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Abstract: The number of botnet malware attacks on Internet devices has
grown at an equivalent rate to the number of Internet devices that are
connected to the Internet. Bot detection using machine learning (ML) with
flow-based features has been extensively studied in the literature. Existing
flow-based detection methods involve significant computational overhead
that does not completely capture network communication patterns that might
reveal other features of malicious hosts. Recently, Graph-Based Bot Detection
methods using ML have gained attention to overcome these limitations, as
graphs provide a real representation of network communications. The purpose
of this study is to build a botnet malware detection system utilizing centrality
measures for graph-based botnet detection and ML. We propose BotSward,
a graph-based bot detection system that is based on ML. We apply the
efficient centrality measures, which are Closeness Centrality (CC), Degree
Centrality (CC), and PageRank (PR), and compare them with others used
in the state-of-the-art. The efficiency of the proposed method is verified on
the available Czech Technical University 13 dataset (CTU-13). The CTU-
13 dataset contains 13 real botnet traffic scenarios that are connected to
a command-and-control (C&C) channel and that cause malicious actions
such as phishing, distributed denial-of-service (DDoS) attacks, spam attacks,
etc. BotSward is robust to zero-day attacks, suitable for large-scale datasets,
and is intended to produce better accuracy than state-of-the-art techniques.
The proposed BotSward solution achieved 99% accuracy in botnet attack
detection with a false positive rate as low as 0.0001%.
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1 Introduction

The explosion of network applications and connected devices on the Internet has resulted in a
high level of network complexity in terms of management and increased concerns over data security.
Many institutions are continually exposed to a variety of security threats, which can result in financial
and reputational harm. Malware such as viruses, spyware, trojans, worms, key-loggers, and botnets
damages various systems and online businesses. A botnet is an overlay network formed by a large
number of hosts (bots or zombies) that have been infected with bots and are controlled remotely by an
attacker (botmaster). Botnets are one of the most dangerous types of serious cybersecurity threats, as
they are a primary vector for large-scale attack campaigns including email spam, click fraud, financial
theft, and DDoS attacks [1].

Botnet attacks will get worse because they are not typically created to infect just a single computer;
they are designed to infect millions of them. Botherders frequently use a Trojan horse virus to
install botnets on personal computers (PCs). Users often infect their own computers by downloading
email attachments, clicking on malicious pop-up ads, or installing malicious software from a website.
After infecting devices, botnets are then free to attack other computers, access and modify personal
information, and commit other crimes. Botnets that are more advanced can even self-propagate,
discovering and infecting devices on their own. Botnets take a long time to develop. Many will remain
inactive on devices until the botmaster calls them for a DDoS attack or spam dissemination [2].

The first botnet attack to receive widespread attention, known as “EarthLink Spammer”, was an
email spammer created by Khan K. Smith in 2000. He made at least 3 million dollars from the botnet,
which sent 1.25 million emails with phishing schemes [3]. Botnets have grown over the previous 20
years to become increasingly complex and destructive [4]. In 2016, Methbot, one of the first large
and sophisticated ad fraud and takedown operations, appeared. It was the world’s largest botnet for
defrauding the advertising industry, using sophisticated bots that pretended to be premium publishers
to watch 300 million video advertisements each day on spoofed websites. Over 6,000 premium domains
have been spoofed [5]. The year 2019 also produced one of the major ransomware attacks, when the
French cyber police freed over 850,000 Windows computers from a botnet named “Read up.” When
antivirus company Avast discovered a flaw in Retadup’s C&C communications protocol, it alerted the
French National Gendarmerie, who in turn seized the servers [6].

Therefore, detecting botnet propagation activities early and determining the expected size of the
attack is critical. However, bots can avoid detection by mimicking normal traffic, modifying packet
structures, and hiding their payload characteristics through encryption. Attackers began replacing
internet relay chat (IRC) with hypertext transfer protocol (HTTP) in order to blend into normal HTTP
traffic and avoid detection. With port-based filtering, botnets can easily get around intrusion detection
systems (IDSs) and firewalls [7].

Botnet detection has received a lot of attention in wide-ranging studies, and various techniques
have been proposed for this. Signature-based techniques [8,9] generally rely on identifying pre-
computed hashes of existing malware binaries and a database of known threats that must be frequently
updated. However, these approaches are unable to detect unknown botnets and variations because of
polymorphous attacks, zero-day attacks, and related techniques. Anomaly-based detection algorithms
[10,11] are based on the idea that botnets have communication patterns that are distinct from benign
hosts in networks. These are commonly used for botnet detection since they can identify unknown
botnets based on the number of anomalies in network traffic, large traffic volumes, traffic on unusual
ports, high network latency, and other unusual system behavior. The main drawbacks of anomaly-
based detection approaches are the high rate of false alarms and the restrictions of their training data.
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Other detection approaches are based on honeypot technology [12], which is a network set up with
intentional vulnerabilities used as a trap without exposing the real network, but which only detects
existing bots and performs poorly in real-time. Community-based anomaly detection algorithms [13]
can be defined as techniques that detect a group of highly correlated and highly interactive nodes
that interact unusually frequently. These approaches cannot accurately determine botnets when entire
communication graphs are unavailable. Detection methods that are based on certain structures and
protocols [14] can’t find botnets that have different structures or protocols.

Botnet detection techniques based on ML have been considered the most effective. Feature
extraction is an important step in ML techniques that involves about 80% of the time before processing
data, which helps to minimize data dimensionality and improve the accuracy of ML models [15]. Flow-
based features are the features most often focused on in bot detection research. However, this approach
suffers from limitations such as not completely capturing the communication patterns that can expose
additional aspects of malicious hosts, involves significant computational cost, and can potentially be
evaded by tweaking behavioral characteristics, such as changing packet structures [16]. In order to
overcome these limitations in flow-based features, we used graph-based features derived from flow-
level information to reflect the true behavior of hosts. Furthermore, these properties enable the models
to combine inputs from several networks and enhance spatial stability [1]. We think that adding graph-
based features to ML makes it more resistant to attacks from unknown sources and communication
patterns that are hard to understand [16].

The contributions of this work are as follows:

1) By proposing BotSward, an effective graph-based bot detection system that converts NetFlow
traffic features to graph features, we demonstrate that our system is resistant to zero-day attacks
and suitable for large datasets.

2) Using Centrality Measures to extract valuable graph-based features that achieve high precision
in bot detection while consuming less time.

3) Using the new graph-based features noted above, we designed an ML-based detection system
that can detect botnets with an accuracy of 99%.

4) We train and validate our graph-based botnet detection approach on real CTU-13 botnet
datasets.

5) We test and compare the efficacy of our proposed graph-based features with flow-based
features from other studies using the same datasets and ML algorithms.

6) We test and compare the efficacy of our proposed ML algorithms with different ML algorithms
from different studies using the same datasets and graph-based features.

Organization. The remainder of this work is organized in the following manner. In Section 2,
we review the background and related work, while the methodology and system design of this paper,
including the graph algorithmic definitions and ML analysis techniques, are outlined in Section 3.
In Section 4, we introduce the evaluation metrics, including the datasets, tools and instruments, and
performance metrics. In Section 5, we present the results of our proposed botnet detection for CTU-
13 datasets, followed by a summary discussion. In Section 6, we discuss the comparison evaluation
approach and state-of-the-art studies. In Section 7, we give our conclusions and final thoughts. Before
moving further, Tab. 1 lists down the acronyms used in this study for a better understanding.



696 CMC, 2023, vol.74, no.1

Table 1: List of abbreviations used in this study

Acronyms Used for Acronyms Used for

ML Machine learning GPUs Graphics processing units
CTU-13 Czech technical university13

dataset
DNN Deep neural network

BC Betweenness centrality SVM Support vector machine
CC Closeness centrality DT Decision tree
PR PageRank KNN K-nearest neighbor
ID In degree RF Random forest
OD Out degree SGD Stochastic gradient descent
AC Alpha centrality ACC Accuracy
EC Eigenvector centrality F F-measure
LCC Local clustering coefficient

centrality
P Precision

C&C Command-and-control R Recall
DDoS Distributed denial-of-service SMOTE Synthetic minority oversampling

technique
IDS Intrusion detection systems T-links Tomek links
TPUs Tensor processing units HTTP Hypertext transfer protocol

2 Background and Related Work

In general, botnet detection techniques rely on deep packet inspection (DPI) and flow-based and
graph-based botnet detection methods.

2.1 Deep Packet Inspection

DPI is an advanced technique for examining the full content of data packets as they pass through
a monitored network checkpoint. It is highly effective in preventing overflow attacks, denial of service
(DoS) attacks, buffer overflow attacks, and even some forms of malware. However, the existing botnet
detection systems, which depend on DPI, suffer from high computational costs and can be exploited
by crooks to facilitate similar attacks, as well as being inefficient at recognizing unknown payload
signatures. Moreover, most new malware uses evasion techniques to avoid detection, such as protocol
encapsulation, obfuscation, and payload encryption. As well, inspecting every packet on a high-speed
network is a costly task because of the continuously increasing network speed and the daily increases
in the amount of data transferred on the network [17,18].

Gadelrab et al. [19] presented BotCap, a botnet detection model based on DPI and ML techniques.
The authors inspected network traffic packets in-depth in order to extract statistical features and
then trained J48 decision tree and Support Vector Machine (SVM) algorithms to distinguish between
benign traffic and malicious botnet traffic. The study’s results showed an accuracy level of 80% for
HTTP botnets and 95% for IRC botnets.
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2.2 Flow-Based Detection

Flow-based detection is a network protocol that collects IP network traffic as it enters or exits an
interface. Flow-based features are described as a collection of features based on information that exists
in the headers of packets with similar parameters, such as source and destination IP, protocol type,
source, and destination port, etc. [1]. Flow-based features are used to identify anomalies like botnets
in large-volume data and high-speed networks. Extensive studies have made major contributions in
the area of botnet detection using flow-based features; however, there are serious drawbacks to these
approaches. Firstly, the approaches only capture the characteristics of the effects of bots on individual
links, rather than using the topological structure of the communication graph as a whole, which can
expose additional aspects of malicious hosts. Secondly, flow-based detection methods suffer from
high computational overhead, since instead of holistically monitoring a given network’s behaviors
to identify malicious traffic, it requires the comparison of each particular flow of traffic to all the
other flows. Finally, flow-based detection techniques can be evaded by attackers through data volume
changes, using encrypted commands, or tweaking behavioral characteristics by changing the packet
structure [20].

In 2014, Beigi et al. [21] discussed the effectiveness of flow-based features in combination with
a C4.5 decision tree-supervised learning algorithm for botnet detection. The authors achieved a
moderate detection rate, at 75%, and a low false-positive rate of only 2.3%. Gahelot et al. [22]
proposed a J48 decision tree and naïve Bayes classifiers to classify flow-based P2P botnet traffic using
a combined network flow PeerRush dataset and a botnet (2014) dataset. When using a J48 decision
tree, their botnets detection accuracy was 99.94%, with a very low rate of false positives, and when
using naïve Bayes classifiers, the accuracy was 99.46%. The main disadvantages of their approach,
however, were the complexity of the model and the long processing runtime.

To overcome these limitations, using graph-based features to detect botnets has been the focus
of another research path. Using graph-based features is more computationally efficient compared to
using flow-based methods because it avoids the requirement to compare each particular traffic flow
to all the other flows in the dataset [16].

2.3 Graph-Based Detection

Graph-based features are derived from flow-based features and reflect the real structure of host
behavior, interactions, and communications, offering an option that overcomes flow-based limitations.
This approach is robust and suitable for all botnet datasets because it attempts to create a graph from
the captured traffic, which discards all features except IP address features to create nodes and packet
features to represent directed edges. By using centrality-based graph measurements, data from packets
is ignored in favor of focusing on the topological communications structure between hosts. Then, from
each node, we can calculate centrality-based graph measures and extract features like DC, CC, and
PR . . . etc.

The authors of [16] proposed BotChase, a hybrid two-phase ML approach that leverages both
unsupervised and supervised ML and graph-based bot detection systems. They modeled network
communications as graphs, where hosts are vertices and communications between hosts are edges.
However, the model incurs a high computational overhead when computing the features of a large
communication graph, such as the betweenness centrality (BC) measures used by shortest-path
algorithms computed for centrality measures.
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By combining flow-based features with graph-based network traffic in [23], the study detects
bots based on the hybrid analysis of these two types of features. This technique achieved a good
performance, with a 96.62% F-score.

BotGM [24] suggested an unsupervised graph mining tool for detecting bots through abnormal
communication patterns. For each pair of source and destination IP addresses, the authors first create
a graph sequence of ports, then compare each graph using the Graph-Edit Distance (GED). They
achieve a very good level of accuracy, ranging from 78% to 95%. However, the GED is computed
only once for each pair of graphs, and its computation is known to be NP-complete. BotHunter [25]
is designed to detect the infection and coordinate communication that takes place after a successful
malware infection. CAMNEP [26] combines various state-of-the-art anomaly detection methods to
improve accuracy. However, some communication patterns between hosts that are unique to a botnet
are missed by these approaches. Furthermore, since the complexity of computing per-flow features is
significantly high, BClus clusters the traffic sent by each IP address based on their behavioral similarity.

2.4 Research Gap

Botnets have evolved into one of the most significant cyber security concerns for networks because
they impact numerous areas such as law enforcement, finance, cyber security, health care, and more.
The majority of current botnet detection research relies on flow-based traffic analysis and mining
communication patterns. However, these methods may not be capable of detecting bot activities in an
efficient and effective manner. Existing flow-based methods have significant computational overhead
and do not capture all network communication patterns, which might reveal additional aspects of
malicious hosts. Moreover, flow-based features are often characteristic of specific protocol-based
botnets and are not generalizable to newer botnet types. A graph-based approach is rather intuitive
for overcoming flow-based approaches’ limitations, as graphs are true representations of network
communications. The drawback of graph-based detection systems compared to flow-based detection
systems is the time required to extract features such as BC computation, which can sometimes be
considerable. Although a big improvement was made over the initial BC computation algorithm, many
researchers argued that the BC algorithm is still too costly for large graphs.

To solve this problem, some graph-based feature algorithms such as BC and CC are easily
parallelizable, as using more cores will result in speed improvements. Also, we obtain superior results in
terms of time reduction when we exclude BC and replace it with CC. The development of a quick and
non-rule-based technique for detecting botnets is a significant step toward building a new graph-based
detection methodology. Simultaneously, the approach must be validated on a real-world dataset with
various botnet types. This detection scheme must also be sufficiently robust to detect any type of botnet
present in the dataset. We show that incorporating graph-based features into ML yields robustness
against complex communication patterns and unknown attacks. Furthermore, cross-network ML
model training and inference are possible.

3 System Design

We illustrate our proposed system, BotSward, as shown in Fig. 1. Botsward is a classification
model for botnet detection, where the current botnet anomaly detection approach based on NetFlow
features can potentially be evaded by attackers through data volume changes, using encrypted
commands, or tweaking behavioral characteristics by changing the packet structure. This problem is
known as misleading. It works in four steps: traffic generation, data preprocessing, model building, and
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bot identification. In the first step, we collect a very large amount of network traffic flow from the real-
world public CTU-13 dataset discussed in Section 4. In the second step, we balance the distribution of
the dataset classes and Select 3 features from 42 features, and then clean the data to remove duplicate
or irrelevant data. In the third step, the system creates a graph G(V; E) from the features extracted,
where V is a set of nodes and E is a set of directed edges. After that, we extract seven graph-based
features from network traffic to characterize the behavior of the botnets and save them in a file to use
in the model training phase. In the model training, we compared the results of seven different ML
models and a Deep Neural Network (DNN), and in the last step, we identified bot traffic and normal
traffic and then calculated the performance of the different models.

Figure 1: BotSward architecture

In this work, the software implementation is primarily based on Python. We used Jupyter
Notebook, which is an open-source application that facilitates data visualization, data preprocessing,
ML, statistical modeling, and much more, as well as Google Colab Notebook, which is hosted on
Google cloud servers and provides access to the Graphics Processing Units (GPUs) and Tensor
Processing Units (TPUs) for tasks that can be done in a Jupyter notebook. Python 3.6 was used to
implement the base classifiers and was used as the scripting language for writing most of the code. For
this study, we used different important libraries such as Networkx, Scikit-learn, Keras, Tensorflow,
Pandas, NumPy, Matplotlib, and Seaborn [27]. The main library in our work to compute the centrality
of the graph features is NetworkX, which is a Python library for studying graphs and networks,
which are mathematical structures used to model pairwise relations between objects. The experiment
was carried out on a Windows 10 Pro workstation with an Intel(R) Core (TM) i9-8950HK CPU @
2.90 GHz, a 64-bit operating system, and 32.0 GB of RAM.

3.1 Data Preprocessing

Preprocessing is crucial for developing a reliable and effective ML-based detection model since
it enhances classification accuracy. This phase has three steps, which are: balanced dataset, feature
selection, and data cleaning.

3.1.1 Balanced Dataset

The term “balanced dataset” refers to balancing the distribution of dataset classes, as in an
unbalanced dataset class model is biased towards the majority class; in such a case, the accuracy
percentage obtained may be illusory [28], Oversampling, undersampling, and hybrid approaches are
the most common dataset class resampling techniques. The oversampling approach is used when
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the quantity of data is insufficient [29]. It mainly involves replicating the rare samples in some
classes in order to equalize the distribution of classes in an unbalanced dataset. The most commonly
utilized form of oversampling is the synthetic minority oversampling technique (SMOTE) [30]. The
undersampling approach [31], in contrast to the oversampling approach, is used to balance dataset
classes when the quantity of data is sufficient. The aim of this technique is to reduce the size of the
abundant class by randomly selecting an equal number of samples from that class in order to equalize
the number of samples in the rare class. For further modeling, a new, balanced dataset is retrieved.
Tomek links (T-links) are a common undersampling approach for balancing dataset classes. Hybrid
methods use a combination of oversampling and undersampling methods to eliminate the lack of
training data produced by undersampling and to prevent overfitting problems caused by oversampling.
In this work, the T-links approach was utilized to balance the datasets in both training and validation
since the quantity of data was sufficient.

3.1.2 Feature Selection

The process of automatically or manually selecting the features that contribute the most to the
prediction variable or output in which you are interested is known as feature selection. Irrelevant
features in a dataset may reduce model accuracy and lead the model to train on irrelevant features
[32]. There are several advantages to selecting features before modeling data [33], including:

·Reducing training time: fewer data processing allows algorithms to train faster and reduces
algorithm complexity.
·Reducing overfitting: fewer data processing means less opportunity to make decisions based
on noise.
·Improving accuracy: fewer misleading data processing means that modeling accuracy
improves. To reduce the dimensionality of the data, we selected three features, which are Source
IP, Destination IP, and Total Packets.

3.1.3 Data Preprocessing

The first and most crucial step in creating a ML model is preprocessing the data [34]. This step
is important for improving data quality for ML module training and more accurate decision-making.
Bad data might lead to inaccurate results, and so to get the appropriate results from the beginning,
the dataset is examined and formatting is done. In this study, data cleansing, normalization, and
transformation are utilized to create a reliable dataset [35].

1) Data Cleansing: Data cleansing is the process of identifying incorrect, irrelevant, inaccurate,
or incomplete parts of the data and then deleting, replacing, or modifying the dirty or coarse
data. In our work, we drop the rows in the CTU-13 dataset that have null values by using the
dropna () function of Pandas.

2) Normalization: Normalization is a scaling technique that provides a consistent scale in which
values are shifted and re-scaled so that they end up ranging between 0 and 1. The following is
the mathematical equation for min-max feature scaling:

x′ = x − x{min}

x{max} − x{min}
, 0 ≤ x′ ≤ 1 (1)

We get x{min} and x{max} by using .min ( ) and .max ( ) functions of pandas.

3) Transformation: Transformation is the process of converting data from one format to another.
Many categorical features in the CTU-13 dataset include non-numeric data that needed to
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be translated to numeric format for the ML algorithms’ analyses to deal with the algebraic
format. Label Encoder is a technique that many data analysts use to do label encoding. We use
the SciKit-learn library to import it.

3.2 Build Model

In the third step, we build the model, including a graph-based detector and an ML model.

3.2.1 Graph-Based Detector

The traffic flows that forward to our system BotSward are bidirectional network flows. These
flows are transformed into a set T that includes 4-tuple flows Ti = {ScrAddr; DstAddr, TotPkts, Label}.
Where ScrAddr is the source host IP address that uniquely identifies a source host known as sip,
DstAddr is the destination host IP address that uniquely identifies a destination host known as dip.
TotPkts quantifies the number of data packets sent by source host i to destination host j, Label is the
output class “Bot” or “Normal”. The system creates a graph G = (V ; E), where V is the set of nodes
V = {v1, v2, v3, . . . , vn}, whereas E is the set of directed edges E = {

eij

}
, for all i; j such that ei,j ∈ V . In

this study, each node denotes a unique IP address and each edge denotes the connection between one
IP address to another. Set A is a set of tuples that have exclusive source and destination hosts. Where
ax ∈ A, such that ax = {sip; dip, TotPkts}. The set of nodes V is a union of source and destination
hosts from set A such that

V = ∪
ax∈A

{sip ∪ dip} (2)

For every ax in A, There exist directed edges ei;j and ej;i from vi to vj and vj to vi, respectively, such
that sipx = vi and dipx = vj. Therefore,

E = ∪
ax∈A

{(sipx, dipx) ∪ (dipx, sipx)} (3)

Graph Algorithmic Properties

Understanding networks requires the use of centrality measurements, also known as graphs. These
algorithms use graph theory to calculate the importance of any given node in a network. It can capture
all network communication patterns and disregard packet payloads, focusing on the topological
communications structure between hosts. Every graph feature has a degree of importance, so you
need to understand how they work to find the best one for your graph visualization applications. We
present and discuss the following set of important Centrality Measures for Graph-Based features that
are widely utilized which are DC, BC, CC, Alpha Centrality (AC), local clustering coefficient (LCC),
and Eigenvector centrality (EC) Where BotSward replaced BC With CC.

Definition 1 (Indegree and outdegree):

In Degree (ID) can be described as the total number of head ends into a particular node coming
from adjacent nodes in a directed graph (arrows pointing towards the node). A high ID value of node
implies that the node is the crucial and pivotal node which could be C&C servers or bots, where the
adjacent nodes’ tendency to create additional connections, whereas a low value implies the opposite. In
contrast, The out-degree (OD) is the total number of the tail of the edge ends going out of a particular
node to adjacent nodes in a directed graph (arrows pointing outwards from the node). A high OD
number for a node indicates that it makes more connections with other adjacent nodes, whereas a
low value indicates the opposite. Bots tend to create additional connections with other possible victim
machines in order to expand the botnet’s reach or communicate with the C&C domain for transferring
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information. As a result, on a graph, OD can be a good indicator of botnet activity. In degree weight
(IDW) indicates the total amount of data packets received by a particular node from its adjacent
linked nodes. Whereas the total amount of data packets sent by a particular node to its adjacent linked
nodes is known as the out-degree weight (ODW) [16]. There are two types of graphs as directed and
undirected graphs, Directed graphs have edges with direction whereas Undirected graphs have edges
that do not have a direction. Let G (V , E) be a graph where n is total number of nodes in the graph
and v in V , The mathematical expression for node degree is:

deg (v) =
{

2 (n − 1) , In Direct graph
(n − 1) , In undirect graph

(4)

In direct graph G = (V, A) where V is set of vertices and A is a set of ordered pairs of vertices,

deg +(v) denotes to ID and deg −(v) denotes OD, G is balanced if and only if the in-and out-edges of
each vertex have the same weight. Thus the graph is called a balanced directed graph when:∑

v∈V

deg −(v) =
∑
v∈V

deg+(v) = |A| (5)

Fig. 2 shows the example of ID and OD, ID of vertex v1 is number of edges termination from
vertex v 0, whereas OD of vertex v1 is number of edges starting from vertex v1 [16].

Figure 2: In-degree and OD example

Definition 5 (Betweenness centrality):

BC of a node vi ∈ V is a measure of centrality in graph theory based on the number of shortest
paths from all nodes to all others that pass through that node. The mathematical expression for node
BC is:

f (v) =
∑
i �=v �=j

σij (v)
σij

(6)

where σij is the total number of shortest paths from node pairs vj, vk ∈ V and σij (v) is the number of
shortest paths that pass-through node vj, this feature has a high computational overhead with time
complexity [16,23].

O
(|V| . |E| + |V |2 .log |V|) (7)

Node BC can be a valuable feature for detecting botnets, particularly in P2P botnets when bots are
more interconnected and there is no central C&C structure. However, it has the potential to alienate
bots when they make their first connections, when the bots’ IDW and ODW are low. As a result, it
would be more favorable for the network’s shortest routes to pass via the host. There is an inverse
relationship between node’s DC and node’s BC, when the IDW and ODW increase, the BC of a node
decreases immensely, as it is less favored for being included in shortest paths.
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Definition 6 (Local Clustering Coefficient):

LCC of a vertex (node) in a graph indicates how close its neighbors are to being a complete graph
connected (clique). It has a lower computational overhead. The mathematical expression of the LCC
for node a can be given by:

LCCv = 2.Nv

kv (kv − 1)
(8)

where node known as v kv indicates the number of node’s neighbors v and Nv indicates the number of
link connected pairs between all neighbors of node v where the output always between 0 � Lcc (v) �
1. Lcc (v) feature can play a significant impact to distinguish malicious hosts behavior especially in
P2P botnets detection. As bots, successfully infected hosts have a greater Lcc [16].

Definition 7 (PageRank algorithm):

PR is a Google Search algorithm that ranks web pages in search engine results and way of
measuring the importance of website pages. According to Google, PR calculates the importance of a
website by measuring the quantity and quality of links that point to this page. Intuitively, A node that is
often connected frequently is important, and nodes connected to important nodes are also considered
important. This rule corresponds to bots and C&C servers in botnet detection. The definition for PR
score of node u as

PR (u) = 1 − d
N

+ d
∑

(v∈nb(u))

w (u, v) PR (v)
d (v)

(9)

where d is the damping factor, N is the total number of nodes in the network, u, v are web pages. nb(u)

represents all the neighbor nodes of node u [23].

Definition 8 (Eigenvector centrality):

EC is a measurement criterion of the influence of a node in a graph. The weight of a node in a
graph is effective and important. The score of a node is influenced more by links to high-scoring nodes
than by connections to low-scoring nodes, therefore each node is assigned a relative value. The EC of
a node is determined by the total of the EC of all nodes connected to it. In other words, a node with
a high EC is linked to other nodes with a high EC. Let, A = (

av,w

)
be the adjacency matrix where

a (v, w) =
{

1, if node (v) is linked to node (w)

0, if node (v) is not linked with node (w)
(10)

Then the centrality score can be given as:

xv = 1
λ

+
∑

w∈M(v)

av,wxw (11)

where M (v) is the set of neighbors of node v and λ is a constant. Now Eq. (12) can be

rewritten as

Ax = λ x (12)

Using the power technique and the Perron–Frobenius theorem, a positive solution λ with the last
eigenvector exists. λ is also the largest eigenvalue related with the adjacency matrix’s eigenvector. EC
is an extension of DC, where DC provides equal scores for each node connected [16].
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Definition 9: (Alpha centrality):

The concept of AC was inspired by social network research, EC refers to a node’s relative weight
in the network, with connections to high-scoring nodes contributing more to the vi score [16]. Hence,
AC is given as

xi = αAT
i,jxj + ei (13)

where α is influence factor that controls focus between external sources to internal influence, Ai is the
adjacency matrix, and ei is the external influence of node vi [16].

Definition 10: (Closeness centrality)

CC is a method of detecting nodes that eligible efficiently transmit information throughout a
graph. The concept of CC is based on the average farness (inverse distance) of a node to all other nodes.
Nodes with a high closeness score have the shortest distances to all other nodes to spread information
quickly, these nodes in the graph have important influence of the network. The mean distance between
a vertex and other vertices is measured by CC [36].

For node vi, the closeness is calculated as the average shortest path between that node and all
other nodes in the graph G. This is, let d

(
vi, vj

)
be the shortest path between vi and vj, the closeness is

calculated as

cc = (n − 1)∑(n−1)

(v=1)
d (v, u)

(14)

where d (v, u) is the shortest-path distance between v and u, and n is the number of nodes that can
reach u.

Graph Features Importance

Feature importance refers to a class of techniques for assigning scores to input features to a
predictive model that indicates the relative importance of each feature when making a prediction. In
BotSward, we applied all features discussed above and we found CC is the highest relative importance
by 40%, followed by PR, which has a relative importance of nearly 30%. Whereas BC and LCC are the
lowest features importance. Thus, BotSward discarded the BC and the LCC and applied the following
set of important features relative which are DC, CC, and PR. Fig. 3 presents all the relative importance
of each graph feature.

3.2.2 Machine Learning Analysis Techniques

The features generated previously are crucial and are used by ML and DL models for the
classification of botnets. To train and evaluate these models, we used the CTU-13 dataset, large capture
of real botnet traffic mixed with normal traffic and background traffic. The models that were trained in
this study are Random Forest (RF), Gradient Boosting Classifier (GBC), Logistic Regression (LR),
Stochastic Gradient descent (SGD), Decision Tree (DT), K-Nearest Neighbor (KNN), SVM, and
DNN [37,38].
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Figure 3: Graph features importance

4 Performance Evaluation
4.1 Dataset

We used the CTU-13 dataset, which is one of the largest publicly available labeled datasets and
includes botnet traffic mixed with normal traffic and background traffic [39]. It was developed in
2011 at the CTU and distinguishes 13 scenarios for different botnet attacks. In CTU-13, there are
various types of botnet samples, such as IRC, Port Scan, Click Fraud Spam traffic, Fast Flux,
and DDoS attacks [1]. The distinctive characteristics of the CTU13 dataset are that there are real
botnet attacks, real-world traffic, and multiple types of botnets. Firstly, to have a clear idea about
our analysis, we concatenate all 13 scenarios’ datasets that include benign and bot traffic. For these
categories, 60% of the cases are chosen as training data, while the rest of the dataset, 40%, is used as
validation data. However, the dataset is high-dimensional and largely class-imbalanced. The botnet
traffic distribution in the CTU-13 dataset is just 1.5% of the entire network traffic. In this proposed
work, the Tomeklinks under-sampling approach (T-links) is used for handling the data imbalance.
Tab. 2 shows the distribution of normal and bot flows in each scenario and the botnet used.

4.2 Performance Metrics

A confusion matrix is a table depicting the performance measurement technique for the ML
classification model by presetting and relating the botnet detection and mitigation scheme. A set of
confusion matrix performance measures was used to evaluate the botnet detection models’ robustness
and effectiveness in classifying normal and attack traffic, which requires a high detection rate, high
accuracy, and low false alarm rate. It contains four primary values that are utilized to generate the
performance indicators listed below with the following short explanation for this technique:

• True Positive (TP): Total actual number of attack records correctly classified.
• False Negative (FN): Total actual number of attack records incorrectly classified.
• False-positive (FP): Total actual number of normal records incorrectly classified.
• True Negative (TN): Total actual number of normal records correctly classified.
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Table 2: Scenarios from the CTU-13 dataset used for running experiments

Scenario Total flows Normal flows Bot flows

1 2,824,636 39,933 (1.41%) 2,784,703 (98.58%)
1 1,808,122 1,787,181 (98.84%) 20,941 (1.16%)
2 4,710,638 4,683,816 (99.43%) 26,822 (0.57%)
3 1,121,076 1,118,496 (99.77%) 2,580 (0.23%)
4 129,832 128,931 (99.31%) 901 (0.69%)
5 558,919 554,289 (99.17%) 4,630 (0.83%)
6 114,077 114,014 (99.94%) 63 (0.06%)
8 2,954,230 2,948,103 (99.79%) 6,127 (0.21%)
9 2,087,508 1,902,521 (91.14%) 184,987 (8.86%)
10 1,309,791 1,203,439 (91.88%) 106,352 (8.12%)
11 107,251 99,087 (92.39%) 8,164 (7.61%)
12 325,471 323,303 (99.33%) 2,168 (0.67%)
13 1,925,149 1,885,146 (97.92%) 40,003 (2.08%)

Based on the defined confusion matrix values, the most widely adopted four metrics namely, the
most widely adopted four metrics namely, Accuracy (ACC), Precision (P), Recall (R), F-measure (F),
were used as in most previous botnet detection literature [40,41]. These metrics are defined as follows,

ACC = (TN + TP)

(TP + FP + TN + FN)
(15)

P = TP
(TP + FP)

(16)

R = TP
(TP + FN)

= sensitivity = TPR (17)

F1 − F = 2.
P.R

(P + R)
(18)

4.3 Results

This section summarizes the findings and contributions made, and presents a performance
evaluation of the results obtained from the experiment. The purpose of this evaluation was to see
how well the centrality measurement algorithms and ML-based classifications performed. The results
demonstrate the effectiveness of the proposed BotSward in mitigating botnet attacks.

4.3.1 Performance of Preprocessing Experiment on CTU-13 Datasets

One concern about the findings for the graph features was about the execution time of the
centrality measures. Thus, we did two experiments to calculate the execution time of these measures.
The first experiment yielded that the compute all graph features discussed in Section 3 for determining
the most time-consuming. We found that this method can deliver good results with high accuracy
(reaching 99%), but its calculation of BC was quite time-consuming and expensive. The second
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experiment yielded that the compute all graph features discard BC. We found that this method can
deliver good results with high accuracy (reaching 99%) and with low time consumption. Tab. 3 shows
the comparison between the results of the two experiments. Fig. 4 shows the Experimenting time of
BotSward when using BC and after excluded BC.

Table 3: Comparing of experimenting time with BC and without

DS Nodes All features with BC
(Seconds)

Result All features
without BC (F)

Result

1 8283 85.8262 99% 23.226 100%
2 3628 22.5601 98% 11.6547 98%
3 6345 77.1845 83% 34.8127 83%
4 2235 8.0149 94% 5.5411 93%
5 357 0.1292 93% 0.0602 90%
6 1471 1.1609 99% 0.3392 99%
7 280 0.0939 33% 0.055 33%
8 6385 79.3971 100% 27.6409 100%
9 5950 96.5348 98% 60.2349 99%
10 2342 39.3802 75% 33.6711 75%
12 735 0.2778 100% 0.1117 89%
13 4728 61.5901 99% 18.749 99%

Figure 4: Experimenting time

4.3.2 Performance of Classification Algorithms Experiment on CTU-13 Datasets

In order to ensure the best results from the classifier, grid searching can be applied across ML to
discover the optimal hyperparameters for a model that provide the most “accurate” predictions. Grid-
search will create a model based on each possible parameter combination. It iterates through every
parameter combination and stores a model for each one. Several state-of-the-art binary classification
methods are experimentally assessed in the context of botnet detection. Eight widely used classification
algorithms are discussed, where the predictive powers of RF, GBC, LR, SGD, SVM, DT, and
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KNN are contrasted. For most of these algorithms, we report on several models using alternative
hyperparameter optimization techniques to obtain the best parameters for a given model. Tab. 4 shows
the results of the grid search along with the range of parameters used, and the best parameter values
are highlighted [42].

Table 4: Hyperparameter search comparison (Grid vs. Random)

Classifier Random Grid search

Parameter ACC Optimal ACC

RF criterion = ‘gini,
n_estimators = 700,
max_depth = 6

97% Criterion = ‘entropy’
n_estimators = 300,
max_depth = 8

99%

GBC n_estimators = 100,
max_depth = 3

98% n_estimators = 300
max_depth = 4

99%

LR penalty = l2, solver = ‘sag,
C = 1.0, random_state = 33

81% Penalty = ‘none’,
Solver = ‘newton-cg’,
C = 0.01

82%

SGD penalty = l2,
loss = ‘squaredloss,
learning_rate = ‘optimal’
random_state = 33

23% penalty = l2, eta0 = 0.1,
learning_rate = ‘constant’

50%

SVM kernel = ‘rbf’,
max_iter = 100, C = 1.0,
Gamma = ‘auto’

72% max_iter = 300, C = 0.1,
Gamma = ‘auto’

76%

DT criterion = ‘gini’,
max_depth = 3,
random_state = 33

97% Criterion = ‘gini’,
max_depth = 8

99%

KNN n_neighbors = 5,
weights = ‘uniform’,
algorithm = ‘auto

92% criterion = ‘gini’,
max_depth = 8

94%

4.3.3 Discussion

The results demonstrated in this study match state-of-the-art methods and go beyond previous
reports, showing a better result than in other studies. Graph-based features in previous phases extract
full communication patterns to enhance traffic classification for the learning algorithms. Our findings
in preprocessing suggest that excluding the BC feature and calculating PR, EC, and CC saves around
69.5% of time while maintaining the same high accuracy 99% in the classification models. RF,
GBC, LR, SGD, SVC, DT, KNN, and DNN classification success is attributed to their operational
procedures and ability to select the optimal parameters using the grid-search technique. As a result, the
SGD algorithm had the lowest values in all performance metrics, providing an accuracy of 50% when
compared to other algorithms due to SGD evaluating the error for each training example within the
dataset. This means that the parameters for each training example are updated one by one. Thus, the
frequency of updates causes noise in the gradients, which has an impact on convergence and affects the
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classification accuracy. The SVM algorithm had moderate results in all performance metrics, providing
an accuracy of 76% when compared to other algorithms due to the classifiers not being efficient
with very large datasets. KNN scored higher than the LR by approximately 14.64% in classification
accuracy, and even outperformed SVM by 23.69% for the CTU-13 dataset. The results in Tab. 5 prove
that KNN performs better than LR SVM for classification precision in complex situations [43].

Table 5: Performance comparison of ML algorithms

Classifier Precision (P) Recall (R) F-score (F) Accuracy (ACC)

RF 99% 99% 99% 99%
GBC 99% 99% 99% 99%
LR 86% 82% 81% 82%
SGD 75% 50% 34% 50%
SVM 79% 76% 75% 76%
DT 98% 98% 98% 98%
KNN 94% 94% 94% 94%
DNN 95% 95% 95% 95%

The RF and DT models scored almost the same results, up to 99% and 98%, respectively, since
they execute the classification based on building decision trees to make quick data-driven decisions,
as a DT is easier to interpret and faster to train on large datasets, particularly linear ones. The RF
model needs rigorous training and consumes more training time, up to eight times more than the DT
training time recorded in our experiment. Due to the additive learning technique, which uses gradient
descent to identify challenges in the learners’ predictions and improve weak learners’ predictions, GBC
attained a superior performance of up to 99% as well as RF compared to other algorithms. Also, GBC
overcomes the overfitting problem and attains full computational resource utilization.

Our approach is robust even when the dataset includes missing data because we are just collecting
source IP, destination IP, and total packets, which are usually available in each flow of traffic, and then
from these features, we extract 7 graph features to feed the ML model for bot detection.

5 Evaluation Approach and Discussion

The evaluation of our proposed classification model is based on two aspects: performance of
preprocessing to state-of-the-art and performance of the classification model to state-of-the-art.

5.1 Performance Comparison of Preprocessing to State-of-the-Art

To validate the effectiveness of our preprocessing steps, we evaluated the performance of the same
ML algorithms and same datasets described earlier with different methods for extracting the features.
Here we compare the results of the proposed method with BotSward with those of the traditional
methods in [44] and [45]. Our proposed work on BotSward and these studies all used the same CTU-13
datasets and ML classifiers, which were RF and DT, but the methodologies for extracting the features
were different. [44] and [45] used conversation-based features, while we used graph-based features.
The framework in [44] employed the RF model to extract conversation-based features, and in their
study, the RF had the greatest detection rate of all the classification methods, reaching up to 93.6%,
with only a 0.3% false alarm rate, which is 10 times lower than detection based on traffic flow features
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in [46]. Also, [45] proposed an effective two-stage traffic classification method to detect botnet-based
on DT on conversation features. The DT algorithm’s success rate was as high as 94.4%. From these
results, it is clear that BotSward obtained the most robust results, with 99% with both RF and DT and
only a 0.001% false alarm rate. The comparison of these results is summarized in Tabs. 6 and 7.

Table 6: Performance of [44] compared to BotSward

Algorithm Features Dataset Classifier Recall (R) F-score (F) Accuracy
(ACC)

[44] Conversation-
based

CTU-13 RF 93.6% 93.6% 93.6%

BotSward Graph-based CTU-13 RF 99% 99% 99%

Table 7: Performance of [45] compared to BotSward

Algorithm Features Dataset Classifier Recall (R) F-score (F) Accuracy
(ACC)

[45] Conversation-
based

CTU-13 DT 94.4% 94.4% 94.4%

BotSward Graph-based CTU-13 DT 98% 98% 99%

5.2 Performance Comparison of Classification Algorithm to State-of-the-Art

To validate the effectiveness of our classification model in BotSward, we evaluate the performance
of the different ML classifier algorithms using the same feature extraction methods and dataset.
We used the CTU-13 dataset to compare our model to the state-of-the-art in graph-based botnet
detection methods, namely BClus, CAMNEP, BotHunter, BotGM, and Botchase, which are described
in Section 2. Tab. 8 reports the results for each solution and all scenarios from the test set, which
includes Scenarios 1, 2, 6, 8, and 9, as recommended in [26]. Our results are very competitive as
we reached an accuracy of between 97% and 100%, while other studies with BClus, CAMNEP, and
BotHunter only provide an accuracy of between 30% and 50%. Only Botchase achieved up to 99%
accuracy for Scenario 9, but it achieved moderate accuracy in the remaining scenarios. To compare
BotSward, Botchase, and BotGM for graph-based botnet detection, we used the performance metrics
for Scenarios 1, 2, 8, 6, and 9 to measure how well they worked.

Table 8: Accuracy of different algorithms evaluated in [26] and compared to BotSward

Classifier 1 2 6 8 9

BClus 50% 50% 40% 30% 40%
CAMNEP 50% 40% 40% 50% 50%
BotHunter 40% 30% 38% 42% 40%
BotGM 91% 78% 95% 89% 83%
BotChase 98% 97% 94% 84% 99%

(Continued)
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Table 8: Continued
Classifier 1 2 6 8 9

BotSward 99% 97% 99% 100% 99%

BotChase vs. BotSward, according to the BotChase experiment, they applied ID, OD, ODW, BC,
LCC, and AC graph-based algorithms, and therefore they employed a two-layer detection approach
based on supervised and unsupervised learning. However, the BC feature used in Botchase has a high
computational overhead, with a time complexity of (O|V|.|E| + |V|2. log |V|). In contrast, BotSward
focuses on the measures of centrality used in Botchase and replaces BC with PR, EC, and CC, followed
by a one-layer detection technique based on GBC ensemble ML algorithms. In Scenario 8, Botchase
achieved 84%, whereas BotSward achieved outstanding results with 100%. Overall, the accuracy in
BotSward overcame that obtained in Botchase by the ratio of 2% to 16% and reduced the time
complexity by the ratio of 69.55%, as shown in Tab. 8.

Reference [23] vs. BotSward, [23] proposed an anomaly-based botnet detection method by hybrid
analysis of flow-based features and graph-based features of network traffic. They extracted 7 graph
features from network traffic, which are ID, OD, IDW, ODW, LCC, BC, and PR. Their results achieved
a good performance with a 96.62% F-score. In contrast, BotSward focuses on the bot classification by
measuring the centrality used in [23] and replacing BC with CC [23] achieved a moderate performance,
with a 96.62% F-score compared to a high performance of more than 99% in BotSward.

BotGM vs. BotSward, while both of these systems use graph methodologies in attempting to
identify behavior that is malicious or outlying, the BotGM model only achieved accuracy of up to 95%
in Scenario 6 of the test datasets, in contrast to 99% for BotSward. In addition, the lower accuracy
of the BotGM model was shown in Scenario 2 with 78%, and in contrast, BotSward achieved 97%,
as shown in Tab. 8. However, BotGM generates multiple graphs for every single host, which entails a
high overhead. According to our results, it can be concluded that BotSward outperformed BotGm in
terms of lower overhead and higher accuracy, as shown in Fig. 5.

Figure 5: Accuracy of different algorithms evaluated in [26] and compared to BotSward

In summary, using graph-based features in the ML approach provides robustness in defending
against unknown attacks and complicated communication patterns, and provides enhanced resource
utilization, a low error rate, a high detection rate, and detection and mitigation of botnet attacks. Put
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simply, BotSward is suitable to work with a variety of datasets because it only requires the extraction
of source IP, destination IP, and total packets from the dataset, and then we can calculate measures
of centrality for graph-based botnets, which include DC, CC, EC, and AC, and then use the ML
classification to detect unknown botnets by using these features.

6 Conclusion

This paper proposes BotSward, a botnet attack defense approach based on centrality measures
for graph-based and ML algorithms. BotSward utilizes centrality measures for graph-based, which
employs a set of important graph algorithm features that are widely utilized. The graph-based feature
extraction in all the previous studies suffered from high computational overhead because of the time
complexity of the BC, and so we suggest excluding BC and LCC, and replacing them with CC, as
we found the same high accuracy with a time reduction of up to 69.5%. Our proposed solution then
employs a detection model based on the ML algorithm to distinguish different botnet attacks from
normal traffic. We compared various types of ML such as RF, GBC, LR, SGD, SVM, DT, KNN, and
DNN and evaluated them using the CTU-13 dataset, and GBC showed the top accuracy, up to 99%
in all dataset scenarios and 100% in some scenarios compared with other ML algorithms with a false
positive rate as low as 0.0001%. BotSward is also able to detect bots that rely on different protocols and
proves robust against unknown attacks. In future work, we intend to deploy our BotSward approach
in the Software-Defined Network (SDN) environment, which is an emerging network architecture
that provides centralized administration through a single controller that decouples the control and
data planes, addressing the limitations of traditional networks. However, this evolution has made the
controller a critical target for malicious users to launch attacks such as DDoS attacks, where botnets
provide platforms for DDOS. Several ways to stop botnet attacks in SDNs have been discussed, but
the problems still exist.
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