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Abstract: With the recent developments in the Internet of Things (IoT), the
amount of data collected has expanded tremendously, resulting in a higher
demand for data storage, computational capacity, and real-time processing
capabilities. Cloud computing has traditionally played an important role in
establishing IoT. However, fog computing has recently emerged as a new
field complementing cloud computing due to its enhanced mobility, location
awareness, heterogeneity, scalability, low latency, and geographic distribution.
However, IoT networks are vulnerable to unwanted assaults because of their
open and shared nature. As a result, various fog computing-based security
models that protect IoT networks have been developed. A distributed archi-
tecture based on an intrusion detection system (IDS) ensures that a dynamic,
scalable IoT environment with the ability to disperse centralized tasks to
local fog nodes and which successfully detects advanced malicious threats
is available. In this study, we examined the time-related aspects of network
traffic data. We presented an intrusion detection model based on a two-
layered bidirectional long short-term memory (Bi-LSTM) with an attention
mechanism for traffic data classification verified on the UNSW-NB15 bench-
mark dataset. We showed that the suggested model outperformed numerous
leading-edge Network IDS that used machine learning models in terms of
accuracy, precision, recall and F1 score.
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1 Introduction

The Internet of Things (IoT) has proliferated in recent years because of the advancements in
5G technology, the maturity of communication technology, and the availability of smart gadgets.
Various smart sensors and actuators, including radio frequency identification systems, infrared
sensors, laser scanners, positioning systems, and other device technologies, connect smart things
in line with established communication protocols. IoT has applications in nearly every field: smart
cities, smart transportation, smart grids, smart agriculture, energy management, healthcare, education,
and security. In short, the “Internet of Everything” has fundamentally altered human life and work
habits. With the growing number of connected devices in the IoT, a considerable amount of necessary
data is generated for governments, organizations, and individuals, which is driving the development
of advanced information services with a demand for significant storage and computational power,
as well as real-time processing capacity [1]. IoT devices continually record and transmit personal
data by constantly monitoring our professional and personal activities. Therefore, data security and
maintaining the privacy of its customers are critical for IoT applications. It’s important to note that
IoT devices are subject to several security assaults. Some of these malicious operations may cause
a loss of service, while others can inflict catastrophic damage to the system, potentially resulting in
tragedy for end users. Since most existing IoT security approaches are centralized and cloud-based [2],
these approaches are complicated to deploy and have a considerable transmission delay, with limited
mobility, poor scalability, and fewer real-time processing capabilities. Therefore, the security challenges
associated with the IoT system cannot be resolved successfully by either the cloud or the isolated
attack detection system [3]. On the other hand, a distributed security system allows for interoperability,
flexibility, and scalability while securing and managing heterogeneous devices in a unified manner [4].

Fog computing is a popular distributed paradigm that brings processing nodes closer to the
physical system and provides processing and storage capabilities at the edge node to detect possible
threats quickly and efficiently [5]. Cisco was the pioneer of fog computing, which quickly gained
popularity as a viable alternative to cloud computing. Cloud computing is known for issues with high
energy consumption and latency. Fog computing extends the cloud to the network’s edge, enabling
efficient data access, processing, and storage. Fog computing occurs at the fog layer between the cloud
and the end-user. Each smart thing is connected to a Fog device in this framework. The fog devices
can communicate with one another, and each device is connected to the cloud [6]. The main difference
is that the cloud is a centralized cloud network, whereas fog is a decentralized distributed system
[7]. In comparison to cloud computing, fog computing provides enhanced mobility, better location
awareness, heterogeneity, scalability, low latency, and geographic distribution, enabling a diverse range
of IoT systems and applications [8]. In general, the fog computing paradigm aims to reduce data and
computing consumption on the cloud server and reduce latency and improve quality of service (QoS)
[9]. Moreover, like other services, the IoT system’s security mechanism can be designed and delivered
at the fog layer, employing fog nodes as agents. In short, the fog node contributes to the IoT system’s
advantages in deploying distributed and parallel security services [10].

Although fog computing can provide distributed services for the IoT, an intrusion detection
system must be installed in the fog node to ensure the Internet of Things security. As an active
network security protection system, the Intrusion Detection System (IDS) monitors real-time traffic
data generated by the IoT, delivers alerts and actively protects against potential risks whenever a
malicious attack or other abnormal event is detected. This is critical to prevent attempts to disrupt
the Internet of Things’ availability, integrity, and confidentiality. This study provides a distributed IDS
based on the Bidirectional Long Short-Term Memory (Bi-LSTM) and Attention method to combat
recent IoT attacks. The distributed detection system comprises sensing nodes capable of identifying
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moving objects in their vicinity. All sensors are identical since they have the same detection radius,
and the sensor network is clustered into distinct groups based on the radius. Each member of the
cluster is responsible for data collection through environmental monitoring. The acquired data is then
routed to nearby fog nodes for processing. IDS are placed at each fog node in the proposed topology
to monitor incoming traffic. Thus, fog nodes enable IoT systems to create parallel and distributed
collaborative security mechanisms. The log of each network packet is analyzed at the cloud server for
the global administration of IoT devices. This research aims to use a distributed integrated design
and an intrusion detection system at the fog layer to protect the IoT from attacks. Our primary
contributions include the following.

1) We propose a long short-term memory fog computing approach with an attention mechanism-
based distributed ensemble architecture to protect the IoT network.

2) We fully utilize traffic slice information and the attention mechanism in the Bi-LSTM model.
Then, we set a suitable timestep to verify that the attention mechanism has improved the
model’s performance.

3) The UNSW-NB15 benchmark dataset is used to conduct experiments. The results indicate
that our approach achieves higher accuracy, detection rate, recall and f1-score than other
approaches.

The remainder of this work is structured as follows. Section 2 discusses earlier research pertinent to
this paper. Section 3 presents the proposed approach for detecting malicious activity in IoT networks
based on IDS. Section 4 describes the experimental procedure, findings, and the analysis of the
suggested model using the UNSW-NB15 dataset. Finally, this paper is summarized in Section 5.

2 Related Work

IDS systems are classified into two categories depending on their signature-matching capabilities:
signature-based intrusion detection systems (SIDS) and anomaly-based intrusion detection systems
(AIDS) [11]. The term “signature-based intrusion detection” is often referred to as misuse detection
or rule-based detection [12]. This approach compares incoming network data to established rules and
detects threats based on previously observed characteristics. Note that signature-based approaches
can detect known assaults but cannot detect unknown attacks. The second type of intrusion detection
is anomaly-based, where the system observes regular network activity and uses it to define a model
of normal network traffic. When it finds deviations from the regular traffic pattern, the behavior is
classified as a malicious attack activity [13]. However, due to model building and feature engineering
complexity, the technique may generate a higher false alarm rate if normal traffic cannot be adequately
characterized. However, the advantage of anomaly-based intrusion detection approaches is that they
use only samples of normal activity to create models and detect known and unknown attacks.

Existing artificial intelligence techniques can handle privacy protection and fraud anomaly
detection in the network [14]. The objective of anomaly detection is to use machine learning algo-
rithms to classify anomalous and normal data. Generally, machine learning-based solutions work
by analyzing huge amounts of data generated by network traffic, host processes and users to detect
suspicious activities using efficient algorithms [15]. Earlier research has demonstrated success with
machine learning-based algorithms for intrusion detection systems. The authors of [16] proposed
a system for feature selection that employed five distinct feature selection procedures using filter
and wrapper approaches. According to the experimental data, the J48 classifier achieved maximum
accuracy. In [17], Lakhan et al. used the CIC-IDS2017 dataset to test and evaluate three machine
learning algorithms: Decision Jungle (DJ), Random Forest (RF), and Support Vector Machine (SVM).
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Experimental results showed that SVM outperformed the other two machine learning algorithms. In
[18], Chand et al. stacked the SVM with nine different classifiers to compare their performance to the
solo SVM classifier. The stacked SVM method performed better, particularly when combined with
Random Forest. Ling and Wu offer a method for intrusion detection in [19] that integrates various
classifiers. The features were selected using Random Forest, and the best features were utilized for
training a multi-classifier using SVM, Decision Tree, KNN, and Naive Bayes. Nkiama et al. introduced
a recursive feature reduction technique in conjunction with a decision tree classifier [20] to identify
significant features. This paper suggested that by lowering the number of characteristics, this strategy
produced a high level of accuracy. Ambusaidi et al. introduced a mutual information-based technique
for selecting the best feature analytically [21]. This method can handle data features that are linearly
and nonlinearly dependent. In [22], Manickam et al. created a comprehensive ICMPv6-DDoS attack
dataset to detect ICMPv6-DDoS attacks. They tested the dataset on five machine learning models,
and the suggested dataset accurately represented attack traffic, with a high detection accuracy and
low false-positive rate.

Traditional machine learning is severely limited since it is incapable of efficiently classifying com-
plex and multi-dimensional intrusion data in the real-world complex network application environment.
Deep learning-based NIDS has garnered considerable attention due to their superior performance in
dealing with complex, large-scale data and extracting the underlying characteristics of traffic data; as
a result, they have emerged as a potential solution for intrusion detection. Vinayakumar et al. [23]
suggested a hybrid deep neural network (DNN) model for network and host-level event monitoring.
Their research showed that this architecture outperformed classical machine learning classifiers
previously implemented. Wu et al. [24] introduced the LuNet deep neural network architecture, which
utilized CNN to learn spatial features from traffic data and RNN to learn temporal information. This
approach can significantly enhance validation accuracy and decrease the percentage of false positives.
Azizjon et al. [25] suggested a CNN-LSTM hybrid algorithm. To address the poor performance caused
by imbalanced data, they used random sampling approaches to balance the data. The findings indicate
that when trained on balanced data, the 1D-CNN 3-layer model outperformed imbalanced data in
precision, recall, and F-score. Xu et al. [26] evaluated the time-related intrusion features and developed
a unique DNN model composed of gated recurrent units (GRUs) and multi-layer perceptron (MLP).
Kim et al. [27] constructed an intrusion detection model using a variation of the RNN LSTM-
RNN. They extracted instances from the KDD Cup99 dataset to discover the super parameters and
measure model performance. Roy et al. developed a unique Bi-LSTM network in [28], trained using
the UNSW-NB15 dataset as a benchmark, attaining accuracy of above 95%. Sinha et al. introduced an
architecture that merged CNN with bidirectional LSTM in [29], and the proposed model demonstrated
a high detection rate and a relatively low false-positive rate.

Kathareios et al. [30] presented a two-stage real-time network IDS to reduce manual workload.
The initial stage utilizes a shallow auto-encoder to perform adaptive unsupervised anomaly detection.
A nearest-neighbour classifier was employed in the second stage to model the manual categorization
and filter out false positives. Diro et al. [31] developed a distributed deep learning-based intrusion
detection system (IDS) for fog computing IoT systems. The results indicated that a distributed parallel
architecture achieves higher precision than a centralized model. Khan et al. [32] proposed a two-stage
intrusion detection approach based on stacked auto-encoders. The first stage is classifying normal and
pathological network traffic according to the classification probability value. The first stage’s output
is used as the input for the second stage’s procedure of detecting normal and multi-class assaults.
Al-Qatf et al. [33] suggested a self-taught learning strategy based on deep learning for acquiring
characteristics and lowering the dimension. The suggested framework is constructed by recreating
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a new feature representation using the sparse auto-encoder mechanism and then feeding the features
into the SVM algorithm to increase classification accuracy. Farahnakian et al. [34] proposed a stacked
auto-encoder technique. The output of each auto-encoder at the current layer is used as the input to the
following layer of auto-encoders. Yang et al. [35] introduced a framework, SAVAER, for learning the
latent distribution of the original data using WGAN-GP. The model’s decoder generates examples of
rare and unknown threats, while the encoder is used to initialize the weights of the DNN’s hidden layers
and explore high-level feature representations. SAVAER-DNN was shown to be more suitable for
data augmentation and to perform better than other state-of-the-art models. Sadaf et al. [36] present
a method for detecting unauthorized attacks in the fog environment by utilizing the auto-encoder
and isolation forest (IF) concepts. Souza et al. introduced a hybrid binary classification architecture
based on DNN and the K-Nearest Neighbor algorithm for use in the fog computing layer [37]. The
results indicated that the suggested hybrid strategy outperformed machine learning approaches for
IoT systems in terms of precision. However, one significant limitation of the previous research is that
they ignored the length of historical information’s influence on performance. The network intrusions
can be thought of as time-related events.

3 System Model

The distributed architecture of an anomaly-based IDS is depicted in Fig. 1. This strategy decen-
tralizes the existing centralized computing architecture and distributes it to local fog nodes in three
phases. The first phase involves preprocessing the data from the training dataset. It comprises feature
mapping, which converts symbolic features to numeric ones, and feature normalization, which results
in an optimal dataset. After preprocessing the data, the dataset is put into a Bi-LSTM and attention
algorithm for categorization. The final phase collects data generated by IoT clusters at local fog nodes.
The collected data is again preprocessed, and the optimized features are fed into the ideal model.
Finally, the suggested model’s effectiveness is evaluated using data supplied by IoT devices. If the
predicted traffic pattern is normal, IoT devices are permitted to execute typical functions. However,
if it detects suspicious activity, the administrator is notified, and the traffic is classified as abnormal.
As a result, log details for such devices are forwarded to the cloud server, which maintains the global
status of IoT devices.

Figure 1: Architecture of the proposed IDS model
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3.1 Bidirectional Long Short-Term Memory

A recurrent Neural Network (RNN) can extract the temporal features from the input data.
The cyclic structure of RNN can preserve historical information and provide sequence modelling
capabilities. At timestamp t, the network layer accepts the input xt of the current timestamp and the
hidden state of the previous timestamp ht−1, so the current state ht can be defined as follows.

ht = σ(Wxhxt + Whhht−1 + bh) (1)

where Wxh and Whh are the weight matrices and b is the bias variable, σ represents the activation
function. However, recurrent neural networks are prone to gradient vanish and gradient explosion.
Compared with the basic RNN, LSTM is better at processing more extended sequence signal data
and is widely used in sequence prediction and natural language processing tasks. Fig. 2 shows the
structure of an LSTM cell.

Figure 2: Structure of an LSTM cell

Compared with the basic RNN network, which has only one state vector ht, LSTM adds a new
state vector ct, and at the same time introduces a gate mechanism to control the forgetting and
refreshing of information through the gate control unit. Three gates in each LSTM unit control the
internal information flow: input gate, forget gate, and output gate. ct can be used as the internal
state vector memory, h can be regarded as the output vector. The forget gate determines how much
information the previous memory ct−1 retained, which can be defined as:

gf = σ
(
Wf [ht−1, xt] + bf

)
(2)

The input gate determines how much information the current memory can hold. First, a new input
vector c̃t is obtained by performing a nonlinear transformation on the current input xt and the output
of the previous timestamp, which can be defined as:

c̃t = tanh(Wc [ht−1, xt] + bc) (3)

The input gate gi determines the acceptance of the new input c̃t, which can be defined as:

gi = σ(Wi [ht−1, xt] + bi) (4)

Under the control of the forget gate and the input gate, LSTM selectively reads the memory of the
previous timestamp and the new input of the current timestamp. The memory of can be defined as:

ct = gf ct−1 + gic̃t (5)



CMC, 2023, vol.74, no.1 807

In LSTM, the output of the memory unit and the output information is under the control of the
output gate. The output gate can be defined as:

go = σ(Wo [ht−1, xt] + bo) (6)

Therefore, the output of LSTM can be defined as:

ht = go ∗ tanh (ct) (7)

Bi-LSTM combines the forward and backward information, which makes up for the lack of
contextual semantic information in LSTM. The bidirectional structure provides complete past and
future context information for each moment in the input sequence of the output layer. As shown in
Fig. 3, the Bi-LSTM network can better extract long-term and short-term dependent features and
improve classification accuracy.

Figure 3: Structure of Bi-LSTM

3.2 Slice-Based Attention

Based on our previous research, we know the traffic data is time-related. Therefore, traffic
information of multiple adjacent moments is beneficial to learn the current traffic type. Therefore,
we combined a few pieces of traffic data as slice traffic. Furthermore, dot-product attention is utilized
to reduce calculation consumption during the optimized matrix multiplication, as shown in Fig. 4.

ui = tanh(Wwhi + bw) (8)

For each time step, hidden representation ui of hidden state hi can be obtained through a single
layer perception.

αi = exp(uT
i us)∑

i exp(uT
i us)

(9)

Then, we use the similarity of ui and uw to evaluate the importance of traffic pieces at different
moments i. Attention weight α can be calculated through a SoftMax function.

v =
∑

i

αihi (10)
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Figure 4: Illustration of dot-product attention

4 Experiment
4.1 Data Description

To ensure the evaluation’s efficiency, we used the UNSW-NB15 dataset, which is extensively
used in intrusion detection investigations. The UNSW-NB15 intrusion dataset, created in 2015 by
the Australian Centre for Cyber Security (ACCS) to generate a hybrid of real normal activities
and synthetic contemporary attack behaviors in network traffic, is widely used as a benchmark
dataset in the field of intrusion detection and prevention. The entire UNSW-NB15 dataset has been
partitioned into a training and testing set. The training set has 175,341 records, whereas the testing
set contains 82,332 records. Each record in the UNSW-NB15 dataset has 44 features: flow features,
fundamental features, content features, time features, additional produced features, and labels, as
shown in Tab. 1. The records are grouped into two broad categories: normal and attack. Attack records
are further classified into nine categories: fuzzers, analysis, backdoors, denial of service, exploits,
generic, reconnaissance, shellcode, and worms.

Table 1: Features of the UNSW-NB15 dataset

No Feature Type No Feature Type

1 id Nominal 23 dtcpb Integer
2 dur Float 24 dwin Integer
3 proto Nominal 25 tcprtt Float
4 service Nominal 26 synack Float
5 state Nominal 27 ackdat Float
6 spkts Integer 28 smean Integer
7 dpkts Integer 29 dmean Integer
8 sbytes Integer 30 trans_depth Integer
9 dbytes Integer 31 response_body_len Integer
10 rate Integer 32 ct_srv_src Integer
11 sttl Integer 33 ct_state_ttl Integer
12 dttl Integer 34 ct_dst_ltm Integer
13 sload Float 35 ct_src_dport_ltm Integer
14 dload Float 36 ct_dst_sport_ltm Integer
15 sloss Integer 37 ct_dst_src_ltm Integer
16 dloss Integer 38 is_ftp_login Binary
17 sinpkt Integer 39 ct_ftp_cmd Integer
18 dinpkt Integer 40 ct_flw_http_mthd Integer

(Continued)
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Table 1: Continued
No Feature Type No Feature Type

19 sjit Float 41 ct_src_ltm Integer
20 djit Float 42 ct_srv_dst Integer
21 swin Integer 43 is_sm_ips_ports Binary
22 stcpb Integer 44 attack_cat Nominal

4.2 Data Preprocessing

Data preprocessing is required to meet the input requirements for deep learning methods. This
includes but is not limited to numerical processing and feature normalization.

4.2.1 Numerical Processing

The process of converting symbolic features to numerical data is called “feature transformation”.
This stage is important since the neural network’s input is a digital matrix, and numerical operations
are the sole option for neural networks in deep learning. As a result, we digitize the symbolic
characteristics using the one-hot encoding method.

4.2.2 Normalization

Although the data set has been numerically processed, the range of minimum and maximum values
for distinct feature data is highly diverse, significantly reducing the reliability of training results. The
numerical data must be normalized to eliminate the big difference. As shown in Eq. (11), min-max
standardization is used to translate the various numerical values of the features to the range [0, 1]
without disturbing the linear relationship between the original data.

x′ = x − xmin

xmax − xmin

(11)

4.3 Evaluation Matrix

Tab. 2 defines the confusion matrix to evaluate the model’s performance. The dataset’s samples
can be classified into four types: True Positives (TP), False Positives (FP), True Negatives (TN), and
False Negatives (FN). TP shows the number of anomalous attacks; FP denotes the number of normal
samples incorrectly classified as anomalous; TN denotes the number of normal records correctly
classified as normal; FN denotes the number of anomalous records incorrectly classified as normal.
Various evaluation measures such as accuracy, precision, recall (detection rate), and f1 score are used
to validate the proposed model.

Accuracy = TP + TN
TP + FP + FN + TN

(12)

Precision = TP
TP + FP

(13)

Recall = TP
TP + FN

(14)

F1_score = 2 × Precision × Recall
Precision × Recall

(15)
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Table 2: Confusion matrix

Predicted Class Actual Class

Anomaly Normal

Anomaly TP FP
Normal FN TN

4.4 Experimental Process

All experiments are run on a computer equipped with an Intel(R) Core (TM) i7–10875H CPU
running at 2.30 GHz, 16.0 GB RAM, and one NVIDIA GeForce RTX 2070 GPU. The programming
environment is Python 3.7.4 and Tensorflow 2.1.0. Tab. 3 shows the parameters needed to build
the model. To meet the criterion of the input dimension for Bi-LSTM, the dataset must first be
reshaped into a three-dimensional shape. Following data preprocessing, the 44-dimensional features
are converted to 196-dimensional features. After that, all 196 features are concatenated into a single
piece of data called a vector. Thus, the model’s final input has the shape (batch-size, timestep, 196),
where batch-size is a hyper-parameter indicating the number of samples supplied to the model at a
given time and timestep is the duration of historical events. Next, a dense layer is coupled to the input
layer to construct the attention mechanism. This dense layer contains the same number of hidden units
as the input layer. After that, two Bi-LSTM layers are layered together for processing time-series data.
Each timestep generates an output, and all steps receive dot-product attention. Finally, dense layers
are connected to the output of the attention layer, with only one categorization unit in the output layer.

Table 3: Parameters of the proposed model

Parameter Values

Optimizer Adam
Learning rate 0.01
Loss function Binary cross-entropy
Batch size 1024
Monitor Val-accuracy
Activation unit Sigmod
Dropout 0.5
Epochs 160
Input layer size 196

5 Experimental Results and Analysis

Fig. 5 illustrates the model’s optimal training and validation accuracy. We set the ratio of training
set and validation set to 7:3. The accuracy rate increases significantly when neural network parameters
are optimized at the start of training. This also demonstrates that the model can quickly determine
the gradient decline direction at this point. After around 15 epochs, the model determines the ideal
set of parameters for the current conditions, resulting in the maximum accuracy rate. We attempt to
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train the model again and see that the accuracy rate does not continue to increase. Within around
40 epochs, the accuracy rate swings within a narrow range without seeing any major decrease. After
training, validation accuracy did not improve from 0.991. The model’s accuracy is 99.05 percent, the
precision is 98.9 percent, the detection rate is 99.36 percent, and the f1 score is 99.15 percent on the
testing dataset, indicating that our model has a high detection rate.

Figure 5: Train and test accuracy score of the model

As illustrated in Fig. 6, as model training proceeds, our proposed method’s loss on the training
and validation datasets converges. As the accuracy of our suggested model increased, the loss of our
proposed model decreased quite quickly in the first 20 epochs. This condition exists because of model
parameter optimization. As can be observed, loss tends to converge around the 18th epoch. While
there were some minor ups and downs during the follow-up training process, the diversification is
not immediately apparent. The training loss should converge to around 0.11 after about 40 epochs.
Meanwhile, the validation loss should drop to around 0.08.

Figure 6: Loss score of the model

To evaluate the proposed model’s performance, we execute network intrusion detection on the
UNSW-NB15 dataset using seven classic machine learning techniques (Logistic Regression, SVM,
Naive Bayes, K-Nearest Neighbor, Decision Tree, Random Forest, and Adaboost). These techniques
have been widely utilized to detect intrusions. Comparative experimental findings are provided in
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Fig. 7. Although the improvement in precision is not evident compared to other conventional machine
learning models, our suggested framework outperformed well-known classifiers in terms of overall
accuracy, recall, and f1 score.

Figure 7: Performance comparison between the machine learning models and proposed model

Additionally, the suggested strategy is compared to previous work using the UNSW-NB15 dataset,
as illustrated in Tab. 4. The suggested framework achieves the highest overall accuracy, detection
rate, and f1 score on the UNSW-NB15 dataset compared to the other seven classification models.
However, its precision is slightly lower than the Bi-LSTM proposed in [28]. The preceding comparative
experimental results demonstrate unequivocally that the Bi-LSTM with attention mechanism model
is superior at detecting network intrusions.

Table 4: Performance comparison of different classification models

Algorithm Accuracy Precision Recall F1_Score

DNN [20] 76.5 94.6 69.5 80.1
CNN [21] 91.20 87.53 96.17 91.59
Auto-Encoder [29] 89.71 89.74 89.85 89.79
LuNet [21] 97.40 N/A 98.18 N/A
CNN + LSTM [22] 89.93 86.15 95.15 90.43
SAVAER-DNN [32] 93.01 95.21 91.94 93.54
BiLSTM [25] 95.71 100 96.00 98.00
Proposed Model 99.05 98.96 99.36 99.15

6 Conclusion

This paper conducts intrusion detection on fog nodes for IoT applications. The intrusion
detection is accomplished by imbuing local fog nodes with intelligence via the Bi-LSTM and attention
algorithms. Local fog nodes identify attacks based on traffic generated by IoT devices and send them
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to cloud servers to summarize the global security condition of IoT applications. We develop a two-
layer bidirectional long short-term memory network with an attention mechanism to distinguish
traffic data, considering that traffic data is time-related. It achieves the highest accuracy of 99.05
percent, the highest detection rate of 99.36 percent, and the highest f1 score of 99.154 percent on
the UNSW-NB15 dataset. In every case, the proposed technique outperforms traditional machine
learning classifiers. Furthermore, when compared to other approaches, our proposed design exceeds
state-of-the-art models. However, due to the high computational cost of complicated DNN structures,
they were not trained using the other benchmark IDS datasets in this research.

Funding Statement: The authors are thankful for the Beijing Natural Science Foundation (No.
4212015), Natural Science Foundation of China (No. 61801008), China Ministry of Education-
China Mobile Scientific Research Foundation (No. MCM20200102), China Postdoctoral Science
Foundation (No. 2020M670074), Beijing Municipal Commission of Education Foundation (No.
KM201910005025). The authors extend their appreciation to the Deanship of Scientific Research at
King Khalid University for funding this work through large groups Project under Grant Number
RGP.2/201/43.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] J. Pacheco, V. H. Benitez, L. C. Félix-Herrán and P. Satam, “Artificial neural networks-based intrusion

detection system for internet of things fog nodes,” IEEE Access, vol. 8, pp. 73907–73918, 2020.
[2] S. Prabavathy, K. Sundarakantham and S. M. Shalinie, “Design of cognitive fog computing for intrusion

detection in internet of things,” Journal of Comm. and Networks, vol. 20, no. 3, pp. 291–298, 2018.
[3] M. Haus, M. Waqas, A. Y. Ding, Y. Li, S. Tarkoma et al., “Security and privacy in device-to-device (D2D)

communication: A review,” IEEE Comm. Surveys & Tut, vol. 19, no. 2, pp. 1054–1079, 2017.
[4] M. Waqas, M. Ahmed, J. Zhang and Y. Li, “Confidential information ensurance through physical layer

security in device-to-device communication,” in IEEE Global Communications Conf., Abu Dhabi, UAE,
pp. 1–7, 2019.

[5] J. Wan, M. Waqas, S. Tu, S. M. Hussain, A. Shah et al., “An efficient impersonation attack detection
method in fog computing,” Computers, Materials & Continua, vol. 68, no. 1, pp. 267–281, 2021.

[6] M. Waqas, Y. Niu, M. Ahmed, Y. Li, D. Jin et al., “Mobility-aware fog computing in dynamic environments:
Understandings and implementation,” IEEE Access, vol. 7, pp. 38867–38879, 2019.

[7] S. Tu, M. Waqas, S. U. Rehman, T. Mir, Z. Halim et al., “Social phenomena and fog computing networks:
A novel perspective for future networks,” IEEE Transactions on Computational Social Systems, vol. 9, no.
1, pp. 32–44, 2022.

[8] A. V. Dastjerdi and R. Buyya, “Fog computing: Helping the internet of things realize its potential,”
Computer, vol. 49, no. 8, pp. 112–116, 2016.

[9] A. Lakhan, M. A. Mohammed, O. I. Obaid, C. Chakraborty, K. H. Abdulkareen et al., “Efficient deep-
reinforcement learning aware resource allocation in SDN-enabled fog paradigm,” Automated Software
Engineering, vol. 29, no. 1, pp. 1–25, 2022.

[10] S. Tu, M. Waqas, S. Rehman, T. Mir, G. Abbas et al., “Reinforcement learning assisted impersonation
attack detection in device-to-device communications,” IEEE Transactions on Vehicular Technology, vol. 70,
no. 2, pp. 1474–1479, 2021.

[11] B. Zhang, M. Waqas, S. Tu, S. M. Hussain and S. U. Rehman, “Power allocation strategy for secret key
generation method in wireless communications,” Computers, Materials & Continua, vol. 68, no. 2, pp. 2179–
2188, 2021.



814 CMC, 2023, vol.74, no.1

[12] Y. N. Nguimbous, R. Ksantini and A. Bouhoula, “Anomaly-based intrusion detection using auto-encoder,”
in Int. Conf. on Software, Telecommunications and Computer Networks, Split, Croatia, pp. 1–5, 2019.

[13] M. Azizjon, A. Jumabek and W. Kim, “1D CNN based network intrusion detection with normalization
on imbalanced data,” in Int. Conf. on Artificial Intelligence in Information and Communication (ICAIIC),
Fukuoka, Japan, pp. 218–224, 2020.

[14] S. Tu, M. Waqas, Z. Halim, S. U. Rehman, G. Abbas et al., “The role of artificial intelligence and machine
learning in wireless networks security: Principle, practice and challenges,” Artificial Intelligence Review, pp.
1–47, 2022.

[15] A. H. Azizan, S. A. Mostafa, A. Mustapha, C. F. M. Foozy, M. H. A. Wahab et al., “A machine learning
approach for improving the performance of network intrusion detection systems,” Annals of Emerging
Technologies in Computing, vol. 5, no. 5, pp. 201–208, 2021.

[16] H. M. Anwer, M. Farouk and A. Abdel-Hamid, “A framework for efficient network anomaly intrusion
detection with features selection,” in 9th Int. Conf. on Information and Communication Systems (ICICS),
Irbid, Jordan, pp. 157–162, 2018.

[17] A. Lakhan, M. A. Mohammed, J. Nedoma, R. Martinek, P. Tiwari et al., “Federated-learning based privacy
preservation and fraud-enabled blockchain IoMT system for healthcare,” IEEE Journal of Biomedical and
Health Informatics, 2022.

[18] N. Chand, P. Mishra, C. R. Krishna, E. S. Pilli and M. C. Govil, “A comparative analysis of SVM and its
stacking with other classification algorithm for intrusion detection,” in Int. Conf. on Advances in Computing,
Communication, & Automation (ICACCA), Dehradun, India, pp. 1–6, 2016.

[19] J. Ling and C. Wu, “Feature selection and deep learning-based approach for network intrusion detection,”
in 3rd Int. Conf. on Mechatronics Engineering and Info. Technology, Dalian, China, Atlantis Press, 2019.

[20] H. Nkiama, S. Zainudeen and M. Saidu, “A subset feature elimination mechanism for intrusion detection
system,” International Journal of Advanced Computer Science and Applications, vol. 7, no. 4, pp. 148–157,
2016.

[21] M. A. Ambusaidi, X. He, P. Nanda and Z. Tan, “Building an intrusion detection system using a filter-based
feature selection algorithm,” IEEE Transactions on Computers, vol. 65, no. 10, pp. 2986–2998, 2016.

[22] S. Manickam, A. H. B. AIghuraibawi, R. Abdullah, Z. A. A. Alyasseri, K. H. Abdulkareem et al., “Labelled
dataset on distributed denial-of-service (DDoS) attacks based on internet control message protocol version
6 (ICMPv6),” Wireless Communications and Mobile Computing, vol. 2022, pp. 8060333, 2022.

[23] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, A. Al-Nemrat et al., “Deep learning
approach for intelligent intrusion detection system,” IEEE Access, vol. 7, pp. 41525–41550, 2019.

[24] P. Wu and H. Guo, “LuNet: A deep neural network for network intrusion detection,” in IEEE Symp. Series
on Computational Intelligence (SSCI), Xiamen, China, pp. 617–624, 2019.

[25] M. Azizjon, A. Jumabek and W. Kim, “1D CNN based network intrusion detection with normalization
on imbalanced data,” in Int. Conf. on Artificial Intelligence in Information and Communication (ICAIIC),
Fukuoka, Japan, pp. 218–224, 2020.

[26] C. Xu, J. Shen, X. Du and F. Zhang, “An intrusion detection system using a deep neural network with
gated recurrent units,” IEEE Access, vol. 6, pp. 48697–48707, 2018.

[27] J. Kim, J. Kim, H. L. Thi Thu and H. Kim, “Long short-term memory recurrent neural network classifier
for intrusion detection,” in Int. Conf. on Platform Technology and Service, Jeju, Korea, pp. 1–5, 2016.

[28] B. Roy and H. Cheung, “A deep learning approach for intrusion detection in internet of things using bi-
directional long short-term memory recurrent neural network,” in 28th Int. Telecommunication Networks
and Applications Conf. (ITNAC), Sydeny, NSW, Australia, pp. 1–6, 2018.

[29] J. Sinha and M. Manollas, “Efficient deep CNN-BiLSTM model for network intrusion detection,” in 3rd
Int. Conf. on Artificial Intelligence and Pattern Recognition, New York, USA, pp. 223–231, 2020.

[30] G. Kathareios, A. Anghel, A. Mate, R. Clauberg and M. Gusat, “Catch it if you can: Real-time network
anomaly detection with low false alarm rates,” in 16th IEEE Int. Conf. on Machine Learning and
Applications (ICMLA), Cancun, Mexico, pp. 924–929, 2017.



CMC, 2023, vol.74, no.1 815

[31] A. A. Diro and N. Chilamkurti, “Distributed attack detection scheme using deep learning approach for
internet of things,” Future Generation Computer Systems, vol. 82, no. 5, pp. 761–768, 2017.

[32] F. A. Khan, A. Gumaei, A. Derhab and A. Hussain, “A novel two-stage deep learning model for efficient
network intrusion detection,” IEEE Access, vol. 7, pp. 30373–30385, 2019.

[33] M. Al-Qatf, Y. Lasheng, M. Al-Habib and K. Al-Sabahi, “Deep learning approach combining sparse
autoencoder with SVM for network intrusion detection,” IEEE Access, vol. 6, pp. 52843–52856, 2018.

[34] F. Farahnakian and J. Heikkonen, “A deep auto-encoder based approach for intrusion detection system,”
in 20th Int. Conf. on Advanced Communication Technology (ICACT), Chuncheon, Korea, 2018.

[35] Y. Yang, K. Zheng, B. Wu, Y. Yang and X. Wang, “Network intrusion detection based on supervised
adversarial variational auto-encoder with regularization,” IEEE Access, vol. 8, pp. 42169–42184, 2020.

[36] K. Sadaf and J. Sultana, “Intrusion detection based on autoencoder and isolation forest in fog computing,”
IEEE Access, vol. 8, pp. 167059–167068, 2020.

[37] C. Souza, C. B. Westphall and R. B. Machado, “Hybrid approach to intrusion detection in fog-based IoT
environments,” Computer Networks, vol. 180, pp. 107417, 2020.


	Intrusion Detection Based on Bidirectional Long Short-Term Memory with Attention Mechanism
	1 Introduction
	2 Related Work
	3 System Model
	4 Experiment
	5 Experimental Results and Analysis
	6 Conclusion


