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Abstract: Due to their low power consumption and limited computing power,
Internet of Things (IoT) devices are difficult to secure. Moreover, the rapid
growth of IoT devices in homes increases the risk of cyber-attacks. Intrusion
detection systems (IDS) are commonly employed to prevent cyberattacks.
These systems detect incoming attacks and instantly notify users to allow
for the implementation of appropriate countermeasures. Attempts have been
made in the past to detect new attacks using machine learning and deep
learning techniques, however, these efforts have been unsuccessful. In this
paper, we propose two deep learning models to automatically detect various
types of intrusion attacks in IoT networks. Specifically, we experimentally
evaluate the use of two Convolutional Neural Networks (CNN) to detect
nine distinct types of attacks listed in the NF-UNSW-NB15-v2 dataset. To
accomplish this goal, the network stream data were initially converted to two-
dimensional images, which were then used to train the neural network models.
We also propose two baseline models to demonstrate the performance of the
proposed models. Generally, both models achieve high accuracy in detecting
the majority of these nine attacks.

Keywords: Internet of things; intrusion detection system; deep learning;
convolutional neural network; supervised learning

1 Introduction

As the Internet of Things (IoT) has grown in popularity in our daily lives [1], it is a research
and industrial trend in the field of Information and Communication Technologies (ICT) that has
grown accustomed to being a part of technological advancements in our daily lives. The IoT is a new

https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2023.030831
mailto:shoaib1646@gmail.com


1352 CMC, 2023, vol.74, no.1

communication paradigm that refers to devices having the sensors and the actuators that can be used
as objects or they are the “things,” that sense their surroundings, communicates with each other, and
exchange data though the Internet [2]. The IoT requires the platform’s development upon which all the
products, applications & services can be connected for capturing, communicating, storing, accessing,
and sharing/transferring data from real world [3,4]. Around 50.0 billion IoT devices are currently
connected to Internet, and the number is still expected for growing exponentially in the coming years
[5,6]. Numerous applications can benefit from the massive amounts of data generated by such a large
number of connected devices. Numerous IoT application scenarios exist, including those involving
food and agriculture (including smart farming), demography, assisted living, e-health, and augmented
learning, to name a few. By 2025, for example, there will be 15.3 billion IoT devices in use for smart
agriculture [7,8]. Numerous industrial sectors and this is true across all industries, require a large no.
of sensors & the actuators for real-time & environmental monitoring so that it can provide the insights
that are actionable and also can make timely decisions [9].

Despite this, there are numerous impediments to the IoT widespread adoption in research and
industry. Security and trust, reliability, scalability, and portability are just a few of the issues that can
cause problems. The IoT introduces a wide variety of potential security threats due to their connection
to the global Internet via immature and insecure communication protocols and applications [3,4]. A
cyberattack could use unauthorized access to IoT-based applications to introduce anomalies and cause
them to make incorrect control decisions, potentially wreaking havoc on people’s lives and property,
as well as the economy [7,10]. The sophistication of threats to the IoT ecosystem is increasing, and
cyber-attacks pose a significant threat to the ecosystem. To compound matters, IoT devices rely on
various platforms and network connectivity protocols (such as Ethernet, Wi-Fi, ZigBee, and wired-
based technologies) to achieve connectivity. Multiple standards and protocols must be coordinated
in order to reduce security threats. The heterogeneous & distributed nature of IoT applications adds
to the complexity of IoT networks & thus increasing the likelihood of security breaches in the IoT
environment as a result of the various technologies utilized by IoT industry. Numerous security issues
and cyber-attacks on IoT networks result from these disadvantages. Accurate anomaly detection IDS
models are therefore critical for the success of IoT applications. Numerous IDS have been proposed
to safeguard IoT devices from cyber criminals [11–13].

Active security measures and passive security measures are the two types of security solutions
that can be implemented. Taking proactive measures to defend against external threats can effectively
protect the IoT. Although active security measures are in place, there is a high risk of intrusion
because the IoT is connected to the global Internet. IDS are used as a second line of defense and
can detect and prevent a wide range of cyberattacks and other threats. A large number of IDS
solutions have been proposed [14–16], and IDS solutions have received a great deal of attention from
researchers and industry in the context of the IoT. In terms of the methods used to detect them,
IDS solutions can be divided into three categories: signature IDS models, anomaly IDS models, and
hybrid IDS models, among others. As a general rule, signature-based approaches are more effective
against known attacks, whereas anomaly-based approaches are more effective against unidentified
attacks. It is inefficient and unproductive to employ traditional signature-based techniques since they
demand constant human intervention and expertise for extract attacking patterns and patterns to
updating the IDS models [17,18]. This has occurred as a result of the heterogeneity, dynamic nature,
and complexity of IoT networks. Using anomaly-based intrusion detection systems in the IoT has
several advantages, including detecting zero-day attacks and the need for less manual intervention [18].
In hybrid approaches, signature-based approaches are combined with anomaly-based approaches to
provide a complete picture. The use of signature-based intrusion detection systems in the IoT networks,
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on the other hand, is restricted due to the impracticality of relying on predefined attack patterns
(signature-based) for intrusion detection in the networks of IoT [16–18].

Anomaly intrusion detection systems, which are critical components of intrusion detection in
IoT environments, are essential in combating this threat. The vast majority of existing IDSs develop
detection models using traditional machine learning techniques [19], described in more detail below.
Machine learning techniques are frequently used in developing IDS models, and they are particularly
effective. When it comes to extracting representative features from the big and unstructured data
generated by IoT devices, however, the speed and volume of IoT devices necessitate extensive research
efforts. As a result of the large amount of unstructured data generated by IoT devices, traditional
machine learning techniques, which require elaborate feature engineering, will necessitate extensive
research efforts to extract representative features from the data. Therefore, traditional machine
learning-based solutions continue to encounter several challenges when putting them into practice.
During the past several years, deep learning (DL) techniques have become increasingly popular in
IDSs, particularly in the military. In order to extract relevant information from rapidly changing and
real-time data streams, DL accelerates the analysis of fast and real-time data streams to predict the
future of the IoT.

In general, digital learning is seen as more trustworthy and accurate than conventional learning
since it is easier to extract information and so delivers superior accuracy [20]. As a result of its
ease of use and higher degree of accuracy in extracting data, digital learning is used. Therefore, the
application of DL techniques in areas such as anomaly and malware detection has been the focus of
some research, with the results still inconclusive. DL techniques have been applied to problems that
fall under 2 different perspectives, namely, technical & regulatory, in anomaly & malware detection.
Most IDS systems have been built using existing computer networks, wireless sensor networks, and
self-organizing mobile networks, among other sources. However, while the IDS proposed for these
networks is suitable for IoT applications, the unique characteristics of IoT-based networks, such as
connectivity to the global Internet and the use of lightweight resources, render it ineffective for IoT
applications [11,12]. Only a few studies have been conducted in the IoT domain specifically focused on
DL techniques [21]. Deep learning-based IDSs haven’t been specifically studied, as far as the authors
know, in IoT security research. Consequently, the aim of this study is to fill up this gap and investigate
how decentralized techniques may be used most effectively and efficiently in IoT environments. This
review, which employs DL techniques to discover robust anomaly-based intrusion detection systems,
provides an in-depth, focused, and high-quality analysis that will guide future research in the field
of IDS.

We proposed two novel Deep Convolutional Neural Network (DCNN) methods for the detection
of various malicious and benign intrusion attacks in a IoT networks. We improved the performance of
an automatic intrusion detection and reduced the computational power which may be helpful for low
power IoT devices in the network. We identified the subcategory of cyberattacks in the IoT networks.
We performed a comparison of two custom created DCNN model in term of accuracy and efficiency
the proposed scheme with other DL and traditional Machine Learning (ML) techniques. Unlike many
previous works we use a modern dataset that is using new standard feature set for network intrusion
detection system datasets. In this manuscript, we use a small convolutional neural network that can
fit on IoT devices whereas prior work using CNNs have not been specifically aimed at IoT.
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2 Literature Review

The information industry’s software and hardware systems are protected from external threats by
security, an essential and integral component of the sector. As the amount of new data generated on
the Internet continues to grow, the importance of data security to a business’s success grows.

2.1 Internet of Things Security

The Internet of Things is not a centralized system core architecture (IoT). The IoT has created
a new ecosystem of connected devices and smart cities, breaking away from traditional centralized
system core architectures [22]. It is now an essential part of the smart city infrastructure. By using
embedded device networks or other wireless methods, anyone with an internet connection can access
massive amounts of sensitive and private data in the future [23]. The IoT has many advantages for
users, service providers, and businesses, but it also has many drawbacks.

An embedded system communicates via a protocol that varies by device and application, unlike a
traditional network system. There is currently no centralized and uniform framework for developing
security measures. This increases security risks associated with IoT networks as data volume increases
[24]. Most network attacks and anomalous behavior involve malicious code, trojan horses, hackers,
and viruses. These are the most common and destructive malicious objects. Device theft, device
manipulation, identity theft, and eavesdropping [25] are all serious threats to IoT networks. When
the IoT is compromised, it affects both people’s lives and data integrity. For example, hackers can
hack a person’s fitness tracker or IoT-based perimeter defense system, gaining unauthorized access
to sensitive workplace areas like Information Technology (IT) infrastructure. Also, IoT flaws make it
easier for hackers to access sensitive data and systems. The device can authenticate and encrypt data
before transmission and exchange to prevent unauthorized access. Encryption prevents hackers from
gaining access to data even if they steal it. A device that cannot be manipulated avoids the autonomous
control trap [26].

Signed coding certificates serve as digital signatures to ensure that only authenticated code is
executed and that only the editor can break or change the code. Due to encryption, IoT devices often
run on different platforms [27]. By 2020, over a billion devices and servers will be online, giving hackers
an infinite number of new attack vectors to profit from. Without centralized control, the only way to
protect these devices is to protect them at the factory. Because cloud servers are the primary traffic
conduit for the IoT, they must act as a secondary perimeter defense. Existing cloud security regulations
can be tailored to the IoT environment [28], allowing for the most efficient implementation. The use
of Deep Learning (DL) methods such as Deep Reinforcement Learning (DBN) has accelerated the
development of IDSs for IoT servers [29].

Network traffic identification is critical to network security because it alerts when an intrusion
is detected. Traditional detection systems become ineffective as traffic packets and users grow. Port
detection is another long-used technique. The basic Hyper Text Transfer Protocol (HTTP) does not
perform well due to the system’s limited protocol set compared to other systems worldwide. Other
system applications use the signature mode approach to deliver specific payloads. [30] Remember
that this strategy can be used in a wide range of situations. Many machine learning algorithms have
been proposed for traffic recognition, each with its own set of benefits and drawbacks. Traditional
traffic recognition and classification algorithms like plain Bayes [31], random forests [32], and decision
trees [33] have long been used. In their work, Yang et al. [34] used Restricted Boltzmann Machine
(RBM) and Support Vector Machine (SVM) to detect and identify network traffic. However, machine
learning has enabled the development of more sophisticated methods for analyzing security issues.
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The researchers say there are numerous ways to apply DL to cybersecurity. A recent study found
that hybrid methodologies were used to create IDSs. Various DL methods are used in the overall
process, which is divided into three categories. [34] The method has been used to detect numerous
malicious anomalies in network traffic. The method uses a variety of statistical techniques to process
network data computations. This is done by observing how the system’s neutral points interact. To
detect network security anomalies, a variety of network security variables must be evaluated.

2.2 Factors in Intrusion Detection

When an IDS attempts to detect a system intrusion, it must first distinguish between normal data
and system anomalies. Thus, the IDS should detect malicious data characteristics. The classification
system must also accurately distinguish between the two information sets for normal and abnormal
data. The system uses a network-specific code to calculate distance between nodes automatically [35].
This technique’s use is predicated on the following fundamental assumption: A distance between
two nodes’ consistency is used to estimate data integrity and normality [36]. As a result, a large
distance between nodes indicates anomalous data, which is a red flag. The Manhattan distance can
be calculated in two ways: by using the cumulative network size distance or by using the Euclidean
distance, which focuses on calculating the vector size. Manhattan Distance is used to calculate the
distance between two points in a network. Another issue is sample integrity, which is used to detect
anomalies in samples (also known as ordinary poisoning). The output of the feature extraction
functions is critical in unsupervised DL because it determines the overall learning outcome. As a result,
the method should protect normal data while allowing for continuous self-defense. Manipulation of a
network includes adding traffic and performing information operations [37].

2.3 Traditional Detection Methods

Machine learning, on the other hand, can be used to detect malicious anomalies in a network,
which is particularly useful for catching hackers. [38] Automatic dimensionality reduction (ADR)
is a video streaming technique that uses both the encoder and decoder to reduce dimensionality.
There are three more layers: an input layer, an output layer, and a hidden layer. Autoencoders also
use pre-training, deployment, and fine-tuning. All of this is done by professionals in a controlled
setting. Deep belief networks (DBNs) [39] are also significant because they combine unsupervised
RBM and supervised backpropagation network layers, and are considered traditional DL methods.
Unsupervised RBM and supervised backpropagation network layers are combined in deep belief
networks (DBNs) [39]. Unsupervised RBM processing and supervised RBM processing are two DBN
approaches. These two techniques were combined to create a hybrid anomaly detection system. This
method’s dimensionality reduction is achieved by separating vectors using autoencoder algorithms
[40]. As a result, DL systems classify data collected by DBN systems. In conclusion, hybrid systems
have less time-related complexity and more detection accuracy. Studies show that protocol identifi-
cation threatens traditional detection methods, even though over one-eighth of all network traffic is
unidentifiable. [41] A system that uses probabilistic operations on unknown flows, such as DL, is more
accurate.

2.4 Sequential Detection Method

The language model represents the probability distribution of the word sequence being evaluated
in Natural Language Processing (NLP) tasks. The RNN-based language model is widely used in NLP,
but it can also be used with other sequential data types. Sequential data, like system routines, network
load, and programme code, dominates the cyberspace security domain. As in sequence modelling,
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the vanishing and exploding gradient of basic RNN models is unstable. Several relevant papers and
experiments have used the Long Short-Term Memory (LSTM) model [42]. Because it depicts the
interaction between programme and system kernel, system routine sequence data is the most useful and
accurate data to have. Real-time traces of the system routine are easy to obtain for data acquisition [43].
In addition, the system routines sequence corresponds to the system’s language. The system routine
and its sequence are compared to natural language words and sentences. Using this data, we can
determine if the system is out of sync. To forecast anomalies, the sequential model’s backend uses an
ensemble of thresholding classifiers to model the system’s normal sequence in language. The language
model can estimate a system’s sequence’s probability distribution. The data is fed into the model using
a one-hot encoding form [44]. During the training phase, the Backpropagation Through Time (BPTT)
algorithm [45] provides standard samples. The back-end classifiers are Neural Network (NN) and k-
means models [46]. A web shell takes more steps to detect than a backdoor. The first step is to convert
PHP (Hypertext Preprocessor) files to opcodes using Vulcan Logic Disassembler (VLD). The Bag
of Word (BOW) model can then decode the opcode. The final step is to feed the sequence into the
language model.

3 Methodologies

This section discusses how the intrusion detection dataset i.e., NF-UNSW-NB15-v2 presented
in the paper and how the same was used to develop DL models to detect/identify and classify
cyberattacks. Details of our categorization studies and neural network model utilized for testing are
described in great depth. Additionally, we discuss classification experiments more broadly.

3.1 UNSW-NB15

The Cyber Range Lab at the Australian Centre for Cyber Security (ACCS) published the dataset
in 2015. According to the researchers at the Australian Centre for Cyber Security, it is one of the
most extensively utilized NIDS datasets on the market (ACCS). Additional 12 features were created by
matching the Argus and Bro-IDS datasets to each other and extracting 35 features [47]. Network traffic
generated by the IXIA PerfectStorm tools and captured as pcap files are also included. By comparing
the NF-UNSW-NB15-v2 dataset to the UNSWNB15 dataset, we were able to create a new dataset
called the NF-UNSW-NB15-v2, which was developed utilising 43 NetFlow characteristics retrieved
from the nProbe pcap file as criteria. The NF-UNSW-NB15-v2 dataset is a newly created dataset that
is based on the UNSWNB15 dataset but includes extra information. The IoT data is preprocessed by
converting it to RGB images using the short-term fast Fourier transform method, the resolution of the
constructed RGB image is 256 × 256 24 bit image with are saved in .png file format. As a result, this
dataset [48] was chosen, and the results demonstrated that using this new dataset resulted in significant
improvements in multi-class classification and reduced prediction times.

3.2 Data Processing

After data is collected, it must be pre-processed before being used to train our model, which is
the next step after data collection. Cleaning the data, transforming it, splitting it into training and
testing sets, and creating image representations are all steps in a five-step process. A Comma Separated
Values (CSV) file containing 43 NetFlow functions, each with an attack category and a malicious or
not label. After cleanup, we have a dataset with 37 features Tabs. 1 and 9 classes Fig. 1. For speed, we
used only 40% of the dataset. Hierarchical split ensured equal distribution of attacks. After the image
conversion, we needed to split the dataset into training (60%) testing (20%) and validation (20%) sets.



CMC, 2023, vol.74, no.1 1357

Each attack in each dataset is represented hierarchically. A total of 560927 training, validation, and
test samples were used. In general, large datasets are trained with 3-way holdout because high variance
is less of an issue than small datasets [49]. Because our dataset is not image-based, we used the same
method as Nguyen et al. [50]. Fig. 2 shows the three steps. Our data are normalised using min-max
scaling Eq. (3.1). Padding ensures the array is the right size. An 8-bit integer is created by multiplying
255 by a colour map. Color maps help DoS (Denial-of-Service) attacks and malware improve CNN
images [51,52]. The Eq. (3.1) is used to normalized the IoT data which is used for model training and
validation, the variable x represent a features of an attribute while the max(x) is the maximum value
in that attribute and min(x) is the minimum value in the selected attributed used for normalizing an
entire attributes values in a dataset.

x́ = x − Min (x)

Max (x) − Min (x)
(3.1)

Table 1: A few of the 37 features from the NetFlow used to train classifiers

Feature Description

PROTOCOLP Identifier byte for IP protocol
L7-PROTOCOL Layer 7 protocol
INPUT-BYTES No. of bytes (Incoming)
OUTPUT-BYTES No. of bytes (Outgoing)
INPUT-PACKETS Income No. of packets
OUTPUT PACKETS Outgoing No. of packets
No-PKTS-1-128-BYTES Packets whole IP size <= 128
No-PKTS-128-256-BYTES Packets whole IP size > 128 and <= 256
No-PKTS-256-512-BYTES Packets whole IP size > 256 and <= 512

Figure 1: Frequency of instances by class distribution using the histogram method
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Figure 2: The process of creatin g a 2D RGB image

3.3 Models
3.3.1 MyCNN

Fig. 3a shows three convolutional modules, followed by two fully connected layers and a softmax
activation layer, which modifies the basic CNN structure slightly from what is shown. IoT and Android
malware [53,54] can be categorized using similar smaller models, as well as other types of malware [55].
Given that this network will be used for comparison purposes, it bears little resemblance to the basic
CNN structure that will serve as the investigation’s starting point. There are three layers total: a 3 ×
3 convolution layer, a batch normalization layer, and a max-pooling layer (2x2) for downsampling
the input data. On the right side of Fig. 3b, the complete structure of MyCNN can be seen, where
the first two convolutional modules tends to increase the width from three to sixteen and finally to
thirty-two by increasing the number of convolutional modules between them. As can be seen from
the Fig. 3b, there is no representation of the spreading layer between the first fully connected layer
and the third convolutional module, which is responsible for converting the matrix to a single array.
Between the first fully connected layer and the ReLU and between the first fully connected layer and
the subsequent dropout layer, there is a probability of 0.5. The data is then transmitted to the final,
fully-connected layer, which extracts the features needed for classification. The final fully-connected
layer in MyCNN is the maximum pooling layer.

3.3.2 IoTCNN

While the standard 3 × 3 convolution is a good starting point for most applications, T. Lawrence
and L. Zhang developed our second model, IoTCNN, for resource-constrained environments such
as IoT devices. Convolutional modules (blocks) and groups (multiple blocks) make up the network
structure instead of the standard 3 × 3 convolution [56]. Fig. 4 illustrates a hierarchical organization
of blocks, with each block incorporating batch normalization, an activator for the ReLU, and a jump
connection to the next block in the hierarchy. The network structure is more fully illustrated in Fig. 4b;
to control the network’s width the first 3 × 3 convolution along with the first block of each group of
n convolution blocks are used, and the width factor k is calculated using the method proposed by S
Zagoruyko and N Komodakis [57]. Due to the model’s proclivity for overfitting most classes, we added
the dropout with probability of 0.2 between each set of blocks. A final fully connected layer at the top
of the hierarchy performs the final classification. The parameters n = 3 and k = 0.2 were chosen for
training the IoTCNN network.
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Figure 3: MyCNN architecture

Figure 4: IoTCNN architecture
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3.4 Training

For training classifiers on unbalanced datasets, we implemented a number of different techniques,
all of which are described in this section. The testing hardware and methods used to select hyperpa-
rameters are also described here. It also describes how we selected the hyperparameters that were used
for testing.

3.4.1 Hardware

We trained four neural networks concurrently without experiencing any lag when using hardware
rented from vast.ai, a service that delivers docker instances over peer-to-peer hardware for rental
aggregate. We trained four neural networks concurrently using rented hardware with no lag.

• HP Z-440 Intel® Xeon® Processor E5-2697 v3 CPU @2.90Ghz
• Nvidia RTX 2070 Super 8 GB GPU
• 47 GB of DDR4 RAM

3.4.2 Hyperparameters

Our research focused on two hyperparameters: learning rate and batch size. We deemed these two
parameters crucial. In the end, the models with the least validation loss had the best performance.
We used this data to calculate our hyperparameters. The learning rate was set to 0.01, 0.001, 0.0001,
and 0.00001 to allow the model to converge as quickly as possible without returning a worse solution.
Our tests show that when the learning rate is greater than 0.0001, the model achieve to learn and
produces useful results, instead classifying all samples into the same category. Because a learning
rate of 0.00001 gives significant results for 50 epochs, we used 0.00005 to get a good balance of
performance and efficiency. Consider the number of samples used to train the network in each iteration
when determining batch size. This determines the length of training and the model’s generalization
ability. According to S. Keskar and coworkers, using large data sets reduces the generalization ability
of models [51,58,59]. As a result, big data models lose generalizability. Using larger batch sizes than
128 rather than 32, 64, and 128 can significantly reduce training time per epoch. As a result, we chose
128 for training because we are working with small images and each batch does not require a lot of
graphics card RAM. Small images and low-memory batches are the main reasons.

3.4.3 Sampler

We sample our dataset using weighted random sampling and the official Pytorch implementation
of this sampler. We assign a weight to each sample in the dataset we are sampling using this sampler.
Eq. (3.2) [60] is used to calculate the weight of a class, where x denotes the class being weighed. We
will use Eq. (3.2) to calculate the class weight, where x denotes the class [61]. The training weights
are listed in Tab. 2, and they effectively undersample the majority of our classes (for example, benign)
while oversampling a few (for example, malignant) (e.g., worms).

∝ = 1
Total x

(3.2)

3.4.4 Loss Functions

Our loss function is the cross-entropy loss (CELoss), which is commonly utilised in CNNs and is
frequently employed in conjunction with softmax activation. The cross-entropy loss, which is perhaps
the most often used loss function for CNNs, is also evaluated to see how adding weights to each class
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affects the loss function in conjugation. The network will try to avoid misclassifying classes with higher
weights by adding weights. In order to rebalance the loss, people developed a second loss function
known as class balance loss. To determine the type of loss, there are three hyperparameters that control
the loss function: softmax, sigmoid, focuses of the loss type, β ∈ 0.9, 0.99, 0.999, 0.9999 for
adjusting between no re-weighting and inverse class frequency re-weighting, and γ ∈ 0.5, 1.00, 2.00 to
adjust the focal loss by downward weighting rate [62,63]. These values i.e., β = 0.999 and γ = 0.5; a,
worked well on all datasets tested, hence they were used in this study. Early tests revealed that when
using weighted CELoss or CBLoss with a learning rate of 0.00005, the training and validation losses
do not change during training, as a result, we chose the lower learning rate of 0.00001.

Table 2: Weighted random samplers employ class weights

Class Weight

Analysis 0.190
Backdoor 0.211
Benign 0.807
DoS 0.101
Exploits 0.101
Fuzzers 0.303
Generic 0.104
Reconnaissance 0.603
Shellcode 0.509
Worms 0.820

3.5 Classification Experiment

In our studies, we use the NF-UNSW-NB15-v2 dataset to train and evaluate two distinct CNN
models for multiclass classification, each with four possible configurations. We train 100 epochs for
each model after picking hyperparameters, store the parameters when the validation loss lowers,
and then test using the model with the best validation loss. The Adam optimizer [60], one of the
most extensively used neural network training optimizer, is employed during the training process.
Additionally, we used I. Loshchilov and F. Hutter’s decoupled weight decay regularisation with a factor
of 0.0005, which has been shown to improve generalisation performance when employing Adam [64].
Tabs. 3 and 4 detail the test parameters utilized for each model.

Table 3: MyCNN CNN training parameters

MyCNN MyCNN CE MyCNN CN MyCNN Sampler

Batch size 64 64 64 64
Initial LR 0.0001 0.0001 0.0001 0.0001
Loss function Cross entropy loss Weighted cross

entropy loss
Class balance loss Cross entropy LOSS

(Continued)
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Table 3: Continued
MyCNN MyCNN CE MyCNN CN MyCNN Sampler

Weight decay 0.0004 0.0004 0.0004 0.0004
Sample N/A N/A N/A Weighted Random Sampler

Table 4: IoTCNN CNN training parameters

IoTCNN IoTCNN CE IoTCNN CN IoTCNN Sampler

Batch size 64 64 64 64
learning rate 0.0001 0.0001 0.0001 0.0001
Loss function Cross entropy loss Weighted cross

entropy loss
Class balance loss Cross entropy loss

Weight decay 0.0004 0.0004 0.0004 0.0004
Sample N/A N/A N/A Weighted Random Sampler

4 Results and Analysis

There were 100 epochs of training and validation datasets that were pre-segmented. A neural
network’s training and validation results are its loss on the training set and validation sets as well, on
its validation accuracy, and on its average training time.

On the graph in Fig. 5, the dashed line represents the model’s training loss, while the solid line
depicts its validation loss over time. If the network is under or overfitted, the correlation between
validation and training losses can be used to determine its performance. Underfitting occurs when the
validation loss is less than or equal to the training loss, while overfitting occurs when this difference is
bigger. All trained models after epoch 20, experience a quick decrease in loss as early in training in a
closer examination of Fig. 5a. The only models in which the training loss decreases significantly over
time are MyCNN Sampler and MyCNN CELoss, but because the validation loss does not decrease
at the same rate, this could indicate overfitting the training set. In comparison to the other models,
CBLoss has a lesser loss since it classifies attacks into fewer categories. As demonstrated in Tab. 5,
the difference in loss between the IoTCNN and MyCNN models during training is bigger than the
difference in loss between the MyCNN models.

Figure 5: Classification model training and validation loss plots
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Table 5: Model training with the best validation loss

Model Validation loss Model Validation loss

MyCNN 1.45 IoTCNN 0.024
MyCNN sampler 1.47 IoTCNN sampler 0.068
MyCNN CELoss 1.45 IoTCNN CELoss 0.052
MyCNN CBLoss 0.58 IoTCNN CBLoss 0.020

The validation accuracy of the model is shown in Fig. 6, and we can see that it varies more than
the full range of training and validation losses. Both MyCNN and IoTCNN can achieve accuracies of
close to 99 percent at their peak, which is similar to the losses we see, with most of the improvement
occurring in the first 20 periods. MyCNN’s resampling accuracy is lower than the other methods,
whereas IoTCNN’s accuracy is comparable to the other high-performing methods. When using class
balance loss, the accuracy of the two networks differs, with MyCNN’s validation accuracy erratic and
IoTCNN’s validation accuracy consistent at 0.01 percent. It is worth noting that 182,282 out of 186,976
samples are benign, or 97.49 percent, implying that classifiers that overfit to most classes will have that
accuracy, implying that accuracy is not all the time a good measure for unbalanced datasets. IoTCNN
takes more time to train than MyCNN because of its usage of more convolutional layers, as seen in
Tab. 6. When using weighted CELoss or CBLoss for any of the four networks, we see no increase in
time, but we see an increase in time when using resampling due to oversampling and undersampling.

Figure 6: (Continued)
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Figure 6: Validation accuracy plots of proposed CNN models

Table 6: Average time taken per Epoch in model training

Model Time (s)

MyCNN (CELoss/CBLoss) 123
MyCNN Sampler 139
IoTCNN (CELoss/CBLoss) 235
IoTCNN Sampler 244

It took roughly 42 h to train all 8 models because we could only train four models at a time,
resulting in a training round lasting more than 10 h each time.

4.1 Classification

The models with the lowest validation loss were selected to evaluate the classification capabilities
of our models, and they were then used to classify the test samples. A confusion matrix is used to
display and assess the classifying results for each model. In addition, we calculated generic metrics
that measure the performance of each type of abnormality detection using the values in the matrix to
determine the best model for each neural network. The proportion of correct predictions in all samples
is called accuracy. The proportion of true positives to all positives is known as precision. F1 Score, the
sum of precision and recall, is the proportion of correct predictions across all relevant samples.

Accuracy = TP + TN
TP + TN + FN + TN

(4.1)

Precision = TP
TP + FP

(4.2)

Recall = TP
TP + FN

(4.3)

F1 − Score = 2 ∗ (Precision ∗ Recall)
Precision + Recall

(4.4)
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4.1.1 Cross-entropy Loss

The confusion matrix in Tab. 7 shows the MyCNN trained on an imbalanced dataset and how all
samples are sorted into the three biggest classes using the conventional cross-entropy loss. The analysis
has been misclassified as secure because many attack samples were classified benign. In terms of recall,
the model has an 88.9 percent use rate for the vulnerabilities it categorizes.

Table 7: Confusion matrix of MyCNN proposed model based on Cross-entropy Loss

Class Analysis Backdoor Benign DoS Exploits Fuzzer Generic Recon . . . ShellCode Worms

Analysis 0.0% 90.0% 6.6% 3.33%
Backdoor 0.0% 18.5% 37.0% 44.4%
Benign 99.7% 0.05% 0.14%
DoS 21.7% 0.0% 61.7% 16.4%
Exploits 6.13% 88.9% 4.96%
Fuzzer 5.38% 3.02% 91.5%
Generic 16.9% 65.9% 17.4% 0.00%
Recon . . . 0.76% 30.5% 68.6% 0.00%
ShellCode 5.36% 3.50% 91.2% 0.00%
Worms 100% 0.00%

Although like MyCNN, IoTCNN only categorizes samples into the largest category, unlike
MyCNN, fewer malicious samples are wrongly categorized as benign. In comparison to MyCNN,
the fuzzifier has dropped from 91.60 percent to 79.84 percent in the recall.

4.1.2 Re-sampling

Tab. 8 depict the confusion matrix of proposed IoTCNN classifier trained using the cross-entropy
loss. Similarly, Tab. 9 depicts the impact of resampling on a MyCNN using a weighted random sampler
on data of successfully classified samples from all categories of interest. Worms with 100 percent recall
have the best results, as this is the smallest category with the most weight. With only 37.08 percent
correctly classified, DoS attacks are more difficult to classify than the second-lowest attack type by
more than 20 percent.

Table 8: Confusion matrix of IoTCNN proposed model based on Cross-entropy Loss

Class Analysis Backdoor Benign DoS Exploits Fuzzer Generic Recon . . . ShellCode Worms

Analysis 0.0% 56.6% 40.0% 3.33%
Backdoor 0.0% 18.5% 33.3% 48.1%
Benign 99.6% 0.15% 0.15%
DoS 11.9% 0.0% 76.4% 11.6%
Exploits 2.93% 89.6% 7.38%
Fuzzer 0.81% 19.3% 79.8%
Generic 2.07% 80.9% 17.0% 0.00%
Recon . . . 0.76% 13.6% 85.5% 0.00%
ShellCode 5.36% 10.5% 89.4% 0.00%
Worms 100% 0.00%
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Table 9: Confusion matrix of MyCNN proposed model based on Weighted Random Sampler

Class Analysis Backdoor Benign DoS Exploits Fuzzer Generic Recon . . . ShellCode Worms

Analysis 93.3% 56.6% 3.33% 3.33%
Backdoor 66.6% 7.40% 11.1% 14.8%
Benign 0.10% 0.05% 97.4% 0.06% 2.02% 0.16% 0.07% 0.02% 0.04% 0.00%
DoS 9.36% 2.24% 0.37% 37.0% 23.5% 7.86% 11.6% 4.86% 1.12% 1.87%
Exploits 2.76% 0.90% 0.34% 8.50% 67.1% 3.84% 8.03% 6.51% 0.86% 1.07%
Fuzzer 0.24% 1.38% 1.38% 0.32% 84.7% 2.85% 1.22% 7.75% 0.08%
Generic 0.82% 0.82% 7.46% 12.8% 5.39% 69.7% 0.82% 1.65% 0.41%
Recon . . . 1.15% 0.19% 0.57% 0.76% 0.57% 0.38% 95.0% 1.34%
ShellCode 1.75% 31.5% 7.01% 59.6%
Worms 100%

We can see some similarities between IoTCNN and MyCNN in Tab. 10, as this time just to classify
DoS correctly both the IoTCNN and MyCNN struggle, with only a 13.86 percent recall. Compared to
the resampled MyCNN, IoTCNN can classify the shellcode with a significantly higher recall of 91.23
percent. When resampling was used in both networks, the numbers of samples that are classified as
benign was lower than when resampling was not used. Overall, the classifications were more evenly
distributed across all ten categories, indicating that the technique successfully addressed some of the
dataset’s category imbalances.

Table 10: Confusion matrix of IoTCNN proposed model based on Weighted Random Sampler

Class Analysis Backdoor Benign DoS Exploits Fuzzer Generic Recon . . . ShellCode Worms

Analysis 93.3% 3.33% 3.33%
Backdoor 66.6% 7.40% 11.1% 14.8%
Benign 0.11% 0.09% 99.0% 0.07% 0.13% 0.14% 0.19% 0.00% 0.17% 0.00%
DoS 15.7% 2.99% 0.37% 13.8% 22.8% 8.98% 18.7% 7.11% 5.99% 3.37%
Exploits 4.05% 4.14% 0.43% 4.70% 56.9% 5.18% 12.6% 6.73% 3.36% 1.77%
Fuzzer 0.24% 0.97% 1.46% 2.20% 65.0% 4.65% 1.63% 23.5% 0.24%
Generic 1.24% 4.56% 7.88% 13.2% 21.1% 43.9% 2.07% 5.39% 0.41%
Recon . . . 0.19% 0.19% 0.38% 0.57% 0.38% 0.19% 95.7% 0.57% 1.73%
ShellCode 1.75% 7.01% 91.2%
Worms 9.09% 90.9%

4.1.3 Cost Sensitive Learning

A. Weighted cross-entropy loss

The performance of MyCNN is affected by weighted cross-entropy loss, as shown in the Tab. 10.
We can observe that the network successfully detected any additional categories, that the number of
benign attacks increases slightly, and that the number of benign samples misclassified decreases.
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The Tab. 11 consists of MyCNN Intrusion detection classifier confusion matrix trained with
weighted cross entropy loss while the results of IoTCNN during the use of weighted cross-entropy
loss are shown in Tab. 12, which shows that the number increases if the classification class has
some samples that are classified as reconnaissance, and all samples classified as reconnaissance are
incorrectly classified. We see fewer false positives for benign classes & more false positives for benign
ones, similar to MyCNN, and the fuzzers have increased recall and reduced vulnerability exploitation,
unlike MyCNN.

Table 11: Confusion matrix of MyCNN proposed model based on Weighted Cross-Entropy Loss

Class Analysis Backdoor Benign DoS Exploits Fuzzer Generic Recon . . . ShellCode Worms

Analysis 0.00% 96.6% 3.33%
Backdoor 0.00% 14.8% 40.7% 44.4%
Benign 99.5% 0.32% 0.17%
DoS 2.62% 0.00% 80.1% 17.2%
Exploits 0.99% 91.2% 7.03%
Fuzzer 0.08% 7.83% 92.0%
Generic 2.07% 79.2% 18.6% 0.00%
Recon . . . 0.19% 31.3% 68.4% 0.00%
ShellCode 15.7% 84.2% 0.00%
Worms 90.9% 9.09% 0.00%

Table 12: Confusion matrix of IoTCNN proposed model based on Weighted Cross-Entropy Loss

Class Analysis Backdoor Benign DoS Exploits Fuzzer Generic Recon . . . ShellCode Worms

Analysis 0.00% 96.6% 3.33%
Backdoor 0.00% 14.8% 11.1% 70.3% 3.70%
Benign 99.5% 0.30% 0.29% 0.05%
DoS 2.62% 0.00% 77.9% 19.1% 1.12%
Exploits 0.99% 85.2% 13.6% 0.17%
Fuzzer 0.08% 15.5% 84.4%
Generic 78.8% 21.1% 0.00%
Recon . . . 0.19% 6.53% 93.2% 0.00%
ShellCode 8.77% 91.2% 0.00%
Worms 90.9% 9.09% 0.00%

B. Class balanced loss

As shown in Tab. 13, MyCNN only classifies samples into the 2 largest classes, with a high number
of false positives for benign classes, which is worse than when no technique is used to help train the
unbalanced dataset. As depicted in Tab. 7. IoTCNN’s class balancing loss results are depicts in Tab. 14,
all samples are labeled as backdoor attacks, resulting in the model’s worst performance to date.
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Table 13: Confusion matrix of MyCNN proposed model based on Class Balanced Loss

Class Analysis Backdoor Benign DoS Exploits Fuzzer Generic Recon . . . ShellCode Worms

Analysis 0.00% 93.3% 6.66%
Backdoor 0.00% 70.3% 29.6%
Benign 99.9% 0.07%
DoS 56.5% 0.00% 43.4%
Exploits 31.9% 68.0%
Fuzzer 47.1% 52.8% 0.00%
Generic 40.6% 59.3% 0.00%
Recon . . . 24.4% 75.5% 0.00%
ShellCode 22.8% 77.1% 0.00%
Worms 27.2% 72.7% 0.00%

Table 14: Confusion matrix of IoTCNN proposed model based on Class Balanced Loss

Class Analysis Backdoor Benign DoS Exploits Fuzzer Generic Recon . . . ShellCode Worms

Analysis 0.00% 100%
Backdoor 100%
Benign 100% 0.00%
DoS 100% 0.00%
Exploits 100% 0.00%
Fuzzer 100% 0.00%
Generic 100% 0.00%
Recon . . . 100% 0.00%
ShellCode 100% 0.00%
Worms 100% 0.00%

4.2 Results Summary

Resampling with a weighted random sampler yield results for MyCNN for each class that differs
from those provided by Sarhan et al., as shown in Tab. 15. In parentheses, people are listed [29].
MyCNN had a higher recall in six of the ten classes, with analysis having the highest recall of 0.93, or
62.44 percent higher. With the exception of one class, all F1 scores were lower, MyCNN had a lower
backdoor, and the best overall performance class was benign. The disproportionately low precision is
because missing classifications are distributed across most classes, as shown in Tab. 9.

Table 15: MyCNN multi-class classification results

Class Accuracy Precision Recall F1 Score

Analysis 99.85% 0.88 0.93 0.16
Backdoor 99.92% 0.11 0.67 0.19
Benign 97.51% 1.0 0.97 0.99

(Continued)
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Table 15: Continued
Class Accuracy Precision Recall F1 Score

DoS 99.72% 0.22 0.37 0.28
Exploits 97.56% 0.29 0.67 0.41
Fuzzers 99.66% 0.70 0.85 0.77
Generic 99.76% 0.30 0.70 0.42
Reconnaissance 99.87% 0.69 0.95 0.80
Shellcode 99.88% 0.15 0.60 0.23
Worms 99.97% 0.19 1.00 0.31

Tab. 16, shows the results of IoTCNN resampling using a weighted random sampler, with the
same format for each category as Tab. 15. IoTCNN had greater precision and recall differences than
MyCNN, and performed worse on categorical generalizers and fuzzers.

Table 16: IoTCNN multi-class classification results

Class Accuracy Precision Recall F1 Score

Analysis 99.82% 0.07 0.93 0.14
Backdoor 99.84% 0.05 0.67 0.11
Benign 99.07% 1.0 0.99 1.0
DoS 99.73% 0.12 0.14 0.13
Exploits 99.27% 0.78 0.57 0.66
Fuzzers 99.52% 0.63 0.65 0.64
Generic 99.52% 0.12 0.44 0.19
Reconnaissance 99.87% 0.70 0.96 0.81
Shellcode 99.61% 0.06 0.91 0.12
Worms 99.96% 0.12 0.91 0.22

Analysis, backdoor, and DoS were the worst-classified categories, consistent with Sarhan et al. Peo-
ple’s findings. We improved recall in all of the above classes by using MyCNN and resampling. Our
model falls short when classifying vulnerability exploits, shellcode [29] and generalizations.

4.3 Discussion

Small CNNs can classify network attacks using resampling and the NF-UNSW-NB15-v2 dataset.
On the contrary, our models have higher F1 scores, as shown in the Tabs. 15 and 16. Our models’
successfully classified various kind of intrusion attacks. The proposed models are generalizable, so
they can detect attacks efficiently with higher accuracy. To overcome class imbalances, we can use
hybrid techniques rather than testing every possible parameter, the most critical ones: learning rates
and batch sizes were chosen . The number of groups and blocks in IoTCNN should be adjusted, as
should the rate of dropout for each dropout layer. The model training time for IoTCNN is less than
7 h, including tuning the model and hyperparameters. This time was set aside to ensure the model’s
functionality. Better parameters has shown improvement in our results. The final dataset was too large
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and unbalanced to be evaluated using a larger dataset. Only one or two samples in the smallest subset
make learning the class impossible. Due to the dataset’s imbalance, we needed a large dataset to get
good representation of each class. So our model is limited, the experimental results show that the
trained models’ performance is superior to the reference paper’s. Even when using a random sampler,
class precision is still higher. Resampling and cost-sensitive learning can produce good results, and the
worst-performing classes can be given extra weight. Because of the IoT device training takes too long,
externally trained cloud models should be distributed to each IoT device. The IoT device can learn a
few new assault samples. The IDS should be trained overnight so it can be updated quickly when new
attacks are discovered. IoTCNN took longer time in model training and validation process than the
MyCNN.

To classify an IDS data test set, the model average test time was recorded as 51 s, the testing
time many vary from model-to-model architecture and parameters. The difference in inference times
between the two proposed networks was only 3 s.

It’s important to note that while IoTCNN (3.05 MB) is smaller than MyCNN (3.79 MB), the
models’ trainable parameters differ significantly. Aside from that, neither MyCNN nor IoTCNN has
any untrainable parameters. A classifier’s main goal is generalization. Our models are accurate and
more generalizable. A better sampler or loss function may help generalization. Using larger input
images with larger width factors can also improve generalization.

Because the dataset is unbalanced, resampling and cost-sensitive learning are ineffective. We could
avoid hierarchical splitting for training and validation by selecting evenly from classes. One reason for
not choosing the small sample size available for the least populated worm class. It is best to analyses the
features further during pre-processing to save or gain space in the final image. This should improve
the convolutional layer input quality. Add noise or other enhancement techniques to the image to
reduce category preference. Pads add too much data to the image due to their small size. Padding can
be tested because it can affect the results. The expansion factor, group count, and block count should
all be evaluated. A few more lightweight classification models would be effective. Instead of a fixed
learning rate, the leaning scheduler could be used. So, the configuring of the learning rate scheduler
during training should be skipped. Finally, the resampler and loss function rates were fine-tune to
achieve better performance in IoT IDS.

5 Conclusion

We created two convolutional neural networks and trained them on the NF-UNSW-NB15-v2
dataset to classify cyber-attacks. This research aims to look into how CNNs designed for IoT devices
perform in cyber-attacks and see if they can be used as anomaly-based intrusion detection systems.
Experiments show that the model can classify cyber-attacks accurately and that it can be run as an
IDS in real-time on most devices. We used resampling and cost-sensitive learning in this research to
test multiple methods for improving the accuracy of training DL models on unbalanced datasets.
Finding the optimal weights and the possibility of combining resampling with cost-sensitive learning
using a hybrid approach are two areas that need to be investigated further. Unbalanced datasets would
be addressed in this way. Different splitting methods or other oversampling methods that introduce
more variation in the data could be used to address unbalanced datasets. Use a different preprocessing
method that does not include padding, leading to errors. Larger images can be created from a small
amount of data because convolutional neural networks use filters that pass through the image. This
can result in more connections between features depending on how the image is constructed. The
investigation is needed in the field of fine-tuning the hyperparameters in IoTCNN, and in other
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different DL models. The use of different optimizers for training can also be investigated for improving
the classification accuracy of the proposed models, as the Adam optimizer is the only one used in this
paper.

Acknowledgement: The authors extend their appreciation to the Deanship of Scientific Research at
Imam Mohammad Ibn Saud Islamic University for funding this work through Research Group No.
RG-21-07-04.

Funding Statement: This research is funded by Imam Mohammad Ibn Saud Islamic University,
RG-21-07-04.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] L. Atzori, A. Iera and G. Morabito, “Understanding the internet of things: Definition, potentials, and

societal role of a fast evolving paradigm,” Ad Hoc Networks, vol. 56, pp. 122–140, 2017.
[2] M. F. Elrawy, A. I. Awad and H. F. A. Hamed, “Intrusion detection systems for IoT-based smart

environments: A survey,” Journal of Cloud Computing, vol. 7, no. 1, pp. 1–20, 2018.
[3] L. Da Xu, S. Member, W. He and S. Li, “Internet of things in industries: A survey,” IEEE Transactions on

Industrial Informatics, vol. 10, no. 4, pp. 2233–2243, 2014.
[4] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang et al., “A survey on internet of things: Architecture, enabling

technologies, security and privacy, and applications,” IEEE Internet of Things Journal, vol. 4, no. 5, pp.
1125–1142, 2017.

[5] M. Almiani, A. AbuGhazleh, A. Al-Rahayfeh, S. Atiewi and A. Razaque, “Deep recurrent neural network
for IoT intrusion detection system,” Simulation Modelling Practice and Theory, vol. 101, no. may 2020, pp.
102031, 2020.

[6] S. J. Moore, C. D. Nugent, S. Zhang and I. Cleland, “IoT reliability: A review leading to 5 key research
directions,” CCF Transactions on Pervasive Computing and Interaction, vol. 2, no. 3, pp. 147–163, 2020.

[7] M. A. Ferrag, L. Shu, X. Yang, A. Derhab and L. Maglaras, “Security and privacy for green IoT-based
agriculture: Review, blockchain solutions, and challenges,” IEEE Access: Green Internet of Things, vol. 8,
pp. 32031–32053, 2020.

[8] M. S. Farooq, S. Riaz, A. Abid, K. Abid and M. A. Naeem, “A survey on the role of IoT in agriculture for
the implementation of smart farming,” IEEE Access, vol. 7, pp. 156237–156271, 2019.

[9] J. Ruan, Y. Wang, F. T. S. Chan, X. Hu, M. Zhao et al., “A life cycle framework of green IoT-based
agriculture and its finance, operation, and management issues,” IEEE Communications Magazine, vol. 57,
no. 3, pp. 90–96, 2019.

[10] F. A. Ghaleb, M. A. Maarof, A. Zainal, M. A. Rassam, F. Saeed et al., “Context-aware data-centric
misbehaviour detection scheme for vehicular ad hoc networks using sequential analysis of the temporal
and spatial correlation of the consistency between the cooperative awareness messages,” Vehicular Commu-
nications, vol. 20, no. December 2019, pp. 100186, 2019.

[11] A. A. Diro and N. Chilamkurti, “Distributed attack detection scheme using deep learning approach for
internet of things,” Future Generation Computer Systems, vol. 82, pp. 761–768, 2018.

[12] M. Ge, N. F. Syed, X. Fu, Z. Baig, and A. Robles-Kelly, “Towards a deep- learning-driven intrusion
detection approach for Internet of Things,” Computer Networks, vol. 186, no. 1, pp. 107784, 2019.

[13] E. M. Bårli, A. Yazidi, E. H. Viedma and H. Haugerud, “DoS and DDoS mitigation using Variational
Autoencoders,” Computer Networks, vol. 199, no. 2, pp. 108399, 2019.

[14] W. C. Shi and H. M. Sun, “DeepBot: A time-based botnet detection with deep learning,” Soft Computing,
vol. 24, no. 21, pp. 16605–16616, 2020.



1372 CMC, 2023, vol.74, no.1

[15] M. Munir, S. A. Siddiqui, A. Dengel and S. Ahmed, “Deepant: A deep learning approach for unsupervised
anomaly detection in time series,” IEEE Access, vol. 7, pp. 1991–2005, 2019.

[16] N. Shone, T. N. Ngoc, V. D. Phai and Q. Shi, “A deep learning approach to network intrusion detection,”
IEEE Transaction on Emerging Topics in Computational Intelligence, vol. 2, no. 1, pp. 41–50, 2018.

[17] S. Hajiheidari, K. Wakil, M. Badri and N. J. Navimipour, “Intrusion detection systems in the internet of
things: A comprehensive investigation,” Computer Networks, vol. 160, pp. 165–191, 2019.

[18] M. Fahim and A. Sillitti, “Anomaly detection, analysis and prediction techniques in IoT environment:
A systematic literature review,” IEEE Access, vol. 7, pp. 81664–81681, 2019.

[19] K. A. P. da Costa, J. P. Papa, C. O. Lisboa, R. Munoz and V. H. C. de Albuquerque, “Internet of things:
A survey on machine learning-based intrusion detection approaches,” Compuer Networks, vol. 151, pp.
147–157, 2019.

[20] H. Albasheer, M. M. Siraj, A. Mubarakali, O. E. Tayfour, S. Salih et al., “Cyber-attack prediction based
on network intrusion detection systems for alert correlation techniques: A survey,” Sensors, vol. 22, no. 4,
pp. 1–15, 2022.

[21] B. Sharma, L. Sharma and C. Lal, “Anomaly detection techniques using deep learning in IoT: A survey,” in
Int. Conf. on Computational Intelligence and Knowledge Economy ICCIKE 2019, Dubai, UAE, pp. 146–149,
2019.

[22] W. Wang, F. Xia, H. Nie, Z. Chen, Z. Gong et al., “Vehicle trajectory clustering based on dynamic
representation learning of internet of vehicles,” IEEE Transactions on Intelligent Transportation Systems,
vol. 22, no. 6, pp. 3567–3576, 2021.

[23] W. Wang, J. Chen, J. Wang, J. Chen and Z. Gong, “Geography-aware inductive matrix completion for
personalized point-of-interest recommendation in smart cities,” IEEE Internet of Things Journal, vol. 7,
no. 5, pp. 4361–4370, 2020.

[24] W. Wang, J. Chen, J. Wang, J. Chen, J. Liu et al., “Trust-enhanced collaborative filtering for personalized
point of interests recommendation,” IEEE Transactions on Industrial Informatics, vol. 16, no. 9, pp. 6124–
6132, 2020.

[25] E. Schiller, A. Aidoo, J. Fuhrer, J. Stahl, M. Ziörjen et al., “Landscape of IoT security,” Computer Science
Review, vol. 44, no. May, pp. 100467, 2022.

[26] M. Conti, A. Dehghantanha, K. Franke and S. Watson, “Internet of things security and forensics:
Challenges and opportunities,” Future Generation Computer Systems, vol. 78, pp. 544–546, 2018.

[27] D. E. Kouicem, A. Bouabdallah and H. Lakhlef, “Internet of things security: A top-down survey,”
Computer Networks, vol. 141, pp. 199–221, 2018.

[28] K. Gupta and S. Shukla, “Internet of things: Security challenges for next generation networks,” in 2016 1st
Int. Conf. on Innovation and Challenges in Cyber Security (ICICCS 2016), Greater Noida, India, no. Iciccs,
pp. 315–318, 2016.

[29] I. S. Gracia, O. D. Suarez, G. B. Garcia and T. K. Kim, “Fast fight detection,” PLoS One, vol. 10, no. 4,
pp. 1–19, 2015.

[30] H. Peng, C. Liu, D. Zhao and J. Han, “Reliability analysis of CPS systems under different edge repairing
strategies,” Physica A: Statistical Mechanics and its Applications, vol. 532, pp. 121865, 2019.

[31] C. Kruegel, D. Mutz, W. Robertson and F. Valeur, “Bayesian event classification for intrusion detection,”
in Proc.-Annul Computer Security Applications Conf. ACSAC, Las Vegas, NV, USA, vol. 2003-January, pp.
14–23, 2003.

[32] C. Sinclair, L. Pierce and S. Matzner, “An application of machine learning to network intrusion detection,”
in Proc.-Annul Computer Security Applications Conf. ACSAC, Phoenix, Arizona, USA, vol. Part F133431,
no. 0293, pp. 371–377, 1999.

[33] J. Zhang and M. Zulkernine, “A hybrid network intrusion detection technique using random forests,” in
Proc. the First Int. Conf. on Availability, Reliability and Security, Vienna, Austria, vol. 2006, pp. 262–269,
2006.

[34] J. Yang, J. Deng, S. Li and Y. Hao, “Improved traffic detection with support vector machine based on
restricted boltzmann machine,” Soft Computing, vol. 21, no. 11, pp. 3101–3112, 2017.



CMC, 2023, vol.74, no.1 1373

[35] H. Peng, Z. Kan, D. Zhao and J. Han, “Security assessment for interdependent heterogeneous cyber
physical systems,” Mobile Networks and Application, vol. 26, no. 4, pp. 1532–1542, 2021.

[36] L. Greche, M. Jazouli, N. Es-Sbai, A. Majda and A. Zarghili, “Comparison between Euclidean and
manhattan distance measure for facial expressions classification,” in 2017 Int. Conf. Wireless Technologies,
Embedded Intellegent Systems (WITS) 2017, Fez, Morocco, pp. 2–5, 2017.

[37] H. Peng, C. Liu, D. Zhao, H. Ye, Z. Fang et al., “Security analysis of CPS systems under different swapping
strategies in IoT environments,” IEEE Access, vol. 8, pp. 63567–63576, 2020.

[38] Q. Tian, D. Han, K. C. Li, X. Liu, L. Duan et al., “An intrusion detection approach based on improved
deep belief network,” Applied Intelligence, vol. 50, no. 10, pp. 3162–3178, 2020.

[39] G. Hinton, “Deep belief networks,” Scholarpedia, vol. 4, no. 5, pp. 5947, 2009.
[40] I. Tolstikhin, O. Bousquet, S. Gelly and B. Schölkopf, “Wasserstein auto-encoders,” in 6th Int. Conf.

Learning Representation ICLR 2018, Vancouver, BC, Canada, pp. 1–20, 2018.
[41] A. I. Abubakar, H. Chiroma, S. A. Muaz and L. B. Ila, “A review of the advances in cyber security

benchmark datasets for evaluating data-driven based intrusion detection systems,” Procedia Computer
Science, vol. 62, no. Scse, pp. 221–227, 2015.

[42] K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink and J. Schmidhuber, “LSTM: A search space
odyssey,” Transactions on Neural Networks and Learning Systems, vol. 28, no. 10, pp. 2222–2232, 2016.

[43] I. T. Bowman, R. C. Holt and N. V. Brewster, “Linux as a case study: Its extracted software architecture,”
in Proc.-Int. Conf. on Software Engineering, Los Angeles, California, USA, pp. 555–563, 1999.

[44] Y. Fu, Y. Du, Z. Cao, Q. Li and W. Xiang, “A deep learning model for network intrusion detection with
imbalanced data,” Electronics (Switzerland), vol. 11, no. 6, pp. 898, 2022.

[45] K. Chen, Z. J. Yan and Q. Huo, “A Context-sensitive-chunk BPTT approach to training deep LST-
M/BLSTM recurrent neural networks for offline handwriting recognition,” in Int. Conf. on Document
Analysis and Recognition, ICDAR, Tunis, Tunisia, vol. 2015-Novem, pp. 411–415, 2015.

[46] A. K. Jain, “Data clustering: 50 years beyond K-means,” Pattern Recognition Letters, vol. 31, no. 8, pp.
651–666, 2010.

[47] Y. Cui, M. Jia, T. Y. Lin, Y. Song and S. Belongie, “Class-balanced loss based on effective number of
samples,” in Proc. of the IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, Long
Beach, CA, USA, vol. 2019-June, pp. 9260–9269, 2019.

[48] M. Sarhan, S. Layeghy and M. Portmann, “Towards a standard feature set for network intrusion detection
system datasets,” Mobile Networks and Applications, vol. 27, no. 1, pp. 357–370, 2022.

[49] N. S. Keskar, J. Nocedal, P. T. P. Tang, D. Mudigere and M. Smelyanskiy, “On large-batch training for
deep learning: Generalization gap and sharp minima,”5th Int. Conf. on Learning Representations, ICLR
2017-Conf. Track Proc., Palais des Congrès Neptune, Toulon, France, pp. 1–16, 2017.

[50] S. N. Nguyen, V. Q. Nguyen, J. Choi and K. Kim, “Design and implementation of intrusion detection
system using convolutional neural network for DoS detection,” in ACM Int. Conf. Proceeding Series, New
York, NY, United States, pp. 34–38, 2018.

[51] J. Kim, J. Kim, H. Kim, M. Shim and E. Choi, “CNN-Based network intrusion detection against denial-
of-service attacks,” Electronics (Switzerland), vol. 9, no. 6, pp. 1–21, 2020.

[52] D. Vasan, M. Alazab, S. Wassan, H. Naeem, B. Safaei et al., “IMCFN: Image-based malware classification
using fine-tuned convolutional neural network architecture,” Computer Networks, vol. 171, no. April 2019,
pp. 107138, 2020.

[53] J. Su, V. D. Vasconcellos, S. Prasad, S. Daniele, Y. Feng et al., “Lightweight classification of IoT malware
based on image recognition,” in Proc.-Int. Computer Software and Applications Conf., Washington, DC,
USA, vol. 2, pp. 664–669, 2018.

[54] T. Y. Lin, P. Goyal, R. Girshick, K. He and P. Dollar, “Focal loss for dense object detection,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 42, no. 2, pp. 318–327, 2020.

[55] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” in 7th Int. Conf. on Learning
Representations, ICLR 2019, New Orleans, LA, USA, 2019.



1374 CMC, 2023, vol.74, no.1

[56] T. J. Saleem and M. A. Chishti, “Deep learning for the internet of things: Potential benefits and use-cases,”
Digital Communications and Networks, vol. 7, no. 4, pp. 526–542, 2019.

[57] S. Zagoruyko and N. Komodakis, “Wide residual networks,” in British Machine Vision Conf. 2016, BMVC
2016, York, UK, vol. 2016-Septe, pp. 87.1–87.12, 2016.

[58] S. Ullah, M. A. Khan, J. Ahmad, S. S. Jamal, Z. E. Huma et al., “HDL-IDS: A hybrid deep learning
architecture for intrusion detection in the internet of vehicles,” Sensors (Switzerland), vol. 22, no. 4, pp.
1–20, 2022.

[59] L. Ashiku and C. Dagli, “Network Intrusion Detection System using Deep Learning,” Procedia Computer
Science, vol. 185, no. 6, pp. 239–247, 2021.

[60] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” in 3rd Int. Conf. on Learning
Representations, ICLR 2015-Conf. Track Proc., San Diego, CA, USA, pp. 1–15, 2015.

[61] F. Florencio, T. Valença, E. D. Moreno and M. Colaço Junior, “Performance analysis of deep learning
libraries: Tensor flow and PyTorch,” Journal of Computer Science, vol. 15, no. 6, pp. 785–799, 2019.

[62] N. Moustafa and J. Slay, “UNSW-NB15: A comprehensive data set for network intrusion detection systems
(UNSW-NB15 network data set),” in 2015 Military Communications and Information Systems Conf.,
MilCIS 2015–Proc. 2015, Canberra, ACT, Australia, 2015.

[63] W. Wang, M. Zhao and J. Wang, “Effective android malware detection with a hybrid model based on
deep autoencoder and convolutional neural network,” Journal of Ambient Intelligence and Humanized
Computing, vol. 10, no. 8, pp. 3035–3043, 2019.

[64] Y. Zhang, P. Li and X. Wang, “Intrusion detection for IoT based on improved genetic algorithm and deep
belief network,” IEEE Access, vol. 7, no. c, pp. 31711–31722, 2019.


	Augmenting IoT Intrusion Detection System Performance Using Deep Neural Network
	1 Introduction
	2 Literature Review
	3 Methodologies
	4 Results and Analysis
	5 Conclusion


