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Abstract: When firefighters search inside a building that is at risk of collapse
due to abandonment or disasters such as fire, they use old architectural
drawings or a simple monitoring method involving a video device attached to
a robot. However, using these methods, the disaster situation inside a building
at risk of collapse is difficult to detect and identify. Therefore, we investigate
the generation of digital maps for a disaster site to accurately analyze internal
situations. In this study, a robot combined with a low-cost camera and two-
dimensional light detection and ranging (2D-lidar) traverses across a floor
to estimate the location of obstacles while drawing an internal map of the
building. We propose an algorithm that detects the floor and then determines
the possibility of entry, tracks collapses, and detects obstacles by analyzing
patterns on the floor. The robot’s location is estimated, and a digital map is
created based on Hector simultaneous localization and mapping (SLAM).
Subsequently, the positions of obstacles are estimated based on the range
values detected by 2D-lidar, and the position of the obstacles are identified
on the map using the map update method in semantic SLAM. All equipment
are implemented using low-specification devices, and the experiments are
conducted using a low-cost robot that affords near-real-time performance.
The experiments are conducted in various actual internal environments of
buildings. In terms of obstacle detection performance, almost all obstacles
are detected, and their positions identified on the map with a high accuracy
of 89%.
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1 Introduction

Disasters such as fire and collapse occur in buildings annually. According to statistics of the
national fire protection agency (NFPA) [1], 1,338,500 cases of fire occurred in buildings and structures
in 2020, with 3,500 fatalities and 15,200 injuries recorded. In 2021, a building collapsed in Florida,
United States (U.S.) [2], and in 2015, a fire incident occurred at Grenfell tower in the United Kingdom
(UK), resulting in 72 fatalities [3]. As disasters are becoming increasingly frequent and more complex,
methods for securing effective responses have become increasingly important. In recent years, disaster
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response robots have been developed to replace human rescuers, as the latter are at risk of being killed
when assigned to disaster sites, such as fire sites, to perform search and rescue operations. The Korea
institute of robot and convergence has developed a snake-shaped robot [4] that searches narrow spaces
and buried areas that cannot be entered easily by humans. The Italian institute of technology (IIT) has
developed Centauro [5], a robot that can be used in disaster sites owing to its ability to open valves, open
doors, and use tools such as drills. Furthermore, the Massachusetts institute of technology (MIT), U.S.,
has developed Hermes [6], a robot that is controlled remotely by a human and can operate at the level
of humans in disaster situations.

During a disaster, the control tower installed outside the disaster building can use the camera
and other sensor attached to the robot deployed inside the disaster building to identify the situation
inside the building. To ensure the effective deployment of search and rescue operation personnel, it
is important to identify the locations of collapsed floors, objects inside the collapsed building, large
debris, etc. However, disaster buildings cannot be entered via regular methods because of collapses
or debris, and the exact locations of people who requested rescue inside the building are difficult to
determine. In conventional methods, the disaster environment is monitored, or existing architectural
drawings are used, which renders it difficult to identify the internal environment of the disaster building
accurately because of the collapse locations and obstacles such as debris. Furthermore, existing
architectural drawings of a collapsed building do not reflect an altered situation due to remodeling
inside the building, thereby rendering it difficult to identify specific internal situations in the disaster
building. Therefore, we devised a method to generate a digital disaster map that is highly efficient
and useful for situations inside a disaster building at risk of collapse by the locations of obstacles and
places that do not allow entry into the building are identified and marked on the map, instead of using
simple monitoring or architectural drawings.

To generate digital maps of disaster sites, unspecified obstacle detection, floor detection, location
estimation of obstacles detected by a robot, and digital map creation must be performed. It is
difficult to determine, identify, and specify the shapes of objects in disaster sites because the shapes
of identifiable objects are deformed by fire and collapse. In this study, various objects that can or
cannot be identified in disaster sites are referred to as obstacles. We investigated an algorithm that
detects obstacles that have been learned or not learned and then estimates the size, unlike conventional
object detection algorithms. Furthermore, we researched an algorithm associated with simultaneous
localization and mapping (SLAM) that estimates the robot’s location based on its movement in the
internal environment of a building and displays the robot’s position on the map. SLAM is a technique
that estimates the robot’s location using sensors such as light detection and ranging (Lidar) and
a camera in the space occupied by the robot, and simultaneously generates a map that contains
information regarding the space. SLAM is widely used in autonomous driving involving a robot inside
a building, where location tracking sensors such as global positioning system (GPS) are difficult to
use and easily encountered by robot cleaners in real life. In recent years, SLAM technology has been
applied to the autonomous driving of automobiles and unmanned aerial vehicles (UAVs). In this study,
2D-lidar is applied to identify the location of a robot inside a building using the Hector SLAM [7]
algorithm, based on the robot’s movement. Subsequently, the 2D-lidar generates a map based on the
scan values detected. Simultaneously, video data are obtained using the camera on the robot to detect
the floor and obstacles, as well as estimate the size of detected obstacles. Next, the locations of the
detected obstacles are estimated via the scanning of the 2D-lidar, and the obstacles are shown on the
map using the map update algorithm suggested in semantic SLAM [8] based on the estimated locations.
Our algorithm detects various objects that have been learned or not learned, and its obstacle detection
accuracy is higher than the 89% accuracy afforded by algorithms in conventional studies that detect
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only learned objects. Furthermore, combined with 2D-lidar, it constructs a map that locates objects
that are closer to the actual positions in the building’s internal environment, as compared with the
conventional semantic SLAM. In this study, low-cost cameras and 2D-lidar were used; in fact, many
entry-level robots can be used to search a wide range in a disaster situation.

The remainder of this paper is organized as follows: Section 2 presents an analysis of studies
related to computer vision, robots, and sensors. Subsequently, our proposed algorithm and the data
acquisition method are explained in Section 3. Next, Section 4 presents the specifications of the
equipment used in the experiments as well as the results of experiments conducted using entry-level
robots. Finally, Section 5 provides the conclusion of this study and the future research direction.

2 Related Works
2.1 Computer Vision

Obstacle detection includes supervised-learning-based object detection, which trains the model
for labeled objects, and unsupervised learning-based object detection, which detects objects based on
the patterns and characteristics of objects without labels. Supervised-learning-based studies include a
study [9] where a model is created to detect vehicles, followed by the calculation of the object’s depth to
perform three-dimensional (3D) objection detection. Furthermore, a study [10] was conducted where
multiple objects in real-time video were detected. These studies use various deep learning networks
when training models, and they typically include you only look once version 4 (YOLOv4) [11], faster
region-based convolutional neural networks (faster R-CNN) [12], single shot multi box detector (SSD)
[13], Retina net [14] and feature pyramid networks (FPN) [15]. Furthermore, various studies [16,17]
have been conducted using deep learning networks to detect various objects by training the model
based on the features of objects. One of those studies [18] identifies objects using the SSD network
among deep learning networks and estimates the distance to the identified object using a stereo camera.
However, as many different obstacle shapes cannot be learned in disaster sites, we used the object
patterns and image features. Unspecified objects were identified in some studies, including a study
[19] that uses multiple cameras to detect obstacles, identify obstacle locations, and avoid obstacles.
In another study [20], spatial features are used to detect obstacles. That study, after obtaining the
boundary where water and ground coincide, a low-cost autonomous boat is used to detect obstacles
in the water region through a boundary mask.

In this study, we obtained the mask of a floor inside a building. Specifically, we performed image
segmentation based on a mask R-CNN [21] algorithm to obtain the corridor floor of the building.
Various studies related to image segmentation [22] have been conducted, and various studies associated
with autonomous driving are being performed. A study [23] has been conducted to distinguish roads
and obstacles based on a depth sensor that yields red, green, blue (RGB) images, its corresponding
depth image (RGB-D) camera, and the Riemannian fusion network. Meanwhile, another study [24]
was conducted to obtain the edges of roads accurately during the autonomous driving of vehicles.
Furthermore, a study [25] pertaining to segmentation was conducted to detect damages such as cracks
and grooves on roads. Recently, a study [26] was conducted to obtain the mask values of roads while
disregarding trees or streetlights around roads, when possible, in aerial images to create a map of a
village or city. In another study [27], image segmentation was performed for objects by constructing a
deep learning network to separate non-road objects more distinctively. In this study, we obtained the
edge lines of a mask after obtaining the mask of a floor corresponding to the corridor in the building.
Subsequently, obstacles were identified based on the edge patterns of cases with and without obstacles.
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2.2 Robot and Sensor

We combined low-cost 2D-lidar and a camera to obtain the mask of a floor, detect obstacles,
and display the obstacles on a map. Three-dimensional (3D) Lidar, which costs between thousands
of dollars and tens of thousands of dollars, can yield 3D space information for the x-, y-, and z-
axes, as compared with 2D-lidar, which provides information for the x-and y-axes. Studies using
3D-lidar include one that obtains the ground surface of a road accurately by combining the range
values obtained using 3D-lidar and road images obtained using a camera [28], as well as a study that
uses 3D-lidar to detect obstacles [29]. That study, 3D-lidar is attached to a UAV, and after detecting
obstacles and estimating their locations by clustering the points scanned by 3D-lidar, the UAV avoids
the obstacles. To detect obstacles without identifying them, a study [30] used not only Lidar, but also
an ultrasonic sensor. In that study, low-cost 2D-lidar—not the expensive 3D-lidar—was combined
with a camera. Among the studies related to 2D-lidar, a study that combines 2D-lidar with a camera
[31] classifies human objects based on the camera. Humans are detected in 2D-lidar by matching them
with the components scanned by 2D-lidar. Furthermore, in another study [32], a camera was used to
detect an object, and 2D-lidar was used to obtain the distance to the object. Recently, only a camera,
i.e., without Lidar, was used [33] to estimate the depth of an image; subsequently, after a depth map
was drawn, a pseudo-lidar result similar to the Lidar result based on depth estimation was obtained. In
this study, we performed 2D-lidar to estimate the locations of robots and obstacles and then created a
digital map. Studies related to SLAM include a study that uses a stereo camera to create a map in real
time [34], as well as studies pertaining to navigation that determine the robot’s self-driving paths based
on a map created [35,36]. In another study [37], multiple robots were allowed to traverse in natural
motions without colliding with each other. The Hector SLAM used in this study uses 2D-lidar and
performs real-time matching between conventional values and the values of points scanned newly by
the SLAM algorithm. In this method, odometry values—IMU sensor’s values—are not required, and
loop closure is not performed. We executed the Hector SLAM-based SLAM algorithm and added
obstacles to the map via the map update method of semantic SLAM. After obtaining the bounding
box of an object in the image data via an SSD algorithm based on the Hector SLAM, the semantic
SLAM estimates the object’s size based on the bounding box and positions it on the map. We detected
obstacles of various shapes that have not been specified in the disaster site; subsequently, we estimated
their sizes to display them on the map, thereby creating a digital map.

Robots using various technologies have been investigated in various fields, including robots that
manage power transmission towers [38], harvest strawberries in smart farms [39], and spray water by
detecting heat and gas to perform firefighting [40]. The robots developed in such studies can improve
our daily lives. In fact, RS3, a firefighting robot, was used to extinguish fire in a building in Los
Angeles, U.S [41]. However, such a firefighting robot cannot be used easily because it is extremely
expensive, costing tens or hundreds of thousands of dollars. Therefore, we investigated a low-cost
entry-level robot [42] to create a digital map of a disaster site containing obstacles that can hinder
on-site operations. Multiple entry-level robots can be used in a disaster situation to search the disaster
building more efficiently.

3 Algorithms and System

In this section, we explain the proposed system’s architecture and the modules used to process
the algorithms, and then describe each algorithm’s detection module and SLAM-related modules
comprehensively.
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3.1 Data Acquisition and Processing

Fig. 1 shows our proposed system. We used a laptop computer [43] to process all data obtained
using the camera and 2D-lidar [44] for near-real-time processing. The camera sends RGB image data
to the processing device, and the image data are used to detect the floor and obstacles by analyzing
the patterns of the obstacles. The 2D-lidar measures the time required for the light to hit an object
and return to the receiver via a 360° rotation. Subsequently, the value of the range to the obstacle is
determined. Information regarding the space occupied by the robot can be obtained using the range
value; in this regard, the SLAM algorithm is used to monitor the robot’s location and create a map.
If an obstacle is detected in the camera image data result, then the obstacle’s size is estimated, and its
location is estimated by combining the scan value of Lidar. Subsequently, the map update method is
used to add the obstacle to the map. The sensors are connected based on the robot operating system
(ROS) [45] installed on the processing device. The processing device connected to all sensors is fixed
on the upper section of the robot, and the Lidar system is installed on the lower section of the robot.

Figure 1: Architecture of data acquisition and processing system

3.2 Proposed Algorithm

Our system comprises two modules, as shown in Fig. 2. The first one is for an algorithm that
detects the floor and obstacles via the camera and estimates the size of each obstacle, and the second
one is for an algorithm that uses 2D-lidar to estimate the locations of the robots and obstacles, identify
the surrounding environment, and create a map. The results of the created map and the detected obsta-
cles are positioned on the map via the map update method. The sensors are connected based on the
ROS. Meanwhile, the result of obstacle detection using the camera and the estimated size are combined
with the results of locations estimated using Lidar. The ROS is a set of software libraries and tools
for developing open-source-based robot software and building application programs on the robot.
Fig. 3 shows an overall software architecture of the proposed algorithm. After obtaining the mask
of the floor from the image obtained using the camera, we determined whether entry to the corridor
was possible. If entry is possible, then the obstacles’ patterns are analyzed by obtaining the mask line.
After estimating the obstacle sizes using the size estimation algorithm, we extract the shapes of the
detect obstacles from the original frame and saved the obstacle shapes on the server. If an obstacle is
detected, then the obstacle’s location is estimated using the range value of Lidar, and the corresponding
section is displayed as an obstacle on the map. The digital map of the disaster site created based on
the proposed algorithm is saved on the server, and the map can be used to assist efficient personnel
deployment as well as search and rescue operations in a disaster situation.
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Figure 2: Proposed algorithm flow chart

Figure 3: Software architecture for the proposed algorithm

3.3 Floor and Obstacle Detections

The proposed algorithm detects the floor to determine the possibility of entering the corridor
and analyzes the edge line pattern of the floor to detect obstacles. In the subsections below, the floor
detection and obstacle detection algorithms are described comprehensively.

3.3.1 Floor Detection

Using Lidar, one can determine whether entry to a path obstructed by obstacles is possible, but
not if the floor has collapsed. We can detect a collapsed floor by detecting the floor via a camera.
Fig. 4 shows the floor detection algorithm proposed herein.
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Figure 4: Flow diagram of floor detection algorithm

First, the model trained via the mask R-CNN is used to obtain the floor’s mask. The floor
mask is triangular when no obstacle exists. However, because components that are distant cannot
be determined accurately owing to the effect of light or shadows, we set two-thirds of the region as
the region of interest (ROI). Additionally, unclear mask results are excluded, and the mask exhibits a
trapezoidal shape. To analyze the pattern of the floor surface, we obtained the edge values from the
mask using the canny edge [46]. In canny edge detection, a gaussian filter is used to remove the noise;
subsequently, differential values are used to identify the edges. If the mask obtained by analyzing the
pattern via the canny edge exhibits an abnormal shape that deviates from the normal shape, as shown
in Fig. 5, then the corridor is regarded as impossible to enter.

Figure 5: Examples of normal and abnormal floor detection results

3.3.2 Obstacle Detection and Size Estimation

The floor’s patterns were analyzed to detect obstacles. If no obstacle exists, then a trapezoidal
shape is observed, as shown on the left side of Fig. 6. However, if obstacles exist, then the patterns of
the obstacles are reflected on the floor.

Figure 6: Examples of floor shapes without and with obstacles

If an edge differs from the normal edge, it is then assumed that an obstacle is present. When an
obstacle was detected, we estimated the obstacle’s size using the proposed size estimation algorithm.
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We assumed that the x-axis value in the section that deviated the most from the normal lines among
the determined edge values was the length of the obstacle’s base. Next, to estimate the obstacle’s
height, we removed the region not required for estimating the object’s height. The point the where
the y-coordinate becomes 0 based on the x-coordinate at the end section among the floor edges
was designated as an unnecessary region. Since the corresponding section could not be identified
clearly, we assumed that it was unrelated to the obstacle. After obtaining the edges by performing
canny edge detection for the remaining image region after the removal, the line segment detector
(LSD) [47] was used. The LSD determines straight lines as a rectangular region to detect lines, and
if the pixels in the region are in the same direction, then they are classified as a straight line. This
task can remove the features of all unnecessary spaces, such as the corridor’s gaps, and spaces with
different contrasts; consequently, only the features of the obstacle remain. To obtain only the most
vivid and distinct features among the edge values yielded by applying the LSD, we applied morphology
techniques [48] to the edge values. The morphology techniques fill empty spaces or remove noise on
the image to analyze the image’s shape. Consequently, the regions of various objects are displayed
clearly on the image. Among the morphology techniques, the close operation is performed to remove
unclear noises, and the open operation is performed to apply the values of the remaining features.
The definite features obtained through this process include features of the endpoints of the obstacle.
In particular, the feature at the uppermost section was used and designated as the obstacle’s height.
Fig. 7 shows the overall process of the algorithm for detecting obstacles. We validated the obstacle
detection algorithm by comparing the F1-score value of our proposed obstacle detection algorithm
and those of conventional object detection algorithms.

Figure 7: Overall process of obstacle detection and size-estimation algorithm

3.4 Floor Detection and Obstacle Detection
3.4.1 SLAM and Map Update

To match the scan values of Lidar and the obstacle’s position obtained using the camera, we
installed the Lidar system and camera such that they were facing the same direction. Lidar estimates
the robot’s location in the current space based on the robot’s movement and draws the map. If it detects
an obstacle, then the scan values for the obstacle will appear, as shown in the green circle on the right
side in Fig. 8.
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Figure 8: Lidar scan results without and with obstacle

Unlike the scan result without an obstacle, that with an obstacle is indented inward. The obstacle
detected by the camera is matched with the indented section in the Lidar scan. We can identify the
obstacle’s location by matching the results of the camera with those of Lidar. Unlike the camera, Lidar
may not scan the obstacle based on location. Fig. 9 shows the result of the map without obstacles and
that of updating the map with obstacles. The detected obstacle is marked by a red circle. To update
the obstacles on the map, we used the map update algorithm suggested in semantic SLAM. After
performing a comparison to determine whether obstacles exist on the map, the map update algorithm
adds an object if an obstacle does not exist on the current map. If an obstacle exists, then it is replaced
by another object, or the current state is maintained based on its accuracy via a comparison with
the existing value. In the case of semantic SLAM, the object is detected and displayed on the map
via the SSD algorithm. However, in this study, the obstacles detected using the proposed method are
positioned on the map. We compared the map generated via semantic SLAM and that generated using
the SLAM proposed herein via experiments for validation; subsequently, we generated a map that can
be used in an actual disaster site.

Figure 9: Examples of mapping result without obstacles (left); mapping result with obstacle marked
by red circle (right)

3.4.2 Robot Setup

In our study, the initial position of the robot must be set. The initial position inside the disaster
building is identified based on the robot’s initial position. Meanwhile, the places that can be entered,
stairs, and rooms are distinguished based on the robot’s position. The robot’s initial position can be
directly specified by the user and estimated automatically based on the room number, etc. from the
robot’s place of entry. Furthermore, as the robot traverses, its position is estimated via SLAM. If the
position cannot be estimated because the robot is wobbling excessively, then the robot’s position can
be reset when the robot changes the direction via a staircase and a corner based on the architectural
drawing. Furthermore, even without a change in direction, the robot’s position can be reset via the
room number, etc. detected as the robot traverses. This is facilitated by an indoor localization algorithm
associated with position resetting [49].
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4 Experiments and Results

In this section, the experimental design and results are detailed.

4.1 Experiment Setup

The setup of the robot for the experiments is shown in Fig. 10. The robot can be controlled using
a remote controller, and data are obtained using the camera and 2D-lidar embedded in the laptop
computer. Subsequently, the data are processed using the modules of the proposed algorithm installed
in the laptop computer. The camera used was an LG camera with a video graphics array (VGA) that
measured 640 × 480. The 2D-lidar system offers a range distance of 0.12–10 m and a scan frequency
of 6–12 Hz. It detects objects by rotating 360° and has an angle resolution of 0.43° to 0.86°. The
laptop computer used for data processing was an LG Gram 15z980-ga50k (equipped with an eighth-
generation i5-8250U central processing unit (CPU), a double data rate 4 (DDR4) 8 GB memory, and
the Ubuntu 18.04LTS operating system).

Figure 10: Setup of robot for experiments

4.2 Results

Tab. 1 shows the results of obstacle detection yielded by proposed algorithm and conventional
algorithms. The conventional algorithms detected objects in the corridor via models trained using
the COCO dataset [50], in which labels were assigned to 80 different objects. The obstacle detection
algorithm designed in this study detected more diverse obstacle shapes as compared with the other
algorithms compared.
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Table 1: Results of object detection yielded by proposed algorithm and other algorithms

Algorithms Accuracy Recall Precision F1-score

Faster R-CNN [12] 0.571 0.690 0.657 0.673
SSD [13] 0.356 0.775 0.244 0.371
Retina-net [14] 0.496 0.716 0.346 0.467
FPN [15] 0.487 0.717 0.493 0.584
Our obstacles detection 0.818 0.898 0.879 0.888

The conventional object detection algorithms detect only objects that have been learned, whereas
the obstacle detection algorithm proposed herein detects various shapes of objects that have been
learned and not learned. Because our goal is to propose an algorithm that can be used in disaster
sites, we designed an algorithm that can detect various shapes of obstacles that may exist in disaster
sites. In this study, the proposed algorithm’s performance was validated based on the level of obstacles
in the actual space, as well as the created map and the conventional semantic SLAM method. Eight
obstacles were set in the experimental space. The obstacles that continued consecutively were regarded
as one obstacle, and the results are shown in Tab. 2. The semantic SLAM detected only one obstacle
because it detected only objects that were learned by the SSD model. However, the SLAM method
used in our study detected eight obstacles. Additionally, the execution time of the method was faster
than that of the semantic SLAM. However, the execution time was proportional to the number of
detected obstacles. Therefore, the algorithm proposed herein required a longer execution time than
the conventional semantic SLAM because it detected all obstacles. We expressed the execution time in
second (s).

Table 2: Comparison of experimental results for map creation using SLAM

Method Number of obstacles Total timing (s)

Ground truth 8 -
Semantic
SLAM

1 148.860 s

Ours 8 217.235 s

Fig. 11 shows the created maps. The semantic SLAM on the left side detected only the object in the
area marked by a red circle, whereas the algorithm proposed herein detected various obstacles. Unlike
the conventional semantic SLAM, which detects 10 designated objects via only a trained SSD model,
the proposed algorithm detects various obstacles based on their patterns. Because various shapes of
obstacles that cannot be learned exist in an actual disaster situation, it is impossible to create a model
trained with all obstacles. Therefore, maps generated in this study will be more effective in disaster
situations.
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Figure 11: Result of maps generated using conventional semantic SLAM (left) and proposed SLAM
(right)

5 Conclusion

In this study, we constructed a digital map of a disaster site to understand the disaster situation in
a building to facilitate efficient search and rescue operations. We used an entry-level robot, a low-cost
camera, and 2D-lidar to conduct experiments. In the experiments, our obstacle detection algorithm
demonstrated a higher accuracy as compared with conventional object detection algorithms, and its
SLAM result for the disaster site was more similar to the ground truth in the building compared
with the results of conventional semantic SLAM. In semantic SLAM, obstacles are detected based
on objects that have been learned, after which they are displayed on the map. However, the algorithm
proposed herein detects various shapes of obstacles that has or has not been learned and then displays
them on the map. Furthermore, inexpensive entry-level robots and devices can be used to operate
more easily in disaster situations, as compared with expensive firefighting robots developed to date.
The algorithm’s accuracy was prioritized in this study; however, in the future, we will conduct a study to
increase the system’s efficiency. We hope that this study—which involves obstacle detection in various
disaster sites and yields disaster SLAM results—will be beneficial to firefighters and operations in
actual disaster sites.
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