is actually classified into the Not-Relation type by SpERT [1],
a Span-based joint Entity-Relation extraction model with Transformer

Span-based joint extraction models [2–7] sample numerous negative entities and relations (i.e.,
spans of the Not-Entity type and relation tuples of the Not-Relation type) during the model training.
These negative examples actually lead to grossly imbalanced data distributions, which is one of the
primary reasons for the suboptimal model performance. As shown in Tab. 1, the entity distribution
between Other and Not-Entity is 592: 101555 (approximate to 1: 172), the relation distribution
between Kill and Not-Relation is 229: 12915 (approximate to 1: 56). Paradoxically, previous work
[1] demonstrates that an adequate number of negative examples are required to ensure that the model
performs well. Thus, resolving the issue of grossly imbalanced data distributions while maintaining an
adequate number of negative examples is a feasible way to improve the model performance.

Table 1: The entity and relation counts in CoNLL04, which are obtained using SpERT. The Other,
Org, Per and Loc are four pre-defined entity types, and the Kill, LocIn, Work, OrgBI and Live are five
pre-defined relation types, and the Not-Entity and Not-Relation are the types of negative entities and
relations, respectively

NER Other Org Per Loc Not-Entity
592 786 1,370 1,541 101,555

RE Kill LocIn Work OrgBI Live Not-Relation
229 312 325 317 421 12,915

Global features, such as those derived from entity information, can be critical in the joint
extraction task. As illustrated in Fig. 1, if SpERT is aware that the “James Garfield” is a person
(Per) entity and the “U.S.” is a location (Loc) entity beforehand, it may easily classify the <“James
Garfield”, “U.S.”> into the Live type. Moreover, entity distance, which tracks the word counts between
two entities, can reflect the entities’ correlation. For example, in the CoNLL04 dataset, relations with
an entity distance of less than 6 account for 64.5%, and the smaller the distance, the more likely the
two entities have a relation. However, as far as we know, previous work [8–12] has used either entity
type or entity distance but not both. The combination of the above two types of information may play
a more important role in the joint extraction task. As shown in Tab. 2, the <Loc, Loc> tends to have
the LocIn relation when the entity distance is smaller, such as 76.6% for [0–3], 12.8% for [4–7] and
3.5% for [8–11], whereas the <Per, Per> tends to have the Kill relation in the case of a bigger entity
distance, such as 21.3% for [0–3], 33.5% for [4–7], and 26.7% for [8–11].

1Span-based models add a Not-Entity type for spans that are not entities and a Not-Relation type for relation tuples that don’t hold relations.
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Table 2: Entity distance statistics of the CoNLL04 dataset. We use the ordered entity type tuple to
denote ordered relation tuples of the same type, such as the <Per, Loc> denotes all relation tuples
that the type of their first entity is the Per and the type of their second entity is the Loc. We divide all
distances into four distance intervals, i.e., [0–3], [4–7], [8–11] and [>11]

Relation tuple Type Entity distance

[0–3] [4–7] [8–11] [>11]

<Per, Loc> Live 39.0% 27.6% 10.5% 22.9%
<Loc, Loc> LocIn 76.6% 12.8% 3.5% 7.1%
<Per, Org> Work 41.5% 35.1% 8.0% 15.4%
<Org, Loc> OrgBI 72.0% 10.7% 5.5% 11.8%
<Per, Per> Kill 21.3% 33.5% 26.7% 18.5%

In this paper, we propose a two-phase span-based model for the joint extraction task, with the
goal of addressing the issue of grossly imbalanced data distributions and the lack of effective global
features. Motivated by the fact that we can achieve NER (RE) in two steps, namely first classify all
entities (relations) and then predict their types. We divide the joint extraction task into two phases, with
the first phase obtaining entities and relations and the second phase predicting their types. Our model
reduces the data distribution gap by dozens of times using the two-phase paradigm. Take the data in
Tab. 1 as an example: (1) in the first stage, the entity distribution can be reduced to 1: 24 and the relation
distribution to 1: 8, whereas the corresponding values in SpERT are 1: 172 and 1: 56, respectively.2 (2)
In the second phase, our model predicts the types of entities and relations, implying that the data
distributions are roughly even.3 Moreover, we attempt for the first time to combine entity type and
entity distance as global features and use them to augment our model. Furthermore, we propose
a gated mechanism for fusing various semantic representations, taking the weighted importance of
each representation into account. In Section 4.5, we validate the effectiveness of the above model
components.

Experimental results on the ACE05, CoNLL04 and SciERC datasets demonstrate that our
model consistently outperforms the strongest span-based baselines in terms of F1-score, providing
a new span-based benchmark for the joint extraction task. Extensive analyses further validate the
effectiveness of our model.

In summary, our model differs from the previous span-based models in three ways: (1) As far
as we know, our model makes the first attempt to balance the grossly imbalanced data distributions.
(2) Our model combines entity type and entity distance as the global features, whereas previous span-
based models use at most one of them. (3) Our model uses a gated mechanism to fuse various semantic
representations, whereas previous span-based models use a simple concatenation manner.

21: 24 ≈ (592+786+1370+1541): 101555; 1: 8 ≈ (229+312+325+347+421): 12915.
3The entity distributions can be approximate to (592: 786: 1370: 1541), and the relation distributions can be approximate to (229: 312: 325: 347: 421), which are

approximately even.
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2 Related Work
2.1 Span-based Joint Entity and Relation Extraction

Recently, span-based models have been extensively investigated for the joint entity and relation
extraction task. Luan et al. [2] propose almost the first span-based joint model and attempt to further
improve model performance by incorporating the coreference resolution task [13,14]. Luan et al. [4]
also include the coreference resolution task in their span-based joint model. Moreover, some other
span-based models [5] have examined how to incorporate additional natural language processing
tasks, such as event detection [15,16]. More recently, Dixit and Al-Onaizan [3] introduce the pre-
trained language model, i.e., ELMo (Embeddings from Language Models) [17], into the span-based
joint model for the first time. Eberts and Ulges [1] propose to use BERT (Bidirectional Encoder
Representation from Transformers) [18] as the backbone of their span-based joint model. Zhong
and Chen [7] propose to use ALBERT (A Lite BERT) [19] in their span-based joint model. However,
these models suffer from grossly imbalanced data distributions, as the span-based paradigm requires
extensive negative entities and relations. Although our model also samples a large number of examples,
we propose a two-phase paradigm to eliminate the data distribution gap effectively.

2.2 Global Features

The entity type and entity distance are two types of important global features that are fre-
quently used in joint extraction models [20–27]. Miwa and Bansal [18], Sun and Grishman [28], and
Bekoulis et al. [9], are among the first to use entity types as global features in their joint extraction
models. They concatenate fixed-size embeddings trained for entity types to relation semantic represen-
tations. Zhao et al. [10] model strong correlations between entity labels and text tokens and concatenate
entity label embeddings to relation semantic representations. For entity distance, Zeng et al. [11] and
Ye et al. [12] concatenate relative entity position features to relation semantic representations. However,
the above models use either entity type or entity distance but make no attempt to combine them. In
comparison, our model suggests combining the entity type and entity distance as global features, which
is validated to be more effective.

3 Model

The neural architecture of our two-phase span-based model is illustrated in Fig. 2. For a given
unstructured text T = (t1, t2, . . . , tn) where ti denotes the i-th text token, our model first obtains its
BERT embedding sequence (Section 3.1); then in Phase One, our model obtain entities and relations by
performing binary classifications on semantic representations of spans and relation tuples, respectively.
These entities and relations are referred to as coarse-grained entities and relations, respectively (Section
3.2); next, in Phase Two, our model predicts the types of these coarse-grained entities and relations,
obtaining fine-grained entities and relations (Section 3.3). In both phases, we combine the entity
type and entity distance as global features and use a gated mechanism to fuse various semantic
representations.

We formulate the text spans (denoted as S) from T as follows:

S = (
tj, tj+1, . . . , tj+k

)
s.t. 0 ≤ j ≤ j + k ≤ n and k ≤ ε, (1)

where ε is the span width threshold.
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Figure 2: Neural architecture of the proposed model. In the Phase One, the model classifies entities
and relations; in the phase Two, the model predicts their types. In both phases, the model combines
entity type and distance as global features

3.1 Embedding Layer

Our model uses the BERT [18] model as the word embedding generator. We denote the BERT
embedding sequence for text T as follows:

ET = (x0, x1, x2, . . . , xn) , (2)

where ET ∈ R
(n+1)∗d and d is the BERT embedding dimension. x0 is the BERT embedding for the added

[CLS] token, which is a built-in setting of the BERT model.4 xi is the BERT embedding for the token
ti. Due to the fact that BERT may tokenize a token into several sub-tokens in order to avoid the
Out-of-Vocabulary (OOV) problem, we obtain xi by applying the max-pooling function to the BERT
embeddings of the sub-tokens tokenized from the token ti.

Based on ET , We denote the BERT embedding sequence for span S as follows:

ES = (
xj, xj+1, , . . . , xj+k

)
. (3)

4The [CLS] token is a specific token that added to the beginning of tokenized texts. The embedding of the [CLS] token is generally used for text classifications.
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3.2 Phase One

As shown in Fig. 2, the Phase One is composed of two modules: Entity Classification and Relation
Classification, where the former obtains coarse-grained entities and the latter obtains coarse-grained
relations.

3.2.1 Entity Classification

This module obtains coarse-grained entities by performing binary classification on span semantic
representations. We begin by converting all entity types in the training set to the Entity type and set the
type of sampled negative entities to the Not-Entity type. Our model will be trained to classify spans
as the Entity type when they are predicted to be entities, otherwise the Not-Entity type.

In this paper, we obtain the span semantic representations using three different types of semantic
representations: (1) span token representation, (2) contextual representation, and (3) span width
embedding.

For the span S, we obtain its token representation (denoted as ÊS) by applying the max-pooling
function to its BERT embedding sequence ES :

ÊS = [
max

(
xj,1, xj+1,1, , . . . , xj+k,1

)
, max

(
xj,2, xj+1,2, , . . . , xj+k,2

)
, . . . , max

(
xj,d, xj+1,d, , . . . , xj+k,d

)]
,

(4)

where ÊS ∈ R
d.

In this paper, we take the x0 ∈ R
d as the contextual representation for any span S from the text T .

Span width embedding allows the model to incorporate prior experience over span widths. In this
paper, we train a fixed-size embedding for each span width (i.e., 1, 2, . . . ) during the model training.
And we refer to the width embedding for the span S (length is j + 1) as W j+1, where W j+1 ∈ R

d.

ÊS , on the other hand, should theoretically contribute the most to the span semantic repre-
sentation, whereas W j+1 the least. However, the previous work [1,4] has overlooked this critical
property, concatenating the above representations, which has been demonstrated to be insufficient
[10]. In this paper, we propose a gated mechanism that enables us to weigh the importance of each
representation. The span semantic representation (denoted as E′

S) is then obtained by summing the
weighted representations:

vo = W 1Eo + b1 s.t. 1 ≤ o ≤ δ, (5a)

αo = expvo

∑δ

m=1 expvm
, (5b)

E′
S =

∑δ

m=1
αmEm, (5c)

where W 1 ∈ R
d, b1 is a scalar and

{
Eo, E′

S

} ∈ R
d. In the current scenario, the δ is set to 3, and E1, E2,

and E3 are ÊS , x0, and W j+1, respectively.

To obtain coarse-grained entities, we first pass the E′
S through an FFN (Feed Forward Network),

and then feed it into the sigmoid function, which yields probability distributions for the span S on the
above two types, i.e., Entity and Not-Entity:

Ê
′
S = W 2E

′
S + b2, (6a)
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yS,i = 1

1 + expÊ′
S,i

, (6b)

where W 2 ∈ R
2∗d and b2 ∈ R

2 are trainable FFN parameters, Ê
′
S ∈ R

2. By searching the highest-scored
class, yS estimates whether S is a coarse-grained entity or not. We build a coarse-grained entity set Te

with the predicted entities.

3.2.2 Relation Classification

This module obtains coarse-grained relations by performing binary classification on semantic
representations of relation tuples. We begin by converting all relation types in the training set to the
Relation type and assigning the Not-Relation type to sampled negative relations. Our model will
be trained to classify relation tuples as the Relation type if they have relations, otherwise the Not-
Relation type.

Let e2 and e2 be any two coarse-grained entities of Te. We formulate relation tuples as follows:

rb = 〈e1, e2〉 s.t. e1, e2 ∈ Te and e1 	= e2. (7)

We obtain the sematic representation of rb with four different types of semantic representations,
namely (1) the representation of e1, (2) the representation of e2, (3) relation contextual representation,
and (4) global features. We use E′

e1
and E′

e2
, which are calculated using the Eq. (5) in Section 3.2.1, as

the representations of e1 and e2, respectively.

Relation context is the text that between the two entities of a relation tuple [29]. In this paper, we
assume the relation context of rb as Con = (

tp, tp+1, . . . , tp+q

)
. Thus the BERT embedding sequence

for Con is as follows:

Ec = (
xp, xp+1, . . . , xp+q

)
. (8)

We obtain the contextual representation of rb (denoted as Rc) by applying the max-pooling
function to Ec:

RC = [
max

(
xp,1, xp+1,1, . . . , xp+q,1

)
, max

(
xp,2, xp+1,2, . . . , xp+q,2

)
, . . . , max

(
xp,d, xp+1,d, . . . , xp+q,d

)]
.

(9)

In this paper, we propose to combine entity type and entity distance as global features. Due to
the fact that all entities here are the Entity type, only the entity distance can be used to distinguish
different feature entries. As show in Fig. 2, we refer to them as binary global features. During model
training, we train a fixed-size embedding for each feature entry and denote the feature embedding for
rb as Drb

, where Drb
∈ R

d.

We obtain the semantic representation of rb (denoted as Rrb
) using the proposed gated mechanism,

as shown in Eq. (5). In the current scenario, the δ is set to 4, and E1, E2, E3, and E4 are E′
e1

, E′
e2

, RC,
and Drb

, respectively.

To obtain coarse-grained relations, we first pass the Rrb
through an FFN and then feed it into the

sigmoid function, which yields probability distributions for rb on the above two types, i.e., Relation
and Not-Relation:

R̂rb
= W 3Rrb

+ b3, (10a)
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yrb ,i = 1

1 + expR̂rb ,i
, (10b)

where W 3 ∈ R
2∗d and b3 ∈ R

2 are trainable FFN parameters, and R̂rb
∈ R

2. By searching the highest-
scored class, yrb

estimates whether rb has a relation or not. We build a coarse-grained relation set Tr

with the predicted relations.

3.2.3 Training Loss of Phase One

For each of the above two binary classifications, the training objective is to minimize the following
binary cross-entropy loss:

Lt
b = − 1

Nt

∑Nt

i=1

(
yt

i log ŷt

i +
(
1 − yt

i

) (
1 − ŷt

i

))
, (11)

where t denotes one of the above two classifications. yt
i is the one-hot vector of gold type. ŷt

i is the
predicted probability distributions. Nt is the number of instances for the classification t.

3.3 Phase Two

In the Phase Two, our model predicts the types of coarse-grained entities and relations, obtaining
fine-grained entities and relations. The Phase Two, as illustrated in Fig. 2, is composed of two modules:
Entity Type Predication and Relation Type Predication.

3.3.1 Entity Type Predication

In this module, we obtain entity types by conducting multi-class classifications on the semantic
representations of coarse grained entities. Specifically, for each coarse-grained entity e in Te, we denote
its semantic representation as E′

e ∈ R
d, which is obtained the same as the span semantic representation,

as illustrated in Section 3.2.1. To obtain the type of e, we first pass E′
e through an FFN and then feed

it into the softmax function, which yields probability distributions for e on �, where � is the set of all
pre-defined entity types:

Ê
′
e = W 4E

′
e + b4, (12a)

ŷe,i = 1
∑|�|

j=1 expÊ′
e,j

s.t. 1 ≤ i ≤ |�| , (12b)

where W 4 ∈ R
|�|∗d and b4 ∈ R

|�| are trainable FFN parameters. |�| is the counts of pre-defined entity
types. By searching the highest-scored class, ŷe estimates a pre-defined entity type for e.

3.3.2 Relation Type Predication

We obtain relation types by performing multi-class classifications on relation semantic represen-
tations. As shown in Fig. 2, the relation semantic representation is derived from two parts: the relation
representation used for the binary relation classification and multi-class global features.

For each coarse-grained relation r in Tr, we denote its representation used for the binary relation
classification as Rr, which can be obtained using the same approach illustrated in Section 3.2.2. As
shown in Fig. 2, we combine the entity type and entity distance as the multi-class global features. We
formulate the combination of entity type and entity distance as follows:

C = {� ⊗ � ⊗ �} , (13)
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where � is the set of pre-defined entity types, � is the set of entity distances, and ⊗ denotes the
Cartesian Product. For each feature entry in C, we train a fixed-size embedding for it during the model
training. We denote the feature embedding for r as C r ∈ R

d.

Then we obtain the relation semantic representation (denoted as R′
r) with Rr and C r, which is

calculated using the Eq. (5). In the current scenario, the δ is set to 2, and E1 and E2 are Rr and C r,
respectively.

To obtain the type of r, we first pass R′
r through an FFN, and then feed it into the softmax function,

which yields probability distributions for r on �, where � is the set of all pre-defined relation types:

R̂
′
r = W 5R

′
r + b5, (14a)

ŷr,i = expR̂′
r,i

∑|�|
j=1 expR̂′

r,j
s.t. 1 ≤ j ≤ |�| , (14b)

where W 5 ∈ R
|�|∗d and b5 ∈ R

|�|. |�| is the counts of pre-defined relation types. By searching the
highest-scored class, ŷr estimates the type that r has.

3.3.3 Training Loss of the Phase Two

For each of above two multi-class classification tasks, the training objective is to minimize the
following cross-entropy loss:

Lt′
p = − 1

Mt′
∑Mt′

i=1
yt′

i log ŷt′
i , (15)

where t′ denotes one of the above two classifications. yt′
i is the one-hot vector of gold type. ŷt′

i is the
predicted probability distributions. Mt′ is the number of instances for the classification t′.

3.4 Model Training

During the model training, we minimize the following joint training loss:

L (W ; θ) =
∑

t∈T

Lt
b +

∑

t′∈T ′
Lt′

p , (16)

where T denotes the two binary classifications and T ′ denotes the two multi-class classifications.

4 Experiments
4.1 Dataset

We evaluate our model on ACE05 [30], CoNLL04 [31], and SciERC [2].

ACE05 defines seven entity types (Per, Org, Loc, Gpe, Fac, Veh, and Wea) and six relation types
(Phys, Part-whole, Per-soc, Org-aff, Art, and Gen-aff) between entities. We use the same data splits,
pre-processing, and task settings proposed by Li and Ji [32] and Li et al. [33]. It has 351 documents
for training, 80 for development and 80 for test.

CoNLL04 defines four entity types (Loc, Org, Per, and Other) and five relation types (Kill, Live,
LocIn, OrgBI, and Work). We use the splits defined by Ji et al. [6] and Wang et al. [25]. The dataset
consists of 910 instances for training, 243 for development and 288 for test.

SciERC is derived from 500 abstracts of AI papers. The dataset defines six scientific entities (Task,
Method, Metric, Material, Other, and Generic) and seven relation types (Compare, Conjunction,
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Evaluate-for, Used-for, Feature-of, Part-of, and Hyponym-of) in a total of 2,687 sentences. We use the
same training (1,861 sentences), development (275 sentences), and test (551 sentences) split following
the previous work [3,34].

4.2 Experimental Setup

For a fair comparison with previous work, we use the bert-base-cased model on ACE05 and
CoNLL04, and use the scibert-scivocab-cased model on SciERC. We optimize our model using the
BertAdam for 120 epochs with a learning rate of 5e-5 and a weight decay of 1e-2. We set the span width
threshold ε to 10 for all datasets and the entity distance set � to {0, 1, . . . , 10}, and if an entity distance
is greater than 10, we set it to 10. Moreover, we employ the same negative sampling strategy proposed
by Eberts and Ulges [1]. We use the standard Precision (P), Recall (R) and F1-score to evaluate the
model performance:

P = TP
TP + FP

, (17a)

R = TP
TP + FN

, (17b)

F1 = 2 ∗ P ∗ R
P + R

, (17c)

where TP, FP and FN stand for true positive, false positive, and false negative, respectively.

For ACE05, an entity mention is considered correct if its head region and type match the ground
truth, and a relation is correct if both its relation type and two entity mentions are correct. For
CoNLL04, an entity mention is considered correct if its offsets and type match the ground truth,
and a relation is correct if both its relation type and two entity mentions are correct. For SciERC, the
entity type is not considered when evaluating relation extraction, which is in line with the previous
work [6,7]. And the remaining settings are identical to those for CoNLL04.

4.3 Main Results

We compare our model with all the published span-based models for the joint extraction task
that we are aware of. We report the comparison results in Tab. 3–Tab. 5, from which we can observe
that our model consistently outperforms the strongest baselines in terms of F1-score across the three
datasets.

To be more precise, on ACE05, our model achieves + 0.4% and + 3.2% absolute F1 gains on
NER and RE, respectively, when compared to Ji et al. [6] that achieves the previous best NER
performance. In addition, when compared to Zhong and Chen [7] that achieves the previous best RE
performance, our model achieves + 1.3% and + 1.4% absolute F1 gains on NER and RE, respectively.
On CoNLL04, our model achieves + 0.3% and + 1.6% absolute F1 gains on NER and RE, respectively,
when compared to the strongest baseline Ji et al. [6]. On SciERC, when compared to Santosh et al. [35]
that achieves the previous best NER performance, our model delivers + 0.5% and + 1.4% absolute
F1 gains. When compared to Zhang et al. [36] that achieves the previous best RE results, our model
achieves + 0.6% and + 0.2% absolute F1 gains.
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Table 3: Performance comparisons on ACE05. ∗ denotes using the bert-based-cased model and the
single-sentence setting for a fair comparison. The bold values denote the best results

Model NER RE

P R F1 P R F1

Dixit and Al-Onaizan [3] 85.9 86.1 86.0 68.0 58.4 62.8
Luan et al. [4] - - 88.4 - - 63.2
Wadden et al. [5] - - 88.6 - - 63.4
Zhong and Chen [7] ∗ - - 88.7 - - 66.7
Wang et al. [37] - - 88.9 - - 64.3
Ji et al. [6] 89.3 89.9 89.6 71.2 60.2 65.2
Our Model 89.4 90.6 90.0 72.8 64.5 68.4

Table 4: Performance comparisons on CoNLL04. The bold values denote the best results

Model NER RE

P R F1 P R F1

Eberts and Ulges [1] 88.3 89.6 89.0 73.0 70.0 71.5
Zhang et al. [36] 88.1 90.6 89.3 75.4 71.1 73.2
Tang et al. [38] - - 89.4 - - 72.6
Ji et al. [6] 90.1 90.4 90.2 77.0 71.9 74.3
Our Model 89.6 91.4 90.5 78.7 73.3 75.9

Table 5: Performance comparisons on SciERC. ∗ denotes using the scibert-scivocab-cased model. The
bold values denote the best results

Model NER RE

P R F1 P R F1

Luan et al. [2] 67.2 61.5 64.2 47.6 33.5 39.3
Luan et al. [4] - - 65.2 - - 41.6
Wadden et al. [5] - - 67.5 - - 48.4
Zhong and Chen [7] ∗ - - 68.9 - - 50.1
Eberts and Ulges [1] ∗ 70.9 69.8 70.3 53.4 48.5 50.8
Zhang et al. [36] ∗ 69.7 71.1 70.4 55.3 50.0 52.5
Santosh et al. [35] ∗ 69.8 71.3 70.5 51.9 50.6 51.3
Our Model ∗ 69.7 72.3 71.0 52.9 52.5 52.7

We attribute the above performance improvements to that our model is capable of balancing the
grossly imbalanced data distributions and exploiting the effective global features.
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4.4 Effectiveness Investigations

We conduct extensive effectiveness investigations across the three datasets and use SpERT [1] as
the baseline. SpERT is the most similar model to ours, and it uses two linear decoders for entity and
relation classifications, as well as the BERT model as a backbone. SpERT, on the other hand, ignores
the global features and does not balance the imbalanced data distributions. Furthermore, to make a
fair comparison, our model employs the same negative sampling strategy as SpERT.

4.4.1 Data Distributions

As illustrated in Tab. 6, we compare our model with the baseline in terms of the most imbalanced
data distributions. We obtain the data distributions on NER and RE by comparing the numbers of
different types of entities and relations, i.e., the smallest number vs the largest number. And we obtain
the data distributions during the model training. We have the following observations: (1) On ACE05,
the most imbalanced data distributions of the baseline are 1: 773.3 on NER and 1: 150.0 on RE. Our
model, on the other hand, reduces the ratios to 1: 21.3 and 1: 13.8, respectively. (2) On CoNLL04,
the most imbalanced data distributions of the baseline are 1: 171.5 on NER and 1: 56.4 on RE. Our
model, on the other hand, reduces the ratios to 1: 23.7 and 1: 9.9, respectively. (3) On SciERC, the most
imbalanced data distributions of the baseline are 1: 605.3 on NER and 1: 913.5 on RE. Our model,
on the other hand, reduces the ratios to 1: 25.5 and 1: 35.6, respectively.

Table 6: Comparisons regarding the most imbalanced data distributions between our model and the
baseline

Data Task Baseline Our model

Phase one Phase two

ACE05 NER 1: 773.3 1: 19.7 1: 21.3
RE 1: 150.0 1: 13.8 1: 3.4

CoNLL04 NER 1: 171.5 1: 23.7 1: 2.6
RE 1: 56.4 1: 9.9 1: 1.8

SciERC NER 1: 605.3 1: 25.5 1: 7.7
RE 1: 913.5 1: 35.6 1: 13.6

Based on the above observations, we conclude that the two-phase paradigm allows our model to
avoid suffering from grossly imbalanced data distributions.

4.4.2 Effectiveness Against Entity Length

In general, as the entity lengths increase, it becomes increasingly difficult to recognize the entities.
In this section, we conduct investigations on NER performance in relation to entity lengths. We divide
all entity lengths, which are restricted by the span width threshold ε (ε is set to 10), into five intervals,
i.e., [1−2], [3−4], [5−6], [7−8] and [9−10]. We conduct investigations on the dev sets of the three
datasets and report the results in Fig. 3. We can observe that our model consistently outperforms the
baseline across all length intervals on the three datasets. Moreover, our model obtains greater F1 gains
when the entity length increases. To be more precise, our model achieves the greatest improvement on
ACE05 when the entity length is [7,8], and on CoNLL04 and SciERC when the entity length is [9,10],
suggesting that our model is more successful in the case of long entity lengths.
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Figure 3: NER performance (F1-score) comparison of our model and the baseline under various entity
length intervals, which are tested on the dev sets of three datasets

4.4.3 Effectiveness Against Entity Distance

In general, as the distance between the two entities of a relation increases, the relation becomes
more difficult to extract. In this section, we conduct investigations on RE performance in relation to
entity distances. We divide all entity distances into five intervals, namely [0], [1–3], [4–6], [7–9], and
[>=10]. We conduct investigations on the dev sets of the three datasets and report the investigation
results in Fig. 4. The results demonstrate that our model beats the baseline across all distance intervals.
Specifically, our model obtains greater improvement when the distance increases, demonstrating that
our model is more effective in the case of long entity distances.

Figure 4: RE performance (F1-score) comparison of our model and the baseline under various entity
distance intervals, which are tested on the dev sets of three datasets

4.5 Ablation Study

We conduct ablation studies on the dev sets of the three datasets to analyze the effects of various
model components. We report the ablation results in Tab. 7, where the “w/o Two-Phase” denotes
ablating the two-phase paradigm. As a result, our approach is incapable of dealing with unbalanced
data distributions. Additionally, our model cannot make use of binary global features, but retains
multi-class global features. The “w/o Bi-Features” denotes ablating the binary global features, which
is realized by removing Drb

from Rrb
. The “w/o Multi-Features” denotes ablating the multi-class global
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features, which is realized by removing C r from R′
r. The “w/o Both-Features” denotes conducting the

above “w/o Bi-Features” and “w/o Multi-Features” ablations simultaneously. The “w/o gated” denotes
ablating the gated mechanism. We use the concatenation manner to concatenate various semantic
representations instead. The “base”denotes conducting all above ablations. After doing this, our model
has the same neural architecture as SpERT.

Table 7: Ablation results on the dev sets of the three datasets. We only report the F1-scores

Model ACE05 CoNLL04 SciERC

NER (F1) RE (F1) NER (F1) RE (F1) NER (F1) RE (F1)

Our Model 88.1 64.8 88.7 74.2 71.4 53.5
w/o Two-phase 86.5(−0.6) 61.7(−3.1) 86.4(−2.3) 71.5(−2.7) 68.2(−3.2) 50.9(−2.6)
w/o Bi-features 88.3(+0.2) 63.9(−0.9) 88.2(−0.5) 73.5(−0.7) 71.1(−0.3) 51.7(−1.8)
w/o Multi-features 87.8(−0.3) 63.4(−1.4) 88.4(−0.3) 72.4(−1.8) 71.5(+0.1) 52.0(−1.5)
w/o Both-features 87.5(−0.6) 61.5(−3.3) 88.5(−0.2) 72.0(−2.2) 70.0(−0.4) 51.5(−2.0)
w/o gated 87.9(−0.2) 64.3(−0.5) 88.1(−0.6) 73.3(−0.9) 69.9(−1.5) 52.7(−0.8)
base 86.3(−1.8) 61.5(−3.3) 85.9(−2.8) 70.2(−4.0) 67.8(−3.6) 49.0(−4.5)

We have the following observations: (1) The two-phase paradigm consistently improves the model
performance across the three datasets, delivering + 0.6% to + 3.2% F1-scores on NER and + 2.6% to
+ 3.1% F1-scores on RE, which can be attributed to the paradigm’s ability to prevent our model from
being harmed by grossly imbalanced data distributions. (2) Both binary and multi-class global features
consistently benefit RE performance, and the multi-class features are generally more effective than
the binary ones, as demonstrated on ACE05 and CoNLL04. The explanation for this could be that
the multi-class features take into account fine-grained entity types. Additionally, both types of global
features have a negligible effect on NER. A plausible explanation is that these features are derived from
entity information and are employed in the relation extraction. (3) The combination of the two types of
global features results in improved RE performance, suggesting that they have a beneficial effect on one
another. (4) The proposed gated method consistently improves model performance, bringing + 0.2%
to + 1.50% F1-scores on NER and + 0.5% to + 0.9% on RE, suggesting that the gated mechanism can
better fuse various semantic representations.

5 Conclusion

In this paper, we propose a two-phase span-based model for the joint entity and relation
extraction task, aiming to tackle the grossly imbalanced data distributions caused by the essential
negative sampling. And we augment the proposed model with global features obtained by combining
entity types and entity distances. Moreover, we propose a gated mechanism for effectively fusing
various semantic representations. Experimental results on several datasets demonstrate that our model
consistently outperforms the strongest span-based models for the joint extraction task, establishing a
new standard benchmark.
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