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Abstract: This paper presents a novel fuzzy firefly-based intelligent algorithm
for load balancing in mobile cloud computing while reducing makespan. The
proposed technique implicitly acts intelligently by using inherent traits of
fuzzy and firefly. It automatically adjusts its behavior or converges depending
on the information gathered during the search process and objective function.
It works for 3-tier architecture, including cloudlet and public cloud. As
cloudlets have limited resources, fuzzy logic is used for cloudlet selection
using capacity and waiting time as input. Fuzzy provides human-like decisions
without using any mathematical model. Firefly is a powerful meta-heuristic
optimization technique to balance diversification and solution speed. It bal-
ances the load on cloud and cloudlet while minimizing makespan and exe-
cution time. However, it may trap in local optimum; levy flight can handle it.
Hybridization of fuzzy firefly with levy flight is a novel technique that provides
reduced makespan, execution time, and Degree of imbalance while balancing
the load. Simulation has been carried out on the Cloud Analyst platform
with National Aeronautics and Space Administration (NASA) and Clarknet
datasets. Results show that the proposed algorithm outperforms Ant Colony
Optimization Queue Decision Maker (ACOQDM), Distributed Scheduling
Optimization Algorithm (DSOA), and Utility-based Firefly Algorithm (UFA)
when compared in terms of makespan, Degree of imbalance, and Figure of
Merit.

Keywords: Cloud computing; cloudlet; mobile cloud computing; fuzzy; firefly;
load balancing; makespan; degree of imbalance

1 Introduction

The widespread use of mobile devices has led to the emergence of mobile cloud technology. Mobile
users want several applications on their mobiles, and they need cloud services to carry out storage and
computation due to limited mobile resources like battery life, storage, and computation. Resource
limitations lead to the offloading of mobile data to the cloud to carry out remote computation and
then send back the computational result to the mobile device. The mobile cloud computing (MCC)
concept introduced in 2010 [1] is a combination of three technologies: Cloud Computing (CC), Mobile
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Computing (MC), and Mobile Internet [2,3]. The epitome of MCC is to let the user access and compute
accurate and real-time information at any time and any place.

Cloud computing has brought a new era of development to the internet. It has removed all limita-
tions regarding computer applications. Cloud is the interconnected assemblage of high-performance
servers with extensive storage and computational power accessible through the internet. Cloud
resources are available to users on pay per use basis [4]. The proliferation of wireless mobile
communication, new web technologies, and the evolution of mobile internet business are driving forces
for the development of the internet. Internet technology is a way of communication by using the
internet, which is to provide real-time network resources and services to the users. Mobile internet
gives convenience and the facility to provide various new business opportunities, computational
services, and quality assurance [5]. MC is about sharing different resources and exchanging data among
intelligent devices like mobile phones, laptops, and computers. [6].

Although, MCC has eliminated all limitations of mobile devices related to storage, computation,
and battery life. However, connecting mobile devices to the cloud undergoes high network latency
and high power consumption while data are offloading specifically through 4G/LTE networks [7]. To
overcome these problems concept of the cloudlet framework was introduced by M. Satyanarayanan in
2009 [8]. Cloudlets are trusted, resource-rich computer or a cluster of computers that is well connected
to the internet and available for use by nearby mobile devices [8]. Cloudlets provide physical proximity
to mobile users. They are deployed just one hop distance compared to the cloud, resulting in the
offloading of tasks to the nearest cloudlet [9]. Mobile devices use Wi-Fi to connect to the proximate
cloudlet [10]. Cloudlet is the middle layer of the 3-tier architecture, as shown in Fig. 1. Low latency,
high bandwidth, and one-hop distance provide mobile devices with real-time interactive services. For
large applications requiring high computational and processing capabilities or when cloudlets are
already busy, the cloud is used for data offloading and computational purposes [11]. Due to the
proliferation of MCC nowadays, it is essential to balance the load on cloudlet and cloud.

Figure 1: Three-tier architecture

A hybrid meta-heuristic load balancing technique, named fuzzy firefly-based algorithm with
levy flight (LF), is introduced in this paper. Firefly algorithm (FA) is a powerful nature-inspired
optimization technique used widely by researchers. The essence of the FA is to maintain the proper
balance between solution diversification and speed. FA may fall in local optimum and leads to
premature convergence. To overcome this issue, LF is used to enhance the exploration of global search
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space. Levy distribution provides the random movement by generating a random direction and a step
length. Fuzzy logic is used to make cloudlet selection. Fuzzy logic provides evenness among true and
false values without using any mathematical model. Optimization using fuzzy logic is simple, fast, and
adaptive, leading to system stability.

In recent times, MCC has turned out to be a significant research area as it enhances mobile devices’
capabilities by integrating them with cloud computing technologies and cloudlet. The major highlights
of this paper are as follows:

• Study of existing load balancing techniques in MCC.
• Propose a novel hybrid intelligent load balancing technique named Fuzzy Firefly Algorithm

with Levy Flight for balancing the load on cloud and cloudlet.
• Cloudlet selection using Fuzzy logic.
• Formulation of makespan and Degree of imbalance using a mathematical model.
• Formulation of fitness function using execution model and Degree of imbalance.
• Comparison of the proposed technique with ACOQDM, DSOA, and UFA using makespan

and Degree of imbalance.

The remnants of this paper are organized as follows: Section 2 presents existing work on load
balancing in MCC. Section 3 drafts the mathematical model of the load balancing problem. The
proposed methodology presents a novel hybrid Fuzzy Firefly algorithm with Levy Flight to address
the load balancing in Section 5. The results of the proposed technique are discussed in Section 6.
Finally, Section7 concludes the paper with some future directions.

2 Related Work

Many researchers have proposed different load balancing and scheduling techniques [12]. Job
scheduling in a mobile cloud environment is challenging as there are numerous processors, and all
have numerous different or same instances of virtual machines (VM). Assigning jobs to the correct
VM and improving the performance and cost is a significant issue in the mobile cloud environment.
Job scheduling should also consider allocating the load to all the VMs to achieve load balancing while
minimizing the makespan [13]. Many works have been carried out using a few legacy algorithms used
for scheduling and load balancing purposes.

In some existing works, scheduling is performed based on the size of tasks like the Min-Min
algorithm chose the job with small tasks [14] and came out to be better as it reduced the makespan
while balancing the load. An improved min-min scheduling algorithm with load balancing [15] had
been proposed, but execution cost was not considered in this paper. It showed an increase in resource
utilization and decreasing the makespan. The max-min algorithm chose the maximum size task after
selecting the task [16]. Many research works exist on priority-based scheduling [17] to perform fair
scheduling to prioritize the jobs. However, these legacy algorithms were not good enough for complex,
uncertain, and real-time user demand. None of these works had considered utility-based prioritization.

On the other hand, meta-heuristic and nature-inspired algorithms like Genetic algorithm (GA),
Ant colony optimization (ACO), FA, and Bees colony optimization attempt to provide near-optimal
solutions for the scheduling and load balancing problem. In [18], ACO is used and compared
the makespan with the First Come First Serve (FCFS) and Round Robin (RR) algorithms. Cost
and job interdependency were not considered in this work. ACO concentrated on makespan and
cost reduction. Its performance depended on the initial solution, and it also had a more extended
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convergence than several algorithms. Bees’ colony algorithm also had a restriction as it converged
only in its local optima. Most of the previous works focused only on the execution time [19].

Guo et al. in [20] used Particle swarm optimization (PSO) to reduce processing time. A multi-
objective scheduling algorithm was proposed to reduce the cost and execution time of jobs using
the Pareto frontier method. The Pareto frontier method was also used in one more multi-objective
PSO algorithm [21] to reduce the execution time of jobs. Here, attention was given to reducing data
transfer time. However, load balancing was not considered in any of the abovementioned work. A
layered mobile cloud resource scheduling algorithm was proposed for mobile devices in the mobile
cloud environment. An energy-efficient and cost-aware mobile service provisioning scheme for the
mobile cloud was proposed in [22]. Chunlin et al. [23] studied the composition of mobile device
services to enhance user utility within the capacity of physical resources and other restrictions in the
mobile grid. The authors of the paper [24] proposed an algorithm for task assignment in a mobile
cloud environment while balancing the load. Cloudlets are used for the execution of tasks leading
to reduced makespan. However, this algorithm has the highest energy consumption rate. This paper
[25] proposed a distributed scheduling algorithm for resource-intensive mobile applications using the
Lagrangian method. A bargaining protocol to maximize resource utilization and profit was introduced
in [26]. It balanced the load by distributing jobs to reliable VMs using FA. Wang et al. [27,28]
provide task-centered resource allocation in mobile edge computing. Gu et al. [29,30] proposed a
secure framework for data queries in fog and cloud environments. Liao et al. proposed [31,32,33] task
offloading algorithms in edge computing, providing cost savings related to data transmission, latency,
and bandwidth usage, among other benefits.

From the above discussion, we observe that less work is done on cloudlet selection and load
balancing on the cloudlet and cloud. Cloudlet selection based on remaining capacity is rarely found.
Hence, we propose an intelligent hybrid meta-heuristic Fuzzy Firefly Algorithm with Levy Flight for
Load Balancing using capacity and waiting time for cloudlet selection to increase resource reliability
while reducing the makespan and maintaining load balancing.

3 Mathematical Problem Descriptions

For formulating the problem mathematically, Let us consider n mobile users, each submitting
a task set at any time t in the system. This submitted task set is represented by vector D =
{D1, D2, D3 . . . . . . Dn}. Tasks are offloaded to cloudlet or public cloud in MCC for execution. Assume
p cloudlets in close vicinity of the mobile user represented by vector C = {C1, C2, C3 . . . . . . ..Cp} and
m VMs on each cloudlet or cloud represented by vector VM = {VM1, VM2, VM3 . . . . . . ..VMm}. The
user request can be offloaded either on cloudlet or public cloud as the user request arrives. Cloudlets
have limited resources and computing power as compared to the cloud. If cloudlets are full and refuse
to process the tasks, then tasks can be offloaded to the public cloud. We have assumed an assignment
matrix A to show the assignment of tasks to VMs on cloudlets. In this matrix, rows represent the
tasks, and columns represent the VMs, as shown by Eq. (1). Entry Aij in matrix A will be 1, if task Di

is assigned to VMj, otherwise it will be 0.

A =

⎡
⎢⎢⎣

A11 A12 A13 . . . . . . A1m

A21 A22 A23 . . . . . . A2m

. . . . . . . . . . . . . . . . . .

An1 An2 An3 . . . . . . Anm

⎤
⎥⎥⎦ (1)
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Similarly, a matrix CT represents the completion time of tasks on VMs. Here also, matrix rows
represent the tasks, and columns represent the VMs, as shown by Eq. (2).

CT =

⎡
⎢⎢⎣

CT11 CT12 CT13 . . . . . . CT1m

CT21 CT22 CT23 . . . . . . CT2m

. . . . . . . . . . . . . . . . . .

CTn1 CTn2 CTn3 . . . . . . CTnm

⎤
⎥⎥⎦ (2)

In this paper, makespan and Degree of imbalance are used for performance analysis of the system.
These metrics are defined as follows:

3.1 Completion Time

The total time to execute all the assigned tasks is known as completion time. It is evaluated using
Eq. (3).

Completion Time, T =
n∑

i=1

m∑
j=1

Tc
ij ∗ Aij (3)

where Tc
ij is the completion time of ith task on jth VM. It is evaluated using Eq. (4)

Tc
ij = Ts

ij + Tw
ij + Ttran

ij (4)

where Ts
ij, Tw

ij and Ttran
ij are service time, waiting time, and transmission time of ith task on jth VM

respectively.

3.2 Service Time

The total time taken to execute the task is known as service time. It is evaluated using Eq.(5)

Ts
ij = No.of Instructions in ith task

MIPS of VMj ∗ number of core
(5)

3.3 Waiting Time

The time interval between execution start time and arrival time is known as waiting time. It is
evaluated using Eq. (6).

Tw
ij = Tst

ij − Ta
ij (6)

where Ta
ij represents the arrival time of ith task on jth VM queue andTst

ij represents the execution start
time of ith task on jth VM.

3.4 Transmission Time

It is the time taken to offload the task to a VM on Cloudlet or public cloud. It is evaluated using
Eq. (7).

Ttran
ij = Bandwidth of VMj

Size of task i
(7)

where Ttran
ij is the time taken to offload ith task to jth VM.
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3.5 Makespan

Makespan is the maximum completion time of all tasks assigned on VMs. The lowest value of
makespan indicates enriched scheduling, and It is evaluated using Eq. (8)

Makespan, f1 = max
{

Tc
ij

∣∣∣∣i ∈ D, i = 1, 2, . . . , n and
j ∈ VM, j = 1, 2, . . . m

}
(8)

3.6 Response Time

It is the time required to give the first response after submitting a request to the system. It is
evaluated using Eq. (9). A small value of response time is recommended.

Response Time, Trs
ij = Tc

ij − (Ta
ij + Ttran

ij ) (9)

where Ta
ij is the arrival time of ith task on jth VM. Ttran

ij is the transmission time of ith task on jth VM.

3.7 Processing Capacity

It gives the system processing ability equal to the sum of the capacity of all VMs on a cloudlet or
public cloud. It is evaluated using Eqs. (10) and (11).

Processing Capacity, PC =
m∑

j=1

PCj (10)

PCj = MIPS of VMj ∗ Number of core + csbwj (11)

where csbwj is communication bandwidth handling speed of VMj.

3.8 Degree of Imbalance (DI)

The Degree of imbalance is measured in terms of the reliability of VMs. The reliability of a VM
is its ability to work efficiently under all situations, and it is inversely proportional to load. Reliability
of jth VM is evaluated as given in Eq. (12) [34,35].

Rj = a1

Pavail

Preq

+ a2

Mavail

Mreq

+ a3

Bavail

Breq

(12)

where Pavail, Mavail and Bavail are available computing power, memory, and bandwidth, respectively. Preq,
Mreq, Breq are required computing power, memory, and bandwidth, respectively. a1, a2, a3 are weights
corresponding to power, memory, and bandwidth. Their values are assigned as shown in Eq. (13).

3∑
i−1

ai = 1 (13)

Degree of imbalance of jth VM is measured as given in Eq. (14).

DIVMj = (
Rj − Ravg

)2
(14)

where Ravg is the average reliability of all VMs and measured in Eq. (15)

Ravg =
∑m

j=1 Rj

m
(15)
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Likewise, the Degree of imbalance of all VMs is measured as given in Eq. (16).

Degree of imbalance, f 2 =
m∑

j=1

(
Rj − Ravg

)2
(16)

The Degree of imbalance value lies between 0 and 1. It is used to measure the performance or load
imbalance of the system, and the scheduler tries to reduce the value of DI.

4 Fitness Function

The ultimate goal of this hybrid load balancing technique is to minimize makespan and Degree of
imbalance while balancing the load. So, the fitness function can be represented as follows by Eq. (17)
using Eqs. (8) and (16) [35,36]:

Fitness function, F (x) = w1 ∗ ef1 + w2 ∗ ef2 (17)

where f1 and f2, are objective functions for makespan and Degree of imbalance. Here, e is the
exponential function and w1 and w2 are weights corresponding to the f 1 and f2 s.t. w1 + w2 = 1
and w1, w2 ∈ {0, 1}. Weights may be assigned on the basis of the choice or preference of a particular
parameter. In the case of equal preference, each weight can be assigned a value of 0.5, so their total
should be equal to 1. Hence, the proposed hybrid load balancing technique efficiently balances the
mobile cloud load based on the above fitness function.

5 Proposed Methodology

This section presents the concept of Fuzzy, firefly with levy flight, and their hybridization to
achieve load balancing on the mobile cloud.

5.1 Fuzzy Based Decision Maker

The Decision-making process is time-consuming, and sometimes regular computations may not
find optimal solutions. Fuzzy systems can be successfully applied in areas of decision making and
automatic control with good decisions and results within a short time [37]. Lotfi Zadeh developed the
fuzzy logic system in 1965 to solve complex problems with incomplete and imprecise data [38]. They
can solve problems by deciding like human beings. Fuzzy logic does not have preset limits but has
percentile logic. Depending on membership degree, inputs can be assigned true or false, resulting in
certainty or uncertainty to the specified set of inputs. Fuzzy logic provides evenness among true and
false values without using any mathematical model. Optimization using fuzzy logic is simple, fast, and
adaptive, leading to system stability.

The fundamental steps of the fuzzy system are as follows:

• Fuzzification: Converting crisp input values to linguistic terms or fuzzified input
• Fuzzy Inference: Fuzzified output by applying rule base
• Defuzzification: Converting the fuzzy output to crisp values

Let the set of items x are represented by X, where x represents an ordered pair for fuzzy set F
shown by Eq. (18).

F = {x, μF (x) ∈ X} (18)
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The triangular membership function is used for the fuzzification process, as given by Eq. (19).

Triangle (x, a, b, c) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, x < a
x − a
b − a

, a ≤ x ≥ b
c − x
c − b

, b ≤ x ≤ c

0, c ≤ x

(19)

The proposed method uses a Sugeno fuzzy inference system for cloudlet selection. Inputs are
capacity and waiting time, as shown in Fig. 2. Based on the input and rule base shown in Tab. 1, the
best cloudlet is selected for processing tasks. Fig. 3 gives a graphical representation of the rule base.

Figure 2: Fuzzy decision maker

Table 1: Fuzzy rule base

Remaining capacity Waiting time

Low Medium High

Low Medium Low Very Low
Medium High Medium Very Low
High Very High High Medium

The defuzzification process is about finding a crisp value from the output of the accumulated fuzzy
set. If x and y are fuzzy inputs, then fuzzy rule output will be given as by Eq. (20).

z = p ∗ x + q ∗ y + r (20)

where p, q, and r are constants. The final fuzzy output is the weighted average of all rules output; it is
evaluated using Eq. (21).

Final output =
∑N

1 wi ∗ zi∑N

1 wi

(21)

where N indicates the number of rules in a fuzzy system. wi represents the weight corresponding to ith

Fuzzy rule.

The main objective of FDM is to select a cloudlet for further processing, and the output of FDM
is fed as input to the FA for allocating tasks on VM with load balancing.
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5.2 Firefly Algorithm

A nature-inspired meta-heuristic technique like FA is a powerful optimization technique for
solving various problems. Meta-heuristic algorithms are gaining popularity due to their simplicity,
versatility, and high efficiency. One such meta-heuristic technique is firefly which is widely used for
problem-solving. A critical factor in the success of this algorithm is a proper balance between solution
diversification and speed over another technique [39]. FA was developed by Yaung [40] in late 2007
and 2008. The basic idea of FA is that flies produce flashes, and one firefly is attracted to the brighter
one. Attraction depends on brightness. A less bright fly will move towards a brighter one for a couple
of flashing flies. If no brighter flies are there than a particular, that fly will move randomly in search
space. Some flashing rules of standard FA are as follows:

• All the fireflies are unisex, so one firefly is attracted to another despite the sex.
• Attraction directly depends on brightness, which decreases with distance.
• The objective function determines the brightness of a firefly.

Figure 3: Graphical representation of rule base

5.2.1 Attractiveness and Brightness

Attraction depends on the brightness of the firefly, which is associated with the objective function.
A less bright fly will move towards a brighter one for a couple of flashing flies. If no brighter flies are
there than a particular, that fly will move randomly in search space. Brightness decreases with distance
from the source and is also absorbed by the environment. Brightness or light intensity is given by
Eq. (22).
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I = I0e−γr2
(22)

where the intensity at the source is I0 and distance between two flies is r. γ is light absorption coefficient,
and it controls the speed of convergence of the solution. Based on it, attractiveness is given by Eq. (23).

β = β0e−γr2
(23)

where β0 is attractiveness at source, i.e., r = 0.

5.2.2 Distance between Fireflies

Distance between two fireflies i and j at positions xi and xj can be defined by Euclidian distance
given by Eq. (24) [40].

rij =
√∑d

k=1
(xik − xjk)2 (24)

where xik is the kth component of spatial coordinate xj of jth firefly and d represent the number of
dimensions. For two dimensions, d is 2, and distance is given by Eq. (25)

rij = √
(xi − xj)2 + (yi − yj)2 (25)

5.2.3 Positions Update

Position update when firefly xi moves towards firefly xj. It is given by Eq. (26).

xij = xi + βe−γr2 (
Xi − Xj

) + αεi (26)

The first term represents the current position of the firefly, the second term represents attractive-
ness, and the third term gives random movement. α is the randomization parameter α ∈ [0,1], and ε

gives random distribution, such as uniform distribution.

5.3 Levy Flight

It is observed from the swarm behavior of fireflies [41] that FA often traps into local optimum
and converges prematurely. These flies explore the search space through a series of straight flight paths
punctuated by a 90° turn, which creates a levy-flight type search pattern. Yaung [40] introduced a levy-
flight-based FA to enhance the exploration ability of global search space. It provides randomization
through levy distribution instead of conventional uniform distribution. The position update equation
is modified to the following Eq. (27).

xi = xi + βe−γr2 (
Xj − Xi

) + α sin (ε) ⊗ Levy (27)

The symbol⊗ represents a component-wise multiplication among the random vector from the
Levy distribution and the sign vector.

5.4 Fuzzy Firefly Algorithm with Levy Flight (FFALF)

The proposed FFALF provides better results in solving load balancing problems in heterogeneous
and platform-independent environments than already existing techniques. This algorithm assigns
tasks to reliable VMs. VM’s reliability decreases over time as load increases. This algorithm selects
a more reliable VM based on fitness function while balancing the load. Fig. 5 represents the proposed
algorithm. Firstly, the proposed algorithm checks the cloudlet availability in the vicinity based on
waiting time and remaining capacity. A fuzzy decision-maker selects the cloudlet or cloud for task
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offloading as this decision-making is fuzzy [42]. A fuzzy system is best for dealing with complex
and uncertain problems. The output of FDM is used as an initial population for the FA. Different
parameters value used in firefly is shown in Tab. 2 [40,41].

Here, tasks from users arrive arbitrarily, as shown by [43].In our algorithm xi is solution space
represented by an array. Array index designates the task, and array value designates the VM on which
the corresponding task has been scheduled. For example, with five tasks and 2 VMs, their mapping is
shown in Fig. 4. Tasks 1, 3, and 5 are mapped to the 2nd VM and 2, 5 to the 1st VM.

a[1]    a[2]     a[3]     a[4]   a[5]

2        1         2        2        1

Array
index

Values

Figure 4: Solution space

Table 2: Parameters values for firefly

Parameter Value range Optimal value

Population Size [50] 50
α [0.1,10] 0.5
β [0,1] 0.2
γ [0,1] 0.5
w1 [0,1] 0.5
w2 [0,1] 0.5

After generating the initial population, the fitness of all fireflies is calculated using the objective
function shown by Eq. (17). Here, attraction is inversely related to the objective function. A smaller
value of the objective function means more attraction [44]. It is observed from the swarm behavior of
fireflies [41] that flies follow a logarithmic spiral path in search space. Although this logarithmic path
leads to the exploitation of local search space, it traps in the local optimum. Levy flight is used with
firefly to find the optimal solution shown by Eq. (27). It helps in coming out of local optimum and
provides more search space exploration.

FFALF is a novel algorithm as, firstly, it makes cloudlet selection to provide a faster response to
users. In the past, little work is done for cloudlet selection. Secondly, it uses levy flight with the firefly
algorithm for uniform task allocation to VMs. Firefly with Levy Flight increases the probability of
jumping out of the local optimum and works ideally both in underloading and overloading situations
of VMs.
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Figure 5: Fuzzy Firefly Algorithm with Levy Flight (FFALF)

6 Performance Evaluations

In this section, we discuss simulation setup and results obtained in different scenarios using a
simulated mobile cloud network.

6.1 Simulation Setup

Simulation has been carried out on a 64-bit Windows 8 machine having Intel Core i3 and 4 GB
RAM using the Cloud Analyst tool with Eclipse Java Neon.3 IDE. The proposed work is compared
with dynamic algorithms ACOQDM [24], DSOA [25], UFA [26], in two different scenarios, i.e.,
different number of tasks and different number of VMs. Two datasets, NASA and CLARKNET [24],
are used for evaluation purposes. Tab. 3 represents simulation parameters for users, tasks, cloudlet,
VMs, and hosts.
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Table 3: Simulation parameters

Entities Simulation parameters Range of values

Users No. of users 10–80
Tasks No of tasks

Size of task
Task arrival rate

100–500
100–500 MI
10–300 requests/sec

Cloudlet No. of cloudlet
No. of servers in cloudlet
No. of VMs on cloudlet
Bandwidth
Processing speed

10–15
1–5
5–25
100–200 Mbps
50–300 MIPS

Cloud No. of VMs on cloud
Bandwidth
Processing speed

50–100
10000 Mbps
1000–2000 MIPS

VM Type of policy
Type of VMM
Operating system
No of processors

Space shared
Xen
Linux
one each

6.2 Results and Discussion

Comparisons are performed in two scenarios: one based on the number of VMs and another based
on the number of tasks.

Figs. 6 and 7 show the makespan of the hybrid FFALF algorithm using CLARKNET and NASA
datasets, respectively. It is observed that UFA gives a lesser makespan when the number of tasks is
smaller. However, FFALF outperforms all when the number of tasks or no. of VMs increases as it
allocates tasks to the most reliable VMs.

0

5

10

15

20

25

30

35

40

100 150 200 250 300 350 400 450 500

)s(
n apseka

M

No. of Tasks 

FFALF

UFA

DSOA

ACOQDM

0

5

10

15

20

25

30

35

40

45

20 40 60 80 100

)s (
na

ps eka
M

VM's

FFALF

UFA

DSOA

ACOQDM

(a) (b)

Figure 6: Makespan on CLARKNET dataset (a: different no. of tasks with 60 VM, b: different no. of
VMs with 300 tasks)
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Figure 7: Makespan on NASA dataset (a: different no. of tasks with 60 VM, b: different no. of VMs
with 300 tasks)

Fig. 8 shows a degree of imbalance (DI) for the proposed algorithm on two different datasets.
A lesser value of DI indicates better load distribution. From Fig. 7, it is observed that the proposed
algorithm outperforms all as the tasks increase. In FFALF, cloudlet selection is made based on the
remaining resource capacity for task allocation, leading to the uniform load distribution. Further,
firefly with levy flight is used for uniform distribution of tasks on cloudlet and cloud.
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Figure 8: Degree of imbalance (a: on CLARKNET dataset, b: on NASA dataset)

Makespan and Degree of imbalance are considered for performance evaluation of all algorithms.
The Figure of Merit is evaluated using Eq. (28), which considers desired parameters in each algorithm.
When FFALF is compared with ACOQDM, DSOA, and UFA, It is observed that the FFALF attains
higher success rates by strengthening the exploration in the global search space.

FoM =
(

1
(makespan + DI)

)
(28)

Overall, it can be seen from Fig. 9 that FFALF performs better than the others. In conclusion,
FFALF excels UFA, DSOA, and ACOQDM at about 17.39%, 10.20%, and 20%, respectively, on the
CLARKNET dataset and 20.42%, 10.98%, 17.91% on the NASA dataset, respectively.
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Figure 9: Figure of merit on CLARKNET and NASA dataset

7 Conclusion and Future Work

A novel intelligent hybrid meta-heuristic algorithm for better assignment of offloaded tasks in
an MCC environment is proposed in this paper. The proposed technique implicitly acts intelligently
as the fuzzy system is an integral part of artificial intelligence, automatically deciding based on input
values and rule base. Secondly, Fireflies use swarm intelligence in terms of specific rules derived from
their swarm behavior, ensuring interaction between various flies. Thirdly, the proposed algorithm
automatically adjusts its behavior or converges depending on the information gathered and provides
balance in underloaded and overloaded situations. The simulation was carried out in Cloud Analyst,
and performance is compared with UFA, DSOA, and ACOQDM on two different datasets, NASA
and CLARKNET. The results show that the FFALF excels in UFA, DSOA, and ACOQDM at
about 17.39%, 10.20%, and 20%, respectively, on the CLARKNET dataset and 20.42%, 10.98%, and
17.91% on the NASA dataset while balancing the load. In this algorithm, the mobility of users is
not considered, so this algorithm can be best applied in indoor environments like shopping marts,
supermarkets, malls, and hospitals, where users are considered stationary. Secondly, this algorithm
cannot partition large tasks, which can be distributed among multiple cloudlets simultaneously to
achieve parallelism. Hence, in the future, this work can be extended by considering the mobility of
users and task partitioning.
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