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Abstract: Forecasting on success or failure of software has become an inter-
esting and, in fact, an essential task in the software development industry. In
order to explore the latest data on successes and failures, this research focused
on certain questions such as is early phase of the software development life
cycle better than later phases in predicting software success and avoiding high
rework? What human factors contribute to success or failure of a software?
What software practices are used by the industry practitioners to achieve
high quality of software in their day-to-day work? In order to conduct this
empirical analysis a total of 104 practitioners were recruited to determine how
human factors, misinterpretation, and miscommunication of requirements
and decision-making processes play their roles in software success forecasting.
We discussed a potential relationship between forecasting of software success
or failure and the development processes. We noticed that experienced par-
ticipants had more confidence in their practices and responded to the ques-
tionnaire in this empirical study, and they were more likely to rate software
success forecasting linking to the development processes. Our analysis also
shows that cognitive bias is the central human factor that negatively affects
forecasting of software success rate. The results of this empirical study also
validated that requirements’ misinterpretation and miscommunication were
the main causes behind software systems’ failure. It has been seen that reliable,
relevant, and trustworthy sources of information help in decision-making
to predict software systems’ success in the software industry. This empirical
study highlights a need for other software practitioners to avoid such bias
while working on software projects. Future investigation can be performed to
identify the other human factors that may impact software systems’ success.
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1 Introduction

The predictability of software success is one of the major concerns in the software industry. To
predict or forecast software success or failure, one can use different software development methods
and tools, commonly used in the software development industry [1]. A considerable body of knowledge
on the software defect prediction links cost-saving and different phases of the “software development
life cycle” (SDLC). Studies [2,3] explore software defect prediction (SDP) as a cost reduction solution
during the software testing phase. Machine learning classifiers have been used in these studies to predict
software defects.

A study [4] reveals that most of the outsourced software projects are affiliated with a high failure
rate. While providing insights, the existing literature presents some conflicting results. Studies [5,6] find
that software project managers’ active involvement in schedule negotiation and adequate requirements’
information are key factors for the success of software projects. Transformational leadership, and value
congruence are key factors for the success of software [7]. A study [8] finds that software projects’
success or failure rate is related to user satisfaction, requirement engineering, start-up pivots, and
retrospective discussions. Study [9] results show that software metrics could be applied at different
phases of the SDLC. Still, it is insignificant to predict software success or failure rate at lateral phases
if faults or errors are not handled at an earlier phase. Our empirical study makes several contributions
to software success or failure estimation during the software life cycle.

• First, this work is focused on the knowledge of software practitioners to know human factors’
impacts on the software success prediction. We study cognitive bias as a human factor that can
impact forecasting the success of software.

• Second, empirical analysis presents software practitioners’ ratings to identify the software
life cycle’s accurate phases to forecast software systems’ success. An accurate phase is meant
to specify one or more software development phases for its success or failure prediction.
The motivation behind the success or failure prediction is to save costs on rescheduling and
redeveloping the work.

• Third, our study results and analysis validate that requirements’ misinterpretation and mis-
communication during the requirement engineering process can create conflicts and damage
software success. We want to listen to the software practitioners from their rating; the causes
mentioned above can decrease the software success in the later phases of the software life cycle.

• Fourth, our study presents an analysis of decision making from better information judgment.
We analyze the empirical results to know whether accurate software success forecasting can help
expand software specifications in the future for required changes.

Structure of the remaining paper is as follows:

Section 2 presents related work to our research topic, Section 3 presents the empirical method,
Section 4 presents empirical results and findings, Section 5 presents limitations of this study, and
Section 6 concludes the paper.

2 Related Works

In a study, Chotisarn and Prompoon [10] focused on the behavioral perspectives, particularly the
psychological impacts on the cognitive bias during the early phase of software requirements gathering
and specification processes. This study was a first attempt for forecasting the software damage rate
at an early stage of requirement gathering. However, the sample population used for this study was
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limited. The use of multiple regression and correlation analysis on variables resulted in software failure
or success rate.

A multilayer perception model was proposed to solve the issue of software estimation. Researchers
in [11] called the software requirement gathering a critical phase for software success estimation. The
Use-case point (UCP) model was focused on the use-case diagram. This model outperformed the
original UCP model in some respects when used to estimate small-sized projects.

High-quality systems could only be developed if a defect prevention strategy is adopted at all stages
of the software development life cycle. The defect prevention strategy did not only reduce the cost but
also the time as well. The concerned research study [12] was to implement a model-based strategy on
the requirement gathering phase. Achieving high-quality software through the agile development of
software resulted in several defect management methods, such as defect discovery, defect prevention,
and resolution. Agile methodologies, based on the short iterations, helped developers overcome the
defects.

A research effort was made on the software required for the space projects. The researchers’
objective in [13] was to understand the most critical application domain’s requirement issues. A well-
known taxonomy, latterly used for thorough analysis, was applied. The results of the study revealed
that there were 9.5 errors per hundred requirements. Most frequent errors were pointed out as external
conflict/consistency, requirement completeness, and traceability. This work’s effectiveness was limited
only to classify the requirement problems but could not provide the solution to these requirement
issues.

To cope with software failure, the study [14] devised the failure removal estimation model that
considered the removal of failures occurred at the time interval. Reliability in this model was assured
at the testing phase, considering test and debug time together. It was intended to ensure reliability from
the early stage of testing to the lateral testing stage. A paired T-Test was applied to test the reliability
between the proposed model and the existing models. Results showed the significant difference that
was noted between the Okumoto model and the proposed model.

A recently published research [15] considers neural networks for time series forecasting to address
complex issues regardless of any domain. Recurrent neural network (RNN) models can replace the uni-
variate models used in production. However, many researchers are still reluctant to use them because
they lack expert knowledge since it is not established in the forecasting community when to use deep
learning models. Besides this, RNNs for large time-series dataset vs. short isolated datasets are still
under research. It is suggested from the earlier mentioned research work that the research community
can benefit from using both conventional forecasting techniques as well as the latest deep learning
techniques if they precisely implement and apply them to real world issues It could be a better use of
RNNs in software engineering processes if models are modified for an accurate prediction of software
success. RNNs models are mostly applied to time series information and show limitations when applied
to qualitative data.

Interaction failures, which arise either from the influence of software on hardware or the influence
of hardware on the software, play a key role in a successful system’s operations. It is reported that little
work is undertaken to investigate the earlier mentioned interaction failures. To overcome this issue, the
study [16] proposed a model for identifying a system’s function from the requirements specification
document. Identified functions were mapped to design components. The proposed model works as an
early availability and reliability prediction model validated by the obtained availability and reliability
values of a system.
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Both open-source and software industries have witnessed continuous integration as a common
practice. Software developers integrate the automated generated code to meet the changes frequently
and quickly. However, the automated build process that generates code requires maintenance resulting
in time and resource consumption. To predict the continuous integration outcome, the study [17]
proposed a search based approach that aimed at finding the combination of continuous failure
combination and their threshold values. Conflicting objectives, such as passed build and failed builds
were dealt with by the proposed model. The proposed model outperformed the machine learning
models by handling a better balance between two types of builds. However, machine learning is
playing a key role in handling the classification and detection of malicious software code [18–20].
The conversion of malicious code into images is used to train and augment the classifiers.

Business and Information technology requirements have been modelled to derive automatically
system requirements [21]. To develop a system according to business requirements and understand
business process (BP) goals has become an important development in software engineering. It
positively impacts the configuration of business as well as business requirements. Prior to this
research a little works has been conducted on empirical research on requirement engineering. A
recent review revealed that practitioners have less involvement in empirical research on RE topics
[22]. Our study intends to bridge this gap by conducting an empirical research by involving industry
practitioners. A qualitative study [23] has been undertaken to analyze the RE challenges and their
solutions by implementing RE in software crowdsourcing. However, challenges such as software
success or failure rate prediction remains unattended in the literature. Security feature of e-government
projects are briefly investigated [24], success or failure of a project can be undertaken in future
works. A Deep Fuzzy C-Mean (DFCM) technique creates new features from labelled and unlabeled
data. Furthermore, data pre-processing on software performance prediction models is performed to
ensure the quality assurance of software projects [25]. The proposed approach is mainly focused on
classification and reduction of noisy information from extracted features.

Goal-oriented RE using the e-health business goals has been proposed and investigated regarding
business and IT requirements [26]. Hence a health e-system is developed from modelling organization
goals. The validity of approach is performed on emergency COVID-19 patients by checking them in
hospitals. Although, system implementation is verified but its generalization to other e-health business
goals is not performed. Thus, its success needs to be verified by using other business goals.

3 Research Methodology

Research methodology is widely used to obtain broad characterization regarding an important
issue by collecting information from various information, including perceptions, opinions and atti-
tudes [27]. An empirical analysis is well-suited strategy to collect information from large and targeted
populations. Many surveying methods have been used in the literature and each method with its
advantages and disadvantages. This study uses an online data collection method to quickly gather
information, categorize and analyze the collected data. Another method in software engineering is
interviewing that is usually more effort intensive [28]. Therefore, we have chosen online data collection
method that is relatively easier for a software engineer to fill it. A framework has been proposed to
support the research ideas in this study as shown in the following Fig. 1.

Fig. 1 shows us the main components of the research framework to support the proposed ideas
in this study. All these components have been used to conduct the empirical research about linkage
between the software success and software development processes in software development industry.
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Figure 1: A research framework to support the ideas in this study

3.1 High-Level Goals and Research Question

Our empirical study uses the high-level goals and research questions. The goal is to understand
the software practitioners’ concerns about the software success rate estimation in domain of software
industry. Based on this goal, we have raised the following research questions (RQs) with their
motivations.

Tab. 1 shows the proposed research questions, their aspects from the empirical study’s design. We
could not present the entire empirical analysis because of space constraints in this paper. The final
research question consisted of five sections. The first section was focused on gathering participants’
profiles, and rest of four sections correspond to the RQs as shown in Tab. 2.

Table 1: List of proposed research questions, and their aspects from empirical study design

Research question Aspect Survey question

Practitioners Profiles i. Please specify your designation
ii. Please indicate your experience in years.

(Continued)
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Table 1: Continued
Research question Aspect Survey question

RQ1: How do human
factors impact the
software success rate
forecasting?

Human factors (1). Is software accuracy highly derived from
precision in software success/failure rate
estimation?
(4). Is software damage rate estimation from
human factors reliable forecasting?
(6). Do cognitive concerns of software impact
the human judgment about software damage
rate forecasting?
(7). Does a correlation between cognitive bias
and software damage rate exit?
(8). Does cognitive-based software estimation
increase the efficiency of software damage
rate estimation?

RQ2: Do software
practitioners consider
the requirement
gathering phase as a
vehicle to forecast the
design or coding errors?

Recognizing the
accurate phase

(9). Does the requirement gathering phase
provide accurate software damage rate
estimation?
(10). Is it right that software damage rate can
be determined through software requirement
specification?
(11). Is software failure/success forecasting
more reliable in the early phases of software
development?

RQ3: Do practitioners
consider
misinterpretation of
requirements, and
communication errors
are the main causes
behind software failure?

Requirements’
misinterpretation, and
communication errors

(12). Does the misinterpretation of
requirements lead to software failure?
(15). Do requirement changes result from
poor communication between system
stakeholders?
(16). Does Poor communication between
client and requirement engineer impact the
software estimation?
(17). Does poor communication during
requirement engineering processes produce
poor quality requirements?
(18). Does communication error produce the
delayed software requirement specification?

(Continued)
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Table 1: Continued
Research question Aspect Survey question

RQ4: What are the
means used by
practitioners to predict
the success or failure of
software systems?

Decision making (2). Does measurement of efforts for
self-descriptiveness support the software
success or failure rate estimation?
(3). Does better judgment always reveal
accurate forecasting of software failure rate?
(5). Does software damage rate estimation
provide the right direction for requirements’
expand-ability in the future?
(13). Do you think that decision-makers
apply the information judgment to ensure the
better software damage rate forecasting?
(14). Is damage rate forecasting implemented
to avoid the rework on software applications?

Table 2: Mapping of the original empirical study’s questions to the research questions

Research questions and goals Motivation

High-Level goal: To what extent software
practitioners concern themselves with software
success rate estimation?

To seek software practitioners’ answers
and interpret them for software success,
rate estimation is the main motivation
behind the research goal.

RQ1. How do human factors impact the
software success rate forecasting?

Q1, Q4, Q6, Q7, and Q8 are questions
about the impacts of human factors such
as cognitive bias on the software success
rate prediction.

RQ2. Do software practitioners consider the
requirement gathering phase as a vehicle to
forecast the design or coding errors?

Q9, Q10, and Q11 direct questions to
determine whether the requirement
engineering phase is the most appropriate
(SDLC) phase to predict software systems’
success or failure.

RQ3. Do practitioners consider
misinterpretation of requirements, and
communication errors are the main causes
behind software failure?

Q12, Q15, Q16, Q17, and Q18 are direct
questions that highlights the software
practitioners’ opinions about the role of
requirements’ misinterpretation, and
communication errors that contribute to
decreasing a software system’s success.

(Continued)
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Table 2: Continued
Research questions and goals Motivation

RQ4. What are the means used by practitioners
to predict the success or failure of software
systems?

Q2, Q3, Q5, Q13, and Q14 are direct
questions about decision making
regarding software success or failure rate
forecasting. Self-descriptiveness, better
information judgment, right decision
making and their effects, and avoiding
reworks are the primary tools considered
in decision making.

3.2 Participants

Over 104 industry practitioners were approached in different software companies and institutes
using an online data collection tool (inqwise.com). This empirical study was based on the software
development companies and academic institutes in Pakistan. According to the ‘global connectivity
index’ (GCI), Pakistan ranked in 76 positions in 2019. These companies are listed in the following.
Of the 104 people, 60 answered and completed the questionnaire and returned within two weeks.
Therefore, the final analysis was performed with a 58% response rate from participants. However,
we received 08 questions mostly filled by study’s participants that were included for analysis. Data
were checked for correctness, completeness, and distributions. Data information was converted into
counts and, percentages via regular descriptive statistics. Next, we compared the participants from
these following organizations, who stated that cognitive bias impacts the success of software.

• Makabu Islamabad
• Pakistan Revenue Automation Limited
• PTCL (Pakistan Telecommunication Limited)
• Quality Web Programmer
• FJWU
• Discretelogix
• WADIC
• NUST

3.3 Data Collection Procedure

A questionnaire is applied to collect information from professionals of the software industry
population. An online survey is a data collection method that accomplishes a research study’s purposes
using the questionnaire or interview technique. A researcher uses the online empirical data collection
technique to collect data from participants in their opinions, attitudes, effects, and relationships.
Primarily purpose of the questionnaire is the answering of research problems in a quantitative study
by using the 5-Point Likert Scale. Data is collected in the spread-sheet tool of Microsoft Excel that is
exported from the online survey tool [inqwise.com]. Data collected in the excel sheet is further refined
to get useful information.

3.4 Data Analysis

We sent online questionnaire to a total of one hundred and four participants. Out of these:
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• 60 responses were completed
• Four responses were sent to us blank, indicating that participants have seen the questionnaire

page and did not answer any question.
• Twenty-two respondents partially completed questionnaires. The mean time for the completion

of the questionnaire was 20 min.

An examination of the partially answered questionnaire revealed that they contributed very little.
Several respondents did not mention their designation and experience while answering the survey
questionnaire. Toa analyze the collected information, we performed t-test to compare the statistically
relationship between variables. Data collected against the RQs was analyzed using the statistical t-test
by considering p-values of each RQ in this empirical study.

4 Empirical Study’s Results and Findings

This section presents empirical study’s results and their findings.

4.1 The Respondents (RQ1-RQ3)

As earlier stated that a total of sixty-eight respondents completed the survey questionnaire: 56
from Pakistan, two from each country such as Bahrain, Netherland, United States, United Kingdom,
and one from each of countries such as Saudi Arabia, Malaysia, Bahrain, Denmark, and one
respondent did not mention the location.

Fig. 2 shows that 29% of the respondents stated their experience two or less than two years. 32% of
respondents had experienced between two years and four years, 22% of respondents were experienced
more than four years and less than eight years, and 17% of the respondents were experienced more
than eight years.

Figure 2: Experience in years

Fig. 3 shows the role of respondents they play in the software development industry. 27 out of
68 respondents have programming responsibilities in their workplaces. Nine respondents were playing
their roles as system analysts. Ten respondents were involved in requirement engineering processes.
Seven were project managers, and their responses indicated that they had a technical lead, rather than
the administrative role. A large number of respondents (14 respondents) were from different fields in
the software industry. Only three respondents did not mention their designation.
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Figure 3: Respondents’ designations

Non-probabilistic sampling is the main technique used in this study. The findings, although it
cannot be generalized to the broader population, respondents seem to represent the diverse groups
of experienced people from the software industry. Therefore, the common findings indicate the
respondents are from the focused population and show the best approach to forecast the success or
failure rate of software projects.

4.2 Human Factors (RQ1)

We asked study’s participants whether precision in software success or failure rate forecasting was
associated with the accurate functioning of a software system (Q1). 16 or (27%) respondents rate Q1
as strongly disagree and disagree, 25 or (42%) respondents rate as agree and strongly disagree, and a
large proportion (19% or 32%) of respondents remain neutral while answering Q1.

The empirical study’s question (Q4) is asked from participants to know whether software success
forecasting from human factors is reliable. 23 or (34%) of the responses rate strongly disagree and
disagree, 26 or (39%) rate agree and strongly agree, and 18 or (27%) responses from respondents neither
disagree nor agree with the statement.

The empirical study’s question (Q6) is purely based on the cognitive bias as a human concern.
Cognitive bias is usually a deviation pattern in decision-making or judgment, in particular, situations
[27,28]. Deviation pattern is the standard of comparisons that may be a set of verifiable independent
facts or people’s judgment outside of specific circumstances. Human factors in psychological and
physical forms affect software project development [10]. To know whether cognitive bias has an impact
on human judgment in forecasting software success or failure. 16 or (26%) of responses rate strongly
disagree and disagree, 26 or (42%) responses rate agree and strongly agree, and 20 or (32%) responses
are neutral in answering Q6.

As shown in Fig. 4, 19, or (29%) of the responses rate strongly disagree and disagree, 23 or (35%)
of responses rate agree and strongly agree, and 24 or (36%) of the responses remain neutral while
answering Q7. To answer Q8, 15 or (25%) responses rate strongly disagree and disagree, 27 or (45%)
rate agree and strongly agree, and 16 or (30%) responses remain neutral.
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Figure 4: RQ1’s relative score from human factors and their impacts

Further correlation between themes stated in (Q1, Q4, and Q6-Q8) and their relevancy as human
factors to software success estimation can be statistically measured. Thus, a paired sample t-test is a
statistical method to find a correlation between two variables.

Tab. 3 summarizes the t-value and p-value of statistically significant at an error level of 5 percent
from construct variables (Q1, Q4, Q6, Q7, and Q8) and human factors. Studies [29,30] find that t-value
≥ 1.96 is known as significant for p ≤ 0.05. This empirical study considered the 5 percent resulting
errors.

Table 3: Relationship based on t-value and p-value

Relationship t-value Statistically significant p-value

Q1-Human factor 4.297 Yes 0.013
Q4-Human factor 4.334 Yes 0.012
Q6-Human factor 3.910 Yes 0.017
Q7-Human factor 3.438 Yes 0.026
Q8-Human factor 4.636 Yes 0.014

Key Finding 1 (KF1): The majority of respondents from the software industry have considered
that human factors, including cognitive bias, have negative impacts on software success or failure
forecasting in software engineering.

4.3 Recognition of the Accurate Phase (RQ2)

The summary of responses to Q9-Q11 on the significance and recognition of the phase for
software success or failure forecasting shows a mixed kind of responses. A theme that emerges from the
responses to Q9 is difficult in answering the respective empirical study’s question. The selection of the
requirement gathering phase, an accurate phase for software success rate forecasting, is not supported
by a majority of respondents. If we look at Fig. 4, 23 or 37% of respondents rate it strongly disagree or
disagree, 25 or (40%) of respondents rate it agree and strongly disagree, and 15 or (23%) respondents
remain neutral while answering question Q9 of this empirical study.

Fig. 5 shows us further results of Q10 and Q11 from study’s participants. Survey question Q10
seeks respondents’ answers to know about the software success or failure rate forecasting from software
specifications. 27 or (43%) respondents do not show their positive response as they rate it strongly
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disagree or disagree, 21 or (33%) respondents show positive responses by rating it agree and strongly
agree. A large portion of respondents (18% or 29%) remain neutral while answering Q10. For question
Q11, we have positive responses from 31 or (50%) of respondents. 17 or (27%) respondents rate it
strongly disagree and agree, and 14 or (23%) respondents remain neutral while answering Q11.

Figure 5: RQ2’s relative score from the recognition of the accurate phase

Key Finding 2 (KF2): Earlier phases of SDLC were identified as important phases of software
systems for their success or failure prediction. The SDLC’s requirement engineering phase is not
only predicted as an accurate phase to detect software success or failure but also saves a lot of
cost on software re-development. Therefore, requirement specifications are considered the means of
determining the software success rate.

4.4 Requirements’ Misinterpretation, and Communication Errors (RQ3)

To know about the misinterpretation of requirements at the earliest phase of the SDLC, Q12
was asked from participants of this study. Moreover, survey questions Q15-Q18 were asked to know
whether communication errors were among the software failure causes. Survey questions (Q15-Q18
and Q12) are directly associated with RQ3 in this study. The RQ3 is aimed to seek the direct answer
behind the failure of software systems.

A recent work [31] reveals that conflicts arise from the misinterpreted elicited requirements.
Conflicts are challenging for every type of software system. Hence misinterpretation of requirements
can occur intentionally or unintentionally while implementing them into business processes.

Fig. 6 shows positive support from respondents about the misinterpretation of requirements as
the primary cause behind software failure. 32 or (54%) respondents rate it agree and strongly agree;
only 16 respondents (27%) rate it strongly disagree and disagree, while 11 or (19%) of the respondents
remain neutral in answering the Q12.

To know whether the communication is one of the causes behind software failure, Q15 was
answered by 63 respondents. Twenty-seven of the total respondents or (43%) rate it agree and strongly
disagree, 20 or (32%) of the total respondents rate it disagree and strongly disagree, and 16 or (25%)
of the total respondents remain neutral.

Two questions (Q16 and Q17) of this empirical study were focused on poor communications
and their impacts on software estimation and quality requirements. Let’s look at the responses of
participants in answering Q16. We find that majority of respondents 39 or (62%) rate it agree and
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strongly agree, 23 or (24%) respondents rate it strongly disagree and disagree, and 9 or (14%) of the
respondents remain neutral while answering Q16.

Figure 6: RQ3’s relative score from requirements’ interpretation and miscommunication

As shown in Fig. 6, 30 respondents answered agree and strongly agree in 48% of cases, 19
respondents answered strongly disagree and disagree in 30% cases, and 14 respondents remained
neutral in 22% cases in answering Q17. Our empirical study results justify that software practitioners
are more positive in revealing that poor communication between software clients and requirement
engineers has impact on software estimation. Survey question Q17 focuses on quality requirements,
which emerge from strong communication between clients and software practitioners.

Survey questions Q18 aimed to seek answers from participants regarding the relationship between
poor communications and delayed software specifications. 33 or (52%) respondents remained positive
while rating it agree and strongly agree, 17 or (27%) remained negative as they rated it strongly disagree
and disagree, and 13 or (21%) respondents remained neutral while answering the Q18.

Key Finding 3 (KF3): Requirements’ misinterpretation was identified as the important cause
behind the failure of software systems by the majority of respondents (54%). Poor communication
between clients and requirements engineers was also identified as the major impacting element on
software estimation or prediction because the majority of respondents (62%) remained positive.
Respondents warned the software practitioners against poor communication; most of them (52%)
identified poor communication that delayed the software specifications.

4.5 Decision Making (RQ4)

This paper’s RQ4 was focused on decision making for better software success or failure fore-
casting. There were five survey questions (Q2, Q3, Q5, Q13, and Q14) to answer the RQ4. We have
presented the score of each survey question in the following Fig. 7.

Fig. 7 shows us that most responses (45%) agree and strongly agree, followed by 35% responses
that do not rate Q2 either agree or disagree. In contrast to the earlier mentioned responses, 20% of the
responses rate strongly disagree and disagree while answering Q2. Survey participants were asked to
reveal their opinion about the importance of better judgment for accurate software success forecasting
or failure. In reply, 18 or (30%) of the responses rate strongly disagree and disagree, 30 or (49%) of the
responses rate agree and strongly agree, followed by 13 or (21%) of responses that remain neutral while
answering Q3.
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Figure 7: RQ4’s relative score from decision making and related constructs

Survey participants were asked to state their opinion by rating Q5, whether software success or
failure estimation leads to the right direction for expanding software requirements. Requirements
specification has a vital role in the final quality product. Quality requirements have quality factors,
including maintainability, portability, and expandability [32]. Therefore, the right choice to prioritize
quality requirements over other requirements can be a better decision for quality requirements [33].
We were motivated by these studies and thus included Q5 in the survey questionnaire. 17 or (27%)
respondents did agree with our assumption. In contrast, 28 or (44%) respondents were agreed with our
statement, followed by 16 or (29%) respondents who were neutral while answering survey question Q5.

Information judgment is reliable, relevant, and trustworthy in making accurate decision-making
[34]. Our survey study identifies a challenge for researchers to determine the exact information type
that helps make better software success or failure prediction. We find that 16 or (25%) respondents
did not agree with our statement from survey results, as their responses rated strongly disagree or
disagree. However, 31 or (49%) of the respondents agree with us by rating their responses agree and
strongly agree. 16 or (25%) respondents did not agree with the above statements, and they remain
neutral once they answered Q13 from the survey questionnaire. The survey question (Q14) is focused
on the implementation of the software success or failure estimation and its outcomes regarding
rework avoidance on software systems. Rework performed on the software in the lateral phase is more
expensive than the design work performed in the earlier phases of SDLC [35,36]. We find that 14 or
(23%) respondents were not agreed with our statement to know about software practitioners’ rating.
In contrast, 29 or (47%) agreed with our statement, followed by 19 or (31%) respondents who were
neutral in answering the Q14 from the questionnaire survey.

Key Finding 4 (KF4): Overall, respondents state their positive rating in answering RQ4. The
majority of respondents call better information judgment as a means of accurate software success
or failure forecasting.

5 Limitations

This research study has a limitation regarding data from a survey that cannot be generalized
to global software practitioners in the industry. This research represents the software practitioners’
community from the city of Islamabad, Pakistan. The majority of respondents cannot be considered a
novice as they have four or fewer years of experience working in software development companies.
We found that many respondents did not rate the survey questionnaire, and they are moderately
knowledgeable about software success or failure estimation.
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Several constructs that surround the four main research questions may create confusion among the
respondents while answering the survey questionnaire. Research questions (RQ1-RQ4) were defined
with many other related constructs, and respondents may have faced difficulty filling the survey
questionnaire.

In this survey study, we have recognized numerous threats to validity. Regarding construct validity,
the biggest issue is the choice of a research topic explicitly covered by the survey. It may be that other
related software prediction topics also have been explored. At the time of the questionnaire design,
little indication of the important research topics was omitted.

6 Conclusion

Summarizing the results of this empirical study, it has been seen that human factors impact while
predicting software success or failure. Cognitive bias has been identified as one of the major human
factors that negatively impacts forecasting software success. Our empirical study also finds that earlier
phases of SDLC are better in predicting the software success or failure and help prevent the high
expenses on rework on the later software development phases. Our empirical study’s results show
that misinterpretation and miscommunication of requirements are among the causes behind software
failure. Finally, this empirical study’s results show the importance of decision making from reliable,
relevant, and trustworthy sources of information for software success or failure prediction.
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