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Abstract: With the development of the Industrial Internet of Things (IIoT),
end devices (EDs) are equipped with more functions to capture information.
Therefore, a large amount of data is generated at the edge of the network and
needs to be processed. However, no matter whether these computing tasks
are offloaded to traditional central clusters or mobile edge computing (MEC)
devices, the data is short of security and may be changed during transmission.
In view of this challenge, this paper proposes a trusted task offloading
optimization scheme that can offer low latency and high bandwidth services
for IIoT with data security. Blockchain technology is adopted to ensure data
consistency. Meanwhile, to reduce the impact of low throughput of blockchain
on task offloading performance, we design the processes of consensus and
offloading as a Markov decision process (MDP) by defining states, actions,
and rewards. Deep reinforcement learning (DRL) algorithm is introduced
to dynamically select offloading actions. To accelerate the optimization, we
design a novel reward function for the DRL algorithm according to the
scale and computational complexity of the task. Experiments demonstrate
that compared with methods without optimization, our mechanism performs
better when it comes to the number of task offloading and throughput of
blockchain.

Keywords: Task offloading; blockchain; industrial internet of things (IIoT);
deep reinforcement learning (DRL) network; mobile-edge computing (MEC)

1 Introduction

With the rapid development of fifth-generation (5G) communication technology and the Indus-
trial Internet of Things (IIoT), a growing number of end devices (EDs) with sensing and monitoring
capabilities are being connected at an unprecedented rate [1]. The connection of these EDs generates
a large amount of information to be processed. However, IIoT EDs remain in a situation of con-
strained resources in terms of computational power and storage space. That hinders the execution of
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computationally intensive practices, such as smart homes, smart grids, intelligent diagnosis, and other
intelligent decision-making scenarios. These applications usually require low latency, high bandwidth,
high reliability, and high computing power.

Mobile edge computing (MEC) is a widely considered solution that can meet the above require-
ments by using offloading algorithms [2]. Instead of traditional centralized computing, by deploying
MEC servers in the system, the computing and storage resources can be transferred from central
nodes to MEC servers that are much closer to IIoT EDs. Consequently, fast response, low energy
consumption, and high throughput services may be provided [3–5]. Terminals can offload large-scale
local data to the MEC servers and then receive the computing results. Nevertheless, the offloading
framework, which includes IIoT EDs, edge servers, and cloud servers, still faces significant issues
and various challenges [6]. The most important one is data security because the data can be easily
manipulated during the transmission from EDs to MEC servers, which may lead to unpredictable
consequences. As the scale of offloading data increases sharply, the security of data attracts more
attention than before. Traditional data protection methods are centralized, for example, with trusted
third-party entities. However, the inherent heterogeneity of MEC systems (i.e., edge servers may be
deployed by multiple vendors and have various mobile terminals) and single-point failure may both
make the solutions inapplicable in MEC systems [7].

To resolve the security issues, researchers introduce blockchain to build a secure environment
for data offloading in the IIoT systems with MEC [8–11]. As a well-known technology, blockchain
includes distributed processing, data tamper-proof, and multi-party consensus features, which can
establish decentralized trust. In this way, EDs and MEC servers can validate data consistency by
checking records on the blockchain. However, challenges still exist in IIoT systems that integrated
with MEC servers and blockchain [12–14]. For consistency validation, the data offloaded to MEC
servers must be reached on the blockchain. As communication is the basis of consensus, a large number
of communications are time-consuming and will cause low throughput, which negatively affects the
efficiency of task offloading. So when it comes to data security and high efficiency, there is a tradeoff in
the task-offloading framework with MEC and blockchain. On the one hand, the blockchain requires
maintaining a distributed ledger among all validation nodes, which leads to low throughput and
may affect integrated systems. On the other hand, data security, computation resources, transmission
latency, computation power, and dynamic channel state must be considered in system design when
using MEC. It is complex to balance the two parts and make use of MEC to safely solve as many
computing tasks as possible.

Many applications are highly sensitive to time and data security in IIoT scenarios [15], for example,
smart hospital and factory monitoring. So, our objective is to design a scheme to optimize it. In
summary, this article makes the following contributions:

1) We design a comprehensive scheme that integrates MEC servers, controllers, and blockchain
into IIoT systems for efficiency and data security. At the same time, because the offloading
action is related to blockchain, we also consider chain optimization.

2) By fully considering the important features of IIoT, MEC servers, and blockchain, as well as the
adjustable factors of the integrated systems, we define the optimal decision-making problem
as a Markov decision process (MDP). To better handle computing tasks, we propose a novel
reward function by taking task difficulty and scale into account.

3) Due to the complexity of the issue, we adopt a deep Q-learning-based (DQN) approach to make
offloading decisions dynamically, including validation node selection, block size adjustment,
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task-offloading server choice, and block interval adjustment. The aim is to optimize the overall
performance of the task offloading systems combined with MEC and blockchain.

4) The simulation demonstrates that the proposed scheme addresses more computing tasks than
other schemes under security.

The remainder of this article is organized as follows. In Section 2, we present the related works
about the integration of IIoT systems, MEC, and blockchain, as well as the related methods to solve
optimization problems with deep reinforcement learning (DRL) algorithms. The system framework
and formulation of the offloading model, as well as the DRL-based solution, are presented in
Section 3. In Section 4, simulation results are exhibited and analyzed. Finally, Section 5 concludes
this article with an overview of proposed future work.

2 Related Work
2.1 IIoT and IIoT with MEC

IIoT uses smart EDs, fast protocols, and efficient cybersecurity mechanisms to improve industrial
processes and applications [15]. The achievements of communication, software, and hardware have
greatly improved the manufacturing process in the industrial environment [16–18], which leads to
the rapid increment of the number of interconnected devices in IIoT systems. Additionally, strong
alliances and alignment of interests between stakeholders and emerging applications have attracted
large companies around the world to invest in this emerging market [19]. However, the performance
of intelligent applications in IIoT is closely related to the processing of big data. Neither EDs nor
traditional cloud computing can meet the requirements of IIoT. Researchers propose a new network
paradigm named task offloading to solve the challenge [20]. Mach et al. [21] propose metrics including
energy consumption and latency to assess offloading methods. Liu et al. [22] take the queueing state,
central processing unit (CPU) state, the execution state of EDs, and communication status into account
to achieve more task offloading. However, both of them don’t take data security into account. By
jointly considering the task topologies, dependency, heterogeneity of MEC servers, and resource of
users, Shu et al. [23] propose a fine-grained offloading framework to reduce the completion time of
the computation-intensive applications, but the framework ignores some limitations, e.g., buffer space
of MEC, which makes optimization inapplicable. Xie et al. [24] research the observable computational
offloading problem with imperfect fast time-varying channel state information and formulate the
problem as a partially observable Markov decision process (POMDP), as well as minimize the average
consumption of the EDs and latency. However, they don’t consider the impact of the capability of
EDs and the complexity of tasks on the result. All of the cited works point out that data processing
is a serious problem faced by the rapidly developing IIoT, and a framework with MEC or EDs only
cannot fully take data security as well as the specific status of computing devices into account, which
makes the framework not realistic.

2.2 Blockchain-Empowered IIoT with MEC

Data is vulnerable during transmission, and the information stored in MEC servers may result
in leakage, theft, and breach. Miller [25] states that integration of the IIoT and blockchain would
address problems of data regulation. BeCome, a blockchain-empowered computation offloading
method was proposed by Xu et al. [7]. Blockchain and multi-criteria decision-making are used to
ensure data integrity and generate resource allocation strategies. However, the method cannot make
decisions dynamically because it is applied in a relatively static environment, with every smart device
in IIoT only accommodating one task. To make efficient use of cloud computing and MEC resources,
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Wu et al. [26] adopt a dynamic algorithm to decide the optimal computing place, while the optimization
is applied to trade-off limited computing consumption against high latency. Huang et al. [27] propose
a task offloading and resource allocation framework based on fog computing networks (FCNs) to
ensure fairness of transactions. However, the two methods pay more attention to optimizing the
energy consumption of computing servers and ignore the impact of blockchain on system latency.
In summary, the majority of these works utilize static optimization techniques and cannot consider
the features of blockchain. As a result, the approaches cannot be applied in practical dynamic systems
to make optimal decisions and fail to maximize long-term performance in a high-dimensional and
complicated dynamic environment.

2.3 Blockchain-Empowered IIoT with DRL

DRL is one of the most suitable methods for optimizing decision-making policy and maximizing
long-term rewards. So, it has attracted many researchers to make use of the algorithm to solve task
offloading problems for IIoT systems with MEC and blockchain. Qiu et al. [28] design a trusted
consensus protocol for blockchain to collect and synchronize various views between different software-
defined networking (SDN) controllers. For better balanced computational capability and trust value
of blockchain nodes and controllers, they choose the dueling DQN approach for view change, access
decision, and resource allocation problems. However, they don’t consider block size and block interval
into account, which makes limited optimization for blockchain. Nguyen et al. [29] propose a network
that includes MEC and blockchain, where people act as miners to offload extensive tasks to a selected
MEC server and formulate task offloading decisions, user privacy, and mining tasks profit as a joint
optimization problem. They then propose a DRL-based offloading scheme to solve large state space
and action space, but they ignore the optimization of blockchain. As mentioned above, few studies
jointly consider blockchain and MEC systems in detail, only taking blockchain as an additional system
beyond IIoT and MEC systems. So, the optimal performance of the system cannot be achieved.

3 Proposed Model

In this section, we introduce the system framework. Then, we express the offloading optimization
problem in formulas. Finally, we present the DRL-based solution to the problem.

3.1 System Architecture

Generally, a MEC server only performs data computing in the task offloading framework.
However, to verify the data consistency during the offloading process, we randomly select MEC servers
to form the blockchain and perform data verification. Fig. 1 presents the system architecture, with
three layers: 1) IIoT layer, 2) MEC layer, and 3) cloud layer.

In the IIoT layer, we assume that IIoT EDs are divided into M cells [13] denoted by C = {c1,
c2, . . . , cm, . . . , cM}. Each cell is managed by a local controller, so the set of controllers is denoted
by Ccon = {ccon

1 , ccon
2 , . . . , ccon

m , . . . , ccon
M }. We also consider that each cell cm has Dm IIoT EDs, where Dm, j

represents the j-th (j ∈ {1, 2, . . . , Dm}) ED of the m-th cell in the IIoT layer. EDs collect and generate
massive data and produce a large number of tasks to be calculated. Similar to Feng et al. [30], time
is slotted with each timeslot denoted by t. Most security and privacy problems do not occur in local
computing but often happen during data transmission to the servers. In this paper, we only focus
on the tasks that must be offloaded to MEC or cloud servers. If an IIoT ED cannot handle heavy
computation tasks independently, these tasks may be offloaded to MEC or cloud computing servers
with the assistance of the controller in the same cell. Therefore, let Km, j(t) = (dm, j(t), em, j(t), τ m, j(t)) be



CMC, 2023, vol.74, no.1 2059

the tasks that ED Dm, j decides to offload at timeslot t, where dm, j(t) is the data size of the offloading
tasks; em, j(t) is the required number of CPU cycles to complete tasks; τ m, j(t) is the maximum tolerable
execution time. M controllers are very close to the corresponding IIoT EDs and receive data from
EDs. The controllers make the offloading decisions and offload the information to the selected MEC
server in real-time [31].

Figure 1: Architecture of the proposed system for task offloading in IIoT with blockchain

The MEC layer consists of N macro base stations (MBSs) and micro base stations (mBSs) with
MEC servers. We consider that each MEC server has a data buffer to store some arrived offloading
tasks, while the data buffer has its storage limits. The set of MEC servers is denoted as E = {E1, E2, . . . ,
En, . . . , EN}, and we let Mn (t) = (

fn (t) , ab
n (t) , eb

n (t) , e0
n (t)

)
be the state of MEC server En at timeslot

t (n∈{1, 2, . . . , N}), where fn(t) denotes the computational power of the MEC server; ab
n (t) represents

the number of tasks in the buffer; eb
n (t) denotes the required number of CPU cycles to complete all

tasks in the buffer; e0
b (t) is the required number of CPU cycles to complete the earliest task in the

buffer. The offloading decision is denoted by Om, j(t) (Om, j(t)∈{1, 2, . . . , N, N + 1}), where Om, j(t) ∈{1,
2, . . . , N} means that controllers offload the tasks to MEC servers, and Om, j(t) = N + 1 denotes that
the tasks are offloaded to cloud computing servers. To enhance the security of the offloading process,
we embed a blockchain system in the MEC layer (i.e., some MEC servers act as blockchain node and
form a blockchain system) [32–34].

There is a cloud computing server in the cloud layer. The state of the cloud comput-
ing server at timeslot t is denoted as MN+1 (t) = (

fN+1 (t) , ab
N+1 (t) , eb

N+1 (t) , e0
N+1 (t)

)
, where,

fN+1 (t) , ab
N+1 (t) , eb

N+1 (t) , and e0
N+1 (t) represent the status of the cloud computing server EN+1, which is

similar to the MEC servers above. Compared with MEC servers, cloud computing servers can provide
more computing power but with longer distances and transmission latency. When the cloud computing
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server completes the tasks from controllers, it returns the calculation results to the ED and sends the
results to the blockchain system.

3.2 Problem Formulation
3.2.1 Time Cost of Offloaded Tasks

The overall time cost of offloaded tasks is an important metric in evaluating task offloading
decisions. For tasks Km, j(t), the overall time cost consists of four parts, namely transmission time
between the controller and MEC/cloud server, server queuing time, server task execution time, and
block finality time which includes block generation (block interval) time and validation time. The
overall time is presented as

Tm, j, n(t) = Ttran
m, j, n(t) + Tqueu

m, j, n(t) + Texec
m, j, n(t) + Tbloc

m, j, n(t), (1)

where Ttran
m, j, n(t), Tqueu

m, j, n(t), Texec
m, j, n(t) and Tbloc

m, j, n(t) are transmission latency, queuing latency, execution
latency and block finality time on server En (n ∈ {1, 2, . . . , N + 1}), respectively.

We consider that the channel gain between controllers and servers is diverse and let gm, n(t) denote
the channel gain between controller ccon

m and server En. Therefore, the data transmission rate of tasks
Km, j(t), between controller ccon

m and server En is

Rm, j, n (t) = W log2

(
1 + pm(t)gm, n(t)

σ 2 + In

)
, (2)

where pm(t) denotes the transmission power of controller ccon
m ; W , σ 2, In are channel bandwidth, noise

power, and interference power of the channel between controller cm and server En, respectively. Each
communication system channel is independent, so no more than B/W controllers can transmit data
simultaneously. Therefore, the transmission latency of tasks Km, j(t) is

Ttran
m, j, n (t) = dm, j(t)

Rm, j, n(t)
= dm, j (t)

W log2

(
1 + pm(t)gm, n(t)

σ2+In

) , (3)

Since these servers use a first-in-first-out (FIFO) queue, the queuing time of the task on each
server is the time to execute all earlier tasks in the buffer. Consequently, the queuing time and task
execution time of tasks Km, j(t) are presented as

Tqueu
m, j, n (t) = eb

n(t)
fn(t)

, (4)

Texec
m, j, n (t) = em, j(t)

fn(t)
, (5)

For simplicity, we only take block generation time DI(t) and validation time DV(t) into account for
block finality time. To analyze the impact of consensus latency on the blockchain more accurately, we
divide the entire process into two parts, i.e., message delivery Dv and message verification Dm. Their
formulas are as follows:

Tbloc
m, j, n(t) = DI(t) + DV(t), (6)

DV(t) = Dv(t) + Dd(t), (7)

The validation time is largely influenced by the consensus algorithm. By comprehensively consid-
ering the efficiency and security of the system, we adopt the practical Byzantine fault tolerance (PBFT)
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algorithm in our architecture. The process of PBFT consists of the request, pre-prepare, prepare,
commit and reply stages, as presented in Fig. 2

Figure 2: Process of the PBFT consensus algorithm

The PBFT consensus algorithm requires each validation node to exchange a large number of
messages with others, thus guaranteeing the high security of the blockchain system with the cost of
communication efficiency. Among the nodes are one primary node and many replica nodes. In the
request phase, the primary node verifies every transaction and pickles it into a block. In the pre-prepare
phase, the primary node sends the block to all replica nodes, and the replica nodes confirm the receipt.
In the preparation phase, all replica nodes deliver the results they received in the last stage to other
nodes. Meanwhile, every replica node should validate the message authentication code (MAC) and
generate an identical MAC for delivery. In the commit phase, all nodes send confirmation messages
to other nodes. If more than 2/3 of the messages have been agreed upon, the node sends the results to
the client in the reply phase.

Then, we carry out a quantitative analysis of the latency in the consensus process. We assume
that block size is BM, one block includes up to δ transactions, and there are k validation nodes in the
system. Therefore, for message verification, the primary node needs to check δ signatures and finish
2δ + 4(k − 1) MAC operations. In addition, each replica node is supposed to verify δ signatures and
finish δ + 4(k − 1) MAC operations. Supposing that a verify operation and a generation/check MAC
operation require α and β computing cost, respectively, the delay of block information verification for
primary node Dp v and replica nodes Dr v is therefore as follows:

Dp
v = δα + [2δ + 4 (k − 1)] β

fp

, (8)

Dr
v = max

r=1, ..., k;r �=p

δα + [δ + 4 (k − 1)] β
fr

, (9)

where fp and fr denote the compute power of the MEC servers selected to be the primary node and
replica node, respectively, p, r ∈ {1, . . . , k p �= r}. For message delivery, timeout T exists in every phase
to prevent endless waiting for a response from nodes.
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According to the five stages of the consensus process, the latency of block message delivery is:

Dd = DReq
d + Dprep

d + Dpre
d + Dcom

d + Drep
d

=

⎛
⎜⎜⎜⎜⎝

min
{

BM

REsEp

, T
}

+ min

{
max

p,j=1,...,k;p�=j

BM

REpEj

, T

}
+ min

{
max

i,j=1,...,k;i �=j

BM

REiEj

, T

}

+ min

{
max

i,j=1,...,k;i �=j

BM

REiEj

, T

}
+ min

{
max
j=1,...,k

BM

REsEj

, T

}
⎞
⎟⎟⎟⎟⎠

(10)

where REsEj(s, j = 1, . . . , k) refers to the communication rate between task-execution MEC server ES and
validation MEC server Ej; REsEp refers to the communication rate between MEC server ES and primary
validation MEC server Ep ; REiEj refers to the information transmission rate between two validation
MEC server nodes. The overall time cost of the offloaded tasks is presented as:

Tm,j,n(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dm,j(t)

W log2

(
1 + pm(t)gm,n(t)

σ 2 + In

) + eb
n(t) + em,j(t)

fn(t)

+ max
(

δα + [2δ + 4 (k − 1)] β
fp

, max
r=1,...,k;r �=p

δα + [δ + 4 (k − 1)] β
fr

)

+

⎛
⎜⎜⎜⎜⎝

min
{

BM

REsEp

, T
}

+ min

{
max

p,j=1,...,k;p�=j

BM

REpEj

, T

}
+ min

{
max

i,j=1,...,k;i �=j

BM

REiEj

, T

}

+ min

{
max

i,j=1,...,k;i �=j

BM

REiEj

, T

}
+ min

{
max
j=1,...,k

BM

REsEj

, T

}
⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11)

3.2.2 Throughput of the Blockchain System

To ensure security, we include blockchain in the architecture. Therefore, the entire assignments of
the MEC server and the results of the computing tasks must be recorded for trusted traceability [35].
However, low throughput is a critical issue that prevents blockchain from being integrated into other
technologies and systems. The intuition of blockchain is a distributed ledger. Before blocks are finally
linked to the entire chain, many communications are executed by the consensus algorithm among
nodes. We are therefore concerned that the blockchain constructed by MEC servers may also become
a bottleneck in our system.

The key factors that impact the throughput of blockchain include block size BM(t) and block
interval DI(t) [2]. The block size determines the number of transactions that may be contained in a
block. The block interval is the time duration to generate a new block. To address the challenge, we
design a model that can adjust the parameters above reference to the situation and help improve the
performance of our architecture. The model is introduced in Section 3.3.

Additionally, it is important to note that the goal of this architecture is to solve as many complex
computing tasks as possible and ensure all assignments/results can be validated, so once the tasks
are completed, they must be recorded on the chain. In other words, the effective throughput of
the entire system is only measured by the number of completed and recorded tasks. Therefore, the
throughput of the system is limited by two aspects: the number of tasks executed by MEC servers and
the record performance of the blockchain. Regarding the performance of the blockchain, each block
in the blockchain contains two parts. The first is the task allocation record and the corresponding
calculation results. The second is the redundant structure, such as a pointer and a block header.
So, the calculation of effective throughput involves two aspects. First, we count the number of tasks
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completed, denoted by ϕ. Second, we calculate the throughput of the blockchain. Meanwhile, to satisfy
the latency requirement of the entire system, we consider that all assignment and response data should
be generated and verified in consecutive block intervals. The effective throughput of the system Φ(t)
and constraint condition is

	(t) = min

⎛
⎝ φ

DI(t)
,

⌊
BM (t)−Sn(t)

γ

⌋
DI (t)

⎞
⎠ , (12)

Tm, j, n(t) ≤ ω × DI , 0 ≤ ω, (13)

where Sn(t) is the occupied space of the redundant structure; γ denotes the average size of transactions
of computing result; ω denotes the number of block intervals.

3.3 Problem Analysis

Since the designed framework integrates blockchain, controllers, and MEC servers in addition to
traditional IIoT systems, the states and actions are complicated and dynamic. Specifically, there are a
large number of computing tasks with different scales, costs, and tolerant time in every time step that
should be assigned to a computing server. Additionally, the server significantly affects queuing time
and task execution time according to Eqs. (4) and (5). Meanwhile, the selection of validation nodes
among MEC servers through communication rate and computational power is another critical factor
that makes a significant contribution to the final throughput of the system because it is referenced to
block finality time according to Eqs. (6)–(10), (12).

Obviously, the state of the system is dynamic every time step. Any action may affect the state in
the next time step and rewards in the future. Therefore, based on the characteristics of the system, we
describe the optimal decision-making problem as a discrete MDP by defining the state space, action
space, and reward function.

3.3.1 State Space

In each time step, the agent learns action value or policy from experience by observing the state.
In some scenarios, before making a decision, the agent observes the current state, defined as a set by
timeslot t. The set is represented as:

s(t) = (F , R, A, e)t , (14)

where F denotes the computational power of validation nodes and task-execution servers; R denotes
the communication rate among the servers for consensus and computing; A represents the number of
remaining tasks in the buffer related to all servers; and e represents the required number of CPU cycles
to complete the earliest task and all tasks in the buffer.

3.3.2 Action Space

Facing a complex environment, the system is required to make decisions and adjust the scheme
for maximum reward in the future at every time step. We must thoroughly consider not only task-
offloading behaviors but also factors that promote the throughput of blockchain and then create the
action space. The action space at decision epoch t is represented by
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a(t) = (V , S, I , B)
t , (15)

where V denotes the set of servers as validation nodes; S denotes the server selected to handle the
tasks; I denotes the block interval; B represents block size.

3.3.3 Reward

In this system, our initial goal is to improve the efficiency of task offloading under security
conditions, and that involves two aspects. On the one hand, tasks must be assigned to servers rich
in channel resources and computational power to ensure that they may be accomplished in a short
time and make profits. On the other hand, because any allocation of computing results is required to
reach consensus on the blockchain when the data size exceeds the throughput of the blockchain, the
data must be put into a data pool and wait for another chance to reach consensus. The batch of the
tasks cannot be counted in the effective throughput of the whole system. In sum, the decisions made
by our model must take task assignments and blockchain throughput into account. Once the scale of
data to be recorded on-chain is larger than throughput, part of the data cannot be recorded in time.
On the contrary, if the scale of the data is smaller than the record capabilities of blockchain, it leads
to inefficient space resource use.

In conclusion, our final reward consists of two parts: the information on computational tasks that
are computed at the current time and the effective throughput of the entire system at the current time.
To better measure completed tasks, we first get the task score of a batch of tasks by multiplying the
scale (data size) and difficulty (required number of CPU cycles). To accurately measure throughput,
we take the smaller value of the number of computing tasks completed by MEC/cloud servers with
and throughput of the blockchain. We set the reward by multiplying the average score of finished tasks
and the throughput of the entire system.

Moreover, when designing a reward function, we should consider positive and negative rewards.
Here, we set two constraints when the state of the system out of which the model will be punished.
First, each server has a buffer limit, and each task has a maximum tolerance time. When the number
of remaining tasks in the buffer of a server is greater than the limit or the overall time of finishing tasks
(including result recorded) is longer than the maximum tolerance time, we punish the final reward by
subtracting tasks scores from the original reward in case of unreasonable assignment. Second, when
the overall time cost of offloaded tasks does not meet Eq. (13), we set the throughput to 0. The reward
function is as follows:

r (t)taskscore =
∑m

i di (t) × ei (t)
m

, (16)

r(t)thtoughput = 	(t), (17)

max
n=1,...,N+1

(
eb

n

) ≤ bl, (18)

Ti
i=1, ..., m

(t) ≤ τi (t) , (19)

r (t) =
⎧⎨
⎩

r(t)taskscore × r(t)throughput if (13), (18), and (19) are satisfied
r(t)taskscore × r(t)throughput − μ × d(t) × e(t) if (18) and (19) are not satisfied
0 if (13) is not satisfied

, (20)

where r(t)throughput and r(t)task represent the throughput and average tasks scores at time t separately;
di(t) and ei(t) represent the size and difficulty of the task that has been finished at time t, bl represents
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servers buffer limit; Ti(t) and τ i(t) represent the execution time and maximum tolerance time of the task
finished at time t; μ represents penalty coefficient. We can set different punishments by adjusting μ.

3.3.4 DQN-based Performance Optimization Algorithm

Because the system involves high-dimension features and large-scale actions, we resort to the DQN
approach to deal with the MDP problem. While running the DQN algorithm, the agent frequently
interacts with the environment, finally learning a smart optimization strategy based on action values.
The DQN, which evaluates the value of discrete actions by neural networks based on consecutive and
complicated observations, is one of the most famous action-state value functions in DRL. The value
and update of action-values are defined as follows:

Qπ = (s, a) = Eπ

[ ∞∑
k=1

rt+k+1|st=s, at = a

]
, (21)

Q (s, a) ← Q (s, a) + ϑ [r(s, a) + ξ max Q(s′, a′) − Q(s, a)] , (22)

where Eπ represents expectation; rt + k + 1 denotes the present reward at timeslot t + k + 1 under the
strategy π ; ξ ε (0, 1) represents a discount factor; maxQ(s’, a’) denotes the max value action in
the next state; � denotes the learning rate. ξ equals to zero represents that we prefer an immediate
reward. On the contrary, ξ equals to 1 shows that we prefer a long-term reward. Compared with the
original algorithm, DQN possesses two characteristics: experience reply and evaluate-target networks
architecture.

To prevent temporal correlations issued by continuous states in the system from affecting
optimization, we introduce experience replay into our approach. In the system, we focus on which
agent action may acquire a maximum long-term reward in the current state, which is unrelated to
previous states. Therefore, it is necessary to reduce the relevance among the states learned by the
model. To achieve this, the agent stores every pair <s, a, r, s’> in memory and samples a batch of
pairs at the start of training. Another improvement related to DQN is the creation of the evaluating
network and the target network. The two networks have the same architecture but different update
frequencies. The parameters in evaluating network are updated in real-time and the target network
updates the parameters after a fixed time step. The reason is to reduce the relevance of the evaluated
action-value and target action-value.

Thus, the loss function is denoted as:

L(θ) = E
[(

r(a, s) + ξ max Q(s′, a′, θ−) − Q(s, a, θ)
)2

]
, (23)

where θ is the parameter of the evaluate network, and θ− is the parameter of the target network.

4 Experimental Results and Discussion

In this section, we first introduce our simulation environment and significant system parameters,
as well as details on the DQN algorithm. Then, we present and analyze the simulation results with
different parameters and conditions.
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4.1 Simulation Parameters and System Environments

In the experiments, the DQN algorithm is implemented by TensorFlow2.2.4, a widely used
framework for deploying deep learning models. Our software environment is Python 3.6.9 based on
the Ubuntu operating system. The DQN algorithm in our system is shown as Algorithm 1.

Algorithm 1: DQN-based task offloading algorithm in IIoT with computer/cloud servers and
blockchain
1: Initialization:
Initialize the weights and biases θ in evaluate network;
Initialize the weights and biases θ− in target network;
Initialize the reply memory Size E and the batch size δ;
Initialize the greedy coefficient ζ ;
2: for each decision epoch t do
3: Reset the state of the system st

4: While st! = sterminal do
5: With probability ζ select a random action at

Otherwise A(t) = max Q(st, at, θ)

6: Execute action at, observe reward rt, and image the next state st+1

7: Store
〈
st, at, rt, st+1

〉
in replay memory

8: Sample random δ of transitions
〈
sj, aj, rj, sj+1

〉
from replay memory

9: Calculate Qeval in the evaluate network
10: Calculate Qt arg et in the target network

11: Set Qt arg et = yj =
{

rj if sj+1is terminal
rj + ξ maxa′ Q(sj+1, a′; θ) otherwise

12: Perform a gradient descent step on (yj − Qeval)
2

13: Update the target network referring to evaluate network after fixed time steps
14: st ← st+1

15: End while
16: End for

In this simulation, there are five cells and five computational servers in the blockchain-empowered
IIoT scenario, including four MEC servers and one cloud server. Among all MEC servers, we set three
validation nodes. Meanwhile, we allocate fixed computational resources and buffer to every server and
set communication rates between different servers and controllers. Some of the parameters are given
in Tab. 1.

Table 1: Simulation parameters

Parameters Value

Number of MEC servers N 4
Number of cloud server 1
Number of cells and controllers M 5
Number of validation nodes K 3
Computational power of servers fn(t) 60–80 GHz

(Continued)



CMC, 2023, vol.74, no.1 2067

Table 1: Continued
Parameters Value

Communication rate between servers REiEj 10–20 Mbps
Communication rate between server and controller RcmEn 1–10 Mbps
Computing cost for verifying signatures and operating MACs α, β 2 MHz/3 MHz
Servers’ buffer limit 4–6
Average transaction size γ 30 KB

4.2 Simulation Results and Analysis

To better measure the performance of our framework, we designed ablation studies by comparing
the proposed framework and the following schemes:

1) Proposed framework without block size adjustment
2) Proposed framework without block interval adjustment
3) Proposed framework without validation nodes choice
4) Proposed framework with task offloading node choice randomly

The real IIoT environment is complex, and applications have various requirements for data size
and recording time. To simulate the real IIoT scenario and verify the effectiveness of the scheme
proposed in this paper, we design experiments with different factors ω and transaction sizes. Then
observe whether the scheme can make use of resources according to states under as many scenarios as
possible.

Fig. 3 presents the total reward obtained by schemes in different environments. Schemes 1) and 2)
get lower total rewards than others when ω is smaller than 7 or transaction size is smaller than 20 KB.
One of the reasons may be the system packs many transactions into a block, but the environment
has rigid restrictions for data recording. The transactions cannot be reached on the chain in time, so
the two schemes have been punished frequently. When ω is larger than 7 or transaction size is larger
than 40 KB, Scheme 3) gets the lowest total rewards. The reason may be the scheme is more likely to
choose a server to compute tasks and validate data at the same time, which will cause a long delay and
low efficiency in data processing. Meanwhile, the scheme we propose performs the best because it can
adjust the blockchain for making full use of block space and avoid punishments when ω is small, as
well as assign tasks to optimum servers for fast response.

Effective throughput is an important metric for the scheme performance in applications, which
can partially reflect the ability of different methods to process data with different scales. Fig. 4 shows
results of effective throughput in different situations. From Fig. 4a, we find that the throughput
increases when ω increases because blockchain can record results within a relatively long time. When
transaction size increases, the throughputs decreases. However, the throughputs of Schemes 1) and 2)
increase than before when transaction size equals 20 KB. One of the reasons may be the blockchain
can handle more transactions included in a block than before. The methods proposed in the paper
acquire higher effective throughput than others.
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Figure 3: Total reward under different thresholds of ω (a) and transaction sizes (b)

Figure 4: Effective throughput under different thresholds of ω (a) and transaction sizes (b)

The aim of our method is to solve computing tasks fast, so to better verify the performance of the
optimization scheme, we generate some batches of tasks and set a value about computing circles that
need to be executed according to the tasks. Then, we record the time consumption of all schemes to
achieve the value. It’s noted that the scores generated by the actions that break the system constraints
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are calculated in the results. Fig. 5 describes the time consumption of all schemes to reach the value we
set. We can see that our method takes the shortest time to solve the tasks and reach the value because
our method can keep higher throughput and assign proper resources for computing tasks. Schemes
1) and 2) take a shorter time than Schemes 3) and 4) until the ω is larger than 7 or the transaction size is
larger than 20 KB. One reasonable explanation is the performance of the blockchain is the bottleneck
of the whole system. When the performance/constraints of the blockchain are improved/relaxed, the
efficiency of offloading depends more on resource allocation.

Figure 5: Time consumption under different thresholds of ω (a) and transaction sizes (b)

5 Conclusions and Future Work

In this paper, we propose an optimization scheme of trusted task offloading to ensure data security
and efficiency in a dynamic IIoT scenario based on a DQN algorithm. The system performance
considers overall latency and the throughput of the blockchain. We formulate the task allocation
decision and blockchain performance optimization problem as an MDP. To solve the high dimensional
and dynamic problem, a DQN-based approach is proposed to dynamically select actions and adjust
parameters to achieve the optimal general performance of MEC and blockchain systems while the
security and integrity of data can be guaranteed. The simulation results show that the proposed scheme
can significantly improve the system’s performance. In future work, we will study superior verification
node selection strategies and optimize the DQN algorithm to solve the multi-objective optimization
problem of more action combinations. Meanwhile, the states of a real scenario is more complex, so we
will improve our scheme in a real IIoT scenario.
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