
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScienceComputers, Materials & Continua
DOI: 10.32604/cmc.2023.028058

Article

Deep Learning-Based Program-Wide Binary Code Similarity for Smart
Contracts

Yuan Zhuang1, Baobao Wang1, Jianguo Sun2,*, Haoyang Liu1, Shuqi Yang1 and Qingan Da3

1Harbin Engineering University, Harbin, 150000, China
2University of Sanya, Sanya, 572000, China

3University of Alberta, Edmonton, T5J4P6, Canada
*Corresponding Author: Jianguo Sun. Email: sunjianguo@hrbeu.edu.cn

Received: 01 February 2022; Accepted: 05 May 2022

Abstract: Recently, security issues of smart contracts are arising great atten-
tion due to the enormous financial loss caused by vulnerability attacks. There
is an increasing need to detect similar codes for hunting vulnerability with
the increase of critical security issues in smart contracts. Binary similarity
detection that quantitatively measures the given code diffing has been widely
adopted to facilitate critical security analysis. However, due to the difference
between common programs and smart contract, such as diversity of bytecode
generation and highly code homogeneity, directly adopting existing graph
matching and machine learning based techniques to smart contracts suffers
from low accuracy, poor scalability and the limitation of binary similarity
on function level. Therefore, this paper investigates graph neural network
to detect smart contract binary code similarity at the program level, where
we conduct instruction-level normalization to reduce the noise code for
smart contract pre-processing and construct contract control flow graphs to
represent smart contracts. In particular, two improved Graph Convolutional
Network (GCN) and Message Passing Neural Network (MPNN) models are
explored to encode the contract graphs into quantitatively vectors, which
can capture the semantic information and the program-wide control flow
information with temporal orders. Then we can efficiently accomplish the
similarity detection by measuring the distance between two targeted contract
embeddings. To evaluate the effectiveness and efficient of our proposed
method, extensive experiments are performed on two real-world datasets,
i.e., smart contracts from Ethereum and Enterprise Operation System (EOS)
blockchain-based platforms. The results show that our proposed approach
outperforms three state-of-the-art methods by a large margin, achieving a
great improvement up to 6.1% and 17.06% in accuracy.

Keywords: Smart contract; similarity detection; neural network

https://www.techscience.com/
http://dx.doi.org/10.32604/cmc.2023.028058
mailto:sunjianguo@hrbeu.edu.cn

1012 CMC, 2023, vol.74, no.1

1 Introduction

As one of the most successful applications ofblockchain technology, smart contracts enable people
make agreements while minimizing trusts, which are deployed in various decentralized applications
[1]. However, many critical security vulnerabilities within smart contracts on Ethereum platform have
caused huge financial losses to users [2]. Hence, the security analysis of smart contract has become
a new trending of academic research [3–6]. Binary code similarity analysis (BCSA) quantitatively
measures the similarities between two or more pieces of binary code, which has been widely adopted in
diverse security applications such as plagiarism detection [7], malware detection [8], and vulnerability
discovery [9]. Comparing binary code is especially fundamental for smart contracts where the contract
source code is not available. For instance, only about 2 percent of the top 1.5 million smart contracts
deployed on the blockchain disclose the source code on the Ethereum browser Etherscan [10].

Conventional BCSA approaches mainly aimed at detecting the similarity between binary func-
tions [11], such as raw feature-based bug search [12], but they are unable to deal with the opcode
reordering issue caused by different compilations. Recently, graph embedding-based methods are
proposed to solve BCSA since machine learning has shown great success that lead to promising results
in program analysis [13].

Despite the surging research interest in BCSA, it is significantly challenging to perform new
research in smart contract for several reasons:(1) high reusability of smart contracts, which disenable
existing methods directly employed on the smart contract binary code. (2) Prior works mostly focus on
solving the BCSA issues at the token or function level, which is less applicable for the desired scenarios
in smart contracts.

To solve the above problem, this paper proposes a neural network-based binary similarity
detection on smart contract. We construct the binary code of smart contract as a program-wide
Control Flow Graph (CFG) and employ graph neural networks to learn the contract representation.
Particularly, we explore the improved GCN and MPNN models to capture the semantic information
and the program-wide control flow information with temporal orders, leading to encouraging results
of binary similarity detection in smart contract.

In conclusion, we summarize our contributions as follows:

• We propose an end-to-end method based on graph neural network to solve the program-wide
binary code similarity detection in smart contracts.

• We propose a temporal graph neural network to learn the contract representation for similarity
detection, which explicitly capture both the semantic and the temporal information to generate
graph embeddings.

• We conduct extensive experiments on two real-world smart contract datasets, and the results
demonstrate our approach outperforms state-of-the-art methods on both accuracy and effi-
ciency.

2 Related Work

In this section, we will briefly discuss the related work focusing on code similarity, which have
been widely applied for bug search, plagiarism detection and vulnerability discovery [14].

For learning-based bug search approach [15], many researchers have worked on the problem of
raw feature-based bug search in binaries, and made great progress in this direction. In general, they
rely on various raw features extracted directly from binaries for code similarity matching. N-grams or
N-perms [16] are two early approaches which adopt the binary sequence or mnemonic code matching

CMC, 2023, vol.74, no.1 1013

without understanding the semantics of code, so they cannot solve the opcode reordering issue caused
by different compilations. To further improve accuracy, the tracelet-based approach [17] captures
execution sequences as features for code similarity checking, which solve the problem of opcode
changes. Tree Edit Distance Based Equational Matching (TEDEM) [18] captures semantics using
the expression tree for each basic block. However, the opcode and register names are different across
architectures, so these two approaches are not suitable for finding bugs across architectures. The graph
embedding used in graph analysis has two different meanings. The first one is to embed the nodes of a
graph. This means finding a map from the nodes to a vector space, so that the structural information
of the graph is preserved. In recent years, more and more works have adopted deep learning-based
method to process large-scale graph datasets.

Another research line of graph embedding explored in this paper is to learn vectors that represent
the entire graph, from tradition image processing [19–22] to program analysis [23]. Inspired by this,
more researchers apply machine learning methods to handle tasks such as protein design and graph
analysis [24]. Currently, the kernel method is a technology widely used to process structured data such
as sequences and graphs.

The key to the kernel method is a carefully designed kernel function (a positive semi-definite
function between a pair of nodes). For example, [25] counts specific subtree patterns in a graph; [26]
counts the appearance of subgraph with specific sizes, where different structures will be counted in a
process named Weisfeiler-Lehman (WL) algorithm. However, the kernels in these methods are fixed
before learning, so the embedding space may suffer large dimensions. To overcome this problem, we
explore graph neural network-based methods to learn both graph structure of smart contract CFGs
and semantic information by extracting contract features.

3 Problem Statement

Problem formulation. Presented with a pair of smart contract binary codes, we focus on designing
a fully automated approach that can identify binary similarity at the program level. That is, the label ŷ
for each smart contract binary pair, denoted by SP, where ŷ = 1 represents contracts in SP are similar
at a certain degree while ŷ = 0 denotes the pair are not similar contracts. In this paper, we focus on
two types of smart contracts.

Ethereum smart contract. Ethereum is an open-source public blockchain platform with smart
contract functions. It provides decentralized Ethernet virtual machines to handle point-to-point
contracts through its special cryptocurrency. Ethereum’s smart contract is not a common contract
in reality, but an application executed by Ethereum virtual machine. These applications can be used
to implement certain predetermined rules. In current releases of Ethereum, the smart contract code
is executed on the Ethereum Virtual Machine (EVM). Developers can write smart contracts using
Solidity, a high-level programming language [27], which are then compiled into EVM bytecode. For
example, the smart contract named Owned in Fig. 1 provides a function for transferring ownership.
After compilation, the contract is converted from the source code to its bytecode format. Then the
binary code of smart contract is constructed as a program-wide CFG generated by Octopus [28], a
security analysis tool translating bytecode into assembly representation and control flow graphs, in
which the contract graph is represented by block nodes and edges referring to the jump relationship
among blocks.

1014 CMC, 2023, vol.74, no.1

Figure 1: An example of Ethereum source code, bytecode and CFG

EOS smart contract. Enterprise Operation System (EOS) platform [29] is an open source public
blockchain platform that focuses on the scalability of transaction speed. WebAssembly (WASM) [30] is
a binary instruction format for a stack-based virtual machine, being adopted by the EOS blockchain
platform for better efficiency and reliability. As shown in Fig. 2, the source code of a EOS smart
contract is compiled into WASM bytecode for execution within the WASM Virtual Machine (VM).
And the Application Binary Interfaces (ABIs) describe the public interfaces of the smart contract to
interact with. Every EOS smart contract must provide an apply function as the entrance function
to handle actions. For example, the transfer function of a smart contract is usually used to handle
transfer actions related to the contract [31]. The apply function utilizes the receiver, code, and action
input parameters as filters to map the actions to the corresponding functions [32].

4 Our Method

Method overview. The overall workflow of the method includes three stages: (1) graph generation
phase, in which the graph representation is constructed from each targeted smart contract bytecode.
(2) graph embedding phase, in which two improved neural networks MPNN and GCN are used to
aggregate the information of each node in CFGs and learn a high-level embedding for each contract
graph. (3) Similarity comparison phase calculates the consistent distance between the two embeddings
to identify the similarity of each given contract pair.

4.1 Graph Generation

Our work mainly focuses on the binary code of smart contract and compares the similarity of the
two binary contracts. To this end, we adopt Octopus (the classic security analysis framework of smart
contracts) to deal with smart contracts in bytecode format on Ethereum and WASM format on EOS.
Although there are many differences between the binary code of smart contract on Ethereum and EOS
platforms, the graph representation generated by Octopus is relatively similar when dealing with these
two binary codes. In the phase of graph generation, we collect block nodes and edges to construct
smart contract CFGs, where the node set contains all basic blocks consisted of the instruction set. The

CMC, 2023, vol.74, no.1 1015

edge set denotes the jump relationships among blocks. Then, we use word2vec to convert the block
nodes into vector representation.

Figure 2: An example of EOS source code, bytecode and CFG

Figure 3: Overall structure of our improved model

1016 CMC, 2023, vol.74, no.1

4.2 Embedding Network

Our graph embedding network is inspired from the classic graph neural networks GCN and
MPNN. Given a graph pair as p =< g, g′ > where g =< V , E >, V and E are the sets of blocks and
edges respectively. The embedding network will compute a p dimensional feature uv for each block
v ∈ V and then the embedding vector ug of g will be computed as an aggregation of these block
embeddings.

4.2.1 Improved GCN

GCN proposes to apply convolutional neural networks to graph-structured data, which develops
a layer-wise propagation network as:

Xl+1 = σ
(

D̂− 1
2 ÂD̂− 1

2 XlWl

)
(1)

where Â = A + I is the adjacency matrix (A) enhanced with self-loops (I), Xl is the feature matrix of
layer l, and Wl is a trainable weight matrix. In the equation, the diagonal node degree matrix D∧ is
used to normalize Â.

When the node vector is output from the hidden layer, it is equivalent to encoding the nodes. Let
hT

i be the final hidden state of the ith nodes. We may generate the graph representation ĝ by

ĝ =
|V |∑
i=1

hT
i (2)

where |V | denotes the number of major nodes.

4.2.2 Improved MPNN

MPNN consists of a message propagation phase and a readout phase. In the message propagation
phase, MPNN passes information along the edges successively by following their temporal order.
Then, MPNN computes a label for the entire graph G by using a readout function, which aggregates
the final states of all nodes in G.

Formally, a contract graph is expressed by G = {V, E}, where V consists of all major nodes and E
contains all edges. Denote E = {e1, e2, . . . , eN }, where ek represents the k-th temporal edge.

Message propagation phase. Messages are passed along the edges, one edge per time step. At time
step 0, the hidden state h0

i for each node Vi is initialized with the feature of Vi. At time step k, message
flows through the kth temporal edge ek and updates the hidden state of Vek, namely the end node of
ek. Particularly, message mk is computed basing on hsk, the hidden state of the starting node of ek, and
the edge type tk:

xk = hsk ⊕ tk (3)

mk = Wkxk + bk (4)

where ⊕ denotes concatenation operation, matrix Wk and bias vector b are network parameters. The
original message xk contains information from the starting node of ek and edge ek itself, which are then
transformed into a vector embedding using Wk and b.

CMC, 2023, vol.74, no.1 1017

After receiving the message, the end node of ek updates its hidden state hek by aggregating
information from the incoming message and its previous state. Formally, hek is updated according to:

ĥek = tanh(Umk + Zhek + b1) (5)

h′
ek = softmax(Rĥek + b2) (6)

where U , Z, R are matrices, while b1 and b2 are bias vectors.

Readout phase. After successively traversing all the edges in G, MPNN computes the graph
embedding for G by reading out the final hidden states of all nodes. Let hT

i be the final hidden state of
the ith node, we may generate the graph embedding ĝ by

ĝ =
|V |∑
i=1

f (hT
i) (7)

where f is a mapping function, e.g., a neural network, and |V | denotes the number of graph nodes.

4.3 Similarity Comparison

We use Siamese architecture to implement the same two graph embedded network. The Siamese
architectures is a popular network architecture among tasks that involve finding similarity between two
comparable things, which has been adopted by existing BCSA methods with good results [33]. Each
graph embedding network will take a CFG as its input and output the embedded graph ĝ.The final
output of Siamese architecture is the cosine distance of these two embedded contracts. In addition,
the two embedding networks share the same parameter set. Therefore, during the training, the two
networks remain same. Given a graph pair p =< g, g′ >, with ground truth pairing information
y ∈ {1, −1}, where y = 1 indicates that g and g′ are similar, otherwise y = −1.

ŷ = Sim
(
ĝ, ĝ′) = cos

(
ĝ, ĝ′) = < ĝ, ĝ′ >

| ∣∣ĝ∣∣ | · | ∣∣ĝ′
∣∣ | (8)

where ĝ is the graph embedding representation generated by the improved GCN and MPNN.

At the same time, to train the model parameters for the above models, we will optimize the
following objective function as follows:

min
K∑

i=1

(Sim
(
gi, g

′
i

) − yi)
2 (9)

We can optimize the objective of Expression (9) with stochastic gradient descent. The gradients of
the parameters are calculated recursively according to the graph topology. In the end, once the Siamese
network can achieve a good performance, the training process terminates.

5 Experiments
5.1 Experimental Settings

Datasets. Extensive experiments are conducted on two datasets of real-world binary contracts
collected from the Ethereum and EOS platforms. Particularly, we collected the source code files of
44096 Ethereum smart contracts [24], which roughly contain 230452 independent smart contracts.
After compilation, disassembly and de duplication, there are 3250 distinct contracts in the Ethereum
dataset. For EOS, we collected 3881 real-world smart contracts [34]. After deduplication, there are
2306 contract binaries left in the EOS dataset. Then, we construct a series of similar contract pairs

1018 CMC, 2023, vol.74, no.1

tagged as positive samples and a certain of dissimilar contract pairs tagged as negative samples for
each distinct contract.

Compared methods. We compare our proposed approaches (improved GCN and MPNN) with a
traditional graph matching method and two deep learning method. The traditional graph matching
methods is WL [35], which calculates the structural similarity of two graphs based on subtree. The two
deep learning methods are Density-Based Spatial Clustering of Application with Noise (DBSCAN)
[36] and Gemini [33]. DBSCAN is a density-based spatial clustering algorithm while Gemini is a neural
network-based method, which uses Structure2vec to compute the graph embedding of CFGs and
identify whether the binary codes of two traditional high-level programs are similar. For the neural
network-based methods, we randomly pick 80% contracts from each dataset as the training set while
the remaining are utilized for the test set.

Metrics. In the comparison, classic metrics for BCSA such as accuracy, recall, precision, and F1
score are all involved. Particularly, the results of true positives (TP), true negatives (TN), false positives
(FP), and false negatives (FN) are used to compute the above metrics. The true values represent the
number of correctly predicted results, which can be either true positive or true negative. The false values
indicate that our model gives the wrong output.

The precision metric describes the ratio of truly positive values to all positive predictions. This
indicates the reliability of the classifier’s positive prediction. The recall metric shows the proportion
of actual positives that are correctly classified. The formulas to compute these two metrics are given
below:

Precision = TP
TP + FP

(10)

Recall = TP
TP + FN

(11)

The F1 score metric is commonly used in information retrieval and it quantifies the overall
decision accuracy using precision and recall. The F1 score is defined as the harmonic mean of the
precision and recall:

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

(12)

Notice that, the best and the worst value of the F1 score is 1 and 0, respectively. The F1 score can
be calculated for each class label or globally. In our evaluation, we use the weighted F1 score where
the per-class F1 scores are weighted by the number of samples from that class.

Finally, the accuracy metric describes the effectiveness of our methods, which represents the
correct proportion of all samples:

Accuracy = TP + TN
TP + TN + FP + FN

(13)

5.2 Results Analysis

Performance comparison in terms of the above metric is shown in Tab. 1, where we compare
the proposed method (i.e., improved GCN and MPNN models) with existing approaches on the
collected datasets. Meanwhile, we illustrate the effectiveness of our models by evaluating their ROCs
in Figs. 4 and 5. Smart contracts on Ethereum and EOS are so different in instruction and size that
we elaborately discuss the experimental results respectively.

CMC, 2023, vol.74, no.1 1019

Table 1: Performance comparison in terms of accuracy, recall, precision and F1 score

Methods Ethereum dataset EOS dataset

Acc (%) Recall (%) Precision (%) F1 (%) Acc (%) Recall (%) Precision (%) F1 (%)

WL 56.99 15.41 53.82 40.25 50.72 14.39 50.36 33.98
Gemini 85.66 71.33 77.72 74.92 72.55 56.86 67.16 62.71
DBSCAN 74.55 63.44 70.09 67.10 75.72 67.41 72.05 69.91
GCN 80.61 82.12 79.71 80.89 88.77 97.71 82.89 89.69
MPNN 91.76 93.19 90.59 93.09 89.61 93.55 86.71 93.28

Figure 4: ROC analysis for GCN, MPNN on Ethereum dataset

Figure 5: ROC analysis for GCN, MPNN on EOS dataset

5.2.1 Comparison on Ethereum Dataset

Firstly, we compare the improved GCN and MPNN methods with WL, DBSCAN and Gemini
in the similarity detection of Ethereum binary contracts. Tab. 1 shows the performance of different
methods via the metric accuracy, recall, accuracy and F1 score.

1020 CMC, 2023, vol.74, no.1

From the quantitative results in Tab. 1, we have the following observations. Firstly, it confirms that
the traditional method has not achieved satisfied accuracy in the similarity detection. For example,
the accuracy of WL is 56.45%. Second, the improved MPNN method has achieved great improvement
over the traditional method. More specifically, MPNN achieves an accuracy of 91.76%. Compared
with the traditional method, the accuracy has been increased by 35.31%. Third, the improved GCN
also obtains better results than the traditional method. The empirical results prove that the application
of graph neural network to binary contract similarity detection has great potential. We further study
the traditional similarity detection tool to explore the reason behind these observations. WL heavily
relies on graphic structure while ignoring the semantic information within blocks, leading to its low
accuracy and other metrics.

To verify if the proposed neural network-based methods can successfully detect the similarity of
Ethereum smart contracts, we compare our method with the well-known deep learning method in
BCSA, i.e., Gemini. Experimental results show that the performance of Gemini is better than the
traditional method WL, the clustering method DBSCAN and the improved GCN. This informs that
only considering both graphical information and semantic information can outperform in similarity
detection. In the meanwhile, we want to emphasize that the improved MPNN model achieves the high
scores in all four indicators, since more messages passed by edges contribute to the final embeddings
of contract CFGs. ROCs shown in Fig. 4 also illustrate the effectiveness of our two proposed model,
the larger the ROC area, the stronger the similarity detection ability.

5.2.2 Comparison on EOS Dataset

We list comparison results of the binary similarity detection of EOS contracts in Tab. 1. It indicates
that static method fails to identify contract similarity when processing complex smart contracts,
where the accuracy rate is only about 50%. However, our methods are able to deal with complex
programs, though the results of MPNN do not change much but GCN’s are significantly improved.
This confirms that GCN is relatively good at processing complex graph information. The reason is
that when MPNN and GCN learn a given contract CFG, they take the semantic information of each
node into consideration. Then this information will be transmitted to neighboring nodes along with
the edge message between nodes, and finally obtain a complete graph representation of the CFG that
is more capable of expressing the complex contracts.

Compared to the neural network methods, the ability dealing with complex programs of Gemini
is significantly reduced, while the performance of DBSCAN is not influenced by the program
complexity. At the same time, two improved models we propose outperform than these two methods,
especially when solving the BSCA problem in terms of binary contracts. This is because Gemini deals
with traditional high-level languages, but smart contracts and traditional high-level languages have
huge differences in functionality and implementation. It also can be observed from Fig. 5 where our
models have achieved promising ROCs.

5.3 Case Study

The goal of our proposed graph neural network models is to better understand and identify
the similarity of the given smart contract binary code pair. As illustrated in Fig. 3, we elaborate the
proposed workflow with an example of two similar smart contract, which are generated by the same
smart contract with different compiler versions.

Understanding binary code is a difficult problem, so we firstly generate graph representations,
i.e., CFGs, of these two binary contracts shown in Fig. 6. Basic blocks of different instruction sets

CMC, 2023, vol.74, no.1 1021

are modeled as nodes and control flow relationship between nodes are modeled as edges in CFGs. To
clearly show the dissimilar parts of these contract graphs, we use ‘ . . . ’ to represent the similar blocks in
the CFGs and add the serial number to identify different blocks. Then we utilize word2vec to convert
the block nodes into vector representation and feed to the next graph embedding network. In the
graph embedding phase, we exploit the proposed graph neural network (e.g., the well trained CGN or
MPNN model) to encode the input graph representation into a high-level embedding. In other words,
each graph embedding network will take a CFG as its input and output the graph embeddings. Lastly,
we use the cosine distance of these two embeddings to detect whether the pair of smart contracts is
similar or not. In this case, the detection result is similar, which proves the accuracy of our proposed
method in the similarity detection.

From the Fig. 6, we can see both the graph structure of CFGs and the instruction sets of basic
blocks have a certain difference between the contract pair. For example, Block1, block10, and block38
with some stack operation instructions like DUP1, POP, have little effect on instruction analysis. In
contrast, there are more useful instructions in block10. By learning the graph features, i.e., the semantic
information of these blocks and the graph structure of the binary contract pair, our proposed model
can correctly determine that the given binary files of contract pair are similar.

Figure 6: Example CFGs of a similar smart contract pair

6 Conclusion

In this paper, we proposed a deep learning-based scheme for program-wide binary code similarity
of smart contracts, in which improved GCN and MPNN models are exploited for similarity detection

1022 CMC, 2023, vol.74, no.1

of two given binary contracts. We used control-flow graph (CFG) to represent binary code of smart
contract, and then graph neural network is adopted to generate the graph embedding. We then
employed the Siamese Network for integrating two identical graph neural networks to calculate the
similarity between two contract encodings. As far as we concerned, this is the first work that apply the
similarity detection method to the binary contracts. For the model training, we built two real-world
datasets from two well-known blockchain platforms, i.e., Ethereum and EOS respectively, containing
49,725 binary smart contracts in total. Compared with the state-of-art methods, we have achieved
promising results on the accuracy of similarity detection. Evaluation results show that our method
outperforms three state-of-the-art methods by achieving a great improvement up to 6.1% and 17.06%
in accuracy. We believe that this is also an important step to continue to study the task of binary code
similarity of smart contract.

Funding Statement: This work is supported by the Basic Research Program (No. JCKY2019210B029)
and Network threat depth analysis software (KY10800210013).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] B. Hu, Z. Zhang, J. Liu, Y. Liu, J. Yin et al., “A comprehensive survey on smart contract construction and

execution: Paradigms, tools, and systems,” Patterns, vol. 2, no. 2, pp. 100179, 2021.
[2] N. Atzei, M. Bartoletti and T. Cimoli, “A survey of attacks on Ethereum smart contracts (SoK),” in Int.

Conf. on Principles of Security and Trust, Heidelberg, Berlin, pp. 164–186, 2017.
[3] J. Huang, S. Han, W. You, W. Shi, B. Liang et al., “Hunting vulnerable smart contracts via graph embedding

based bytecode matching,” IEEE Transactions on Information Forensics and Security, vol. 16, pp. 2144–
2156, 2021.

[4] B. Jiang, Y. Liu and W. K. Chan, “ContractFuzzer: Fuzzing smart contracts for vulnerability detection,”
in 2018 33rd IEEE/ACM Int. Conf. on Automated Software Engineering (ASE), Montpellier, France, pp.
259–269, 2018.

[5] Z. Liu, P. Qian, X. Wang, Y. Zhuang, L. Qiu et al., “Combining graph neural networks with expert knowl-
edge for smart contract vulnerability detection,” IEEE Transactions on Knowledge and Data Engineering,
Early Access, vol. 2021, pp. 1, 2021. https://doi.org/10.1109/TKDE.2021.3095196.

[6] L. Luu, D. H. Chu, H. Olickel, P. Saxena and A. Hobor, “Making smart contracts smarter,” in Proc. of the
2016 ACM SIGSAC Conf. on Computer and Communications Security, Vienna, Austria, pp. 254–269, 2016.

[7] J. Jang, D. Brumley and S. Venkataraman, “Bitshred: Feature hashing malware for scalable triage and
semantic analysis,” in Proc. of the 18-th ACM Conf. on Computer and Communications Security, Chicago,
Illinois, USA, pp. 309–320, 2011.

[8] L. Luo, J. Ming, D. Wu, P. Liu and S. Zhu, “Semantics-based obfuscation-resilient binary code similarity
comparison with applications to software plagiarism detection,” in Proc. of the 22nd Int. Symp. on
Foundations of Software Engineering, Hong Kong, China, pp. 389–400, 2014.

[9] X. Meng, B. P. Miller and K. S. Jun, “Identifying multiple authors in a binary program,” in Proc. of the
22nd European Symp. on Research in Computer Security, Oslo, Norway, pp. 286–304, 2017.

[10] Etherscan, “The Ethereum block explorer,” 2021. [Online]. Available: https://etherscan.io/.
[11] Q. Feng, R. Zhou, C. Xu, Y. Cheng, B. Testa et al., “Scalable graph-based bug search for firmware images,”

in Proc. of the 2016 ACM SIGSAC Conf. on Computer and Communications Security, Vienna, Austria, pp.
480–491, 2016.

https://doi.org/10.1109/TKDE.2021.3095196
https://etherscan.io/

CMC, 2023, vol.74, no.1 1023

[12] F. Zuo, X. Li, P. Young, L. Luo, Q. Zeng et al., “Neural machine translation inspired binary code similarity
comparison beyond function pairs,” in Proc. of the 2019 Network and Distributed System Security Symp.,
San Diego, California, USA, pp. 1–15, 2019.

[13] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng et al., “Codebert: A pre-trained model for programming and
natural languages,” in Findings of the Association for Computational Linguistics: EMNLP 2020, Online, pp.
1536–1547, 2020.

[14] J. Kivinen, A. J. Smola and R. C. Williamson, “Online learning with kernels,” IEEE Transactions on Signal
Processing, vol. 52, no. 8, pp. 2165–2176, 2004.

[15] Q. Feng, R. Zhou, C. Xu, Y. Cheng, B. Testa et al., “Scalable graph-based bug search for firmware images,”
in ACM Conf. on Computer and Communications Security (CCS’16), Vienna, Austria, pp. 480–491, 2016.

[16] W. M. Khoo, A. Mycroft and R. Anderson, “Rendezvous: A search engine for binary code,” in 2013 10th
Working Conf. on Mining Software Repositories (MSR), San Francisco, CA, USA, pp. 329–338, 2013.

[17] Y. David and E. Yahav, “Tracelet-based code search in executables,” in Proc. of the 35th ACM SIGPLAN
Conf. on Programming Language Design and Implementation, New York, NY, 49, pp. 349–360, 2014.

[18] J. Pewny, F. Schuster, L. Bernhard, T. Holz and C. Rossow, “Leveraging semantic signatures for bug search
in binary programs,” in Proc. of the 30th Annual Computer Security Applications Conf., New Orleans,
Louisiana, USA, pp. 406–415, 2014.

[19] X. R. Zhang, W. F. Zhang, W. Sun, X. M. Sun and S. K. Jha, “A robust 3-D medical watermarking based
on wavelet transform for data protection,” Computer Systems Science & Engineering, vol. 41, no. 3, pp.
1043–1056, 2022.

[20] X. R. Zhang, X. Sun, X. M. Sun, W. Sun and S. K. Jha, “Robust reversible audio watermarking scheme
for telemedicine and privacy protection,” Computers, Materials & Continua, vol. 71, no. 2, pp. 3035–3050,
2022.

[21] W. Sun, G. Z. Dai, X. R. Zhang, X. Z. He and X. Chen, “TBE-Net: A three-branch embedding network with
part-aware ability and feature complementary learning for vehicle re-identification,” IEEE Transactions on
Intelligent Transportation Systems, pp. 1–13, 2021. https://doi.org/10.1109/TITS.2021.3130403.

[22] W. Sun, L. Dai, X. R. Zhang, P. S. Chang and X. Z. He, “RSOD: Real-time small object detection algorithm
in UAV-based traffic monitoring,” Applied Intelligence, vol. 92, no. 6, pp. 1–16, 2021.

[23] Y. Zhuang, Z. Liu, P. Qian, Q. Liu, X. Wang et al., “Smart contract vulnerability detection using graph
neural network,” in IJCAI 2020, YoKohama, Japan, pp. 3283–3290, 2020.

[24] B. Zhang, H. Ling, P. Li, Q. Wang, Y. Shi et al., “Multi-head attention graph network for few shot learning,”
Computers, Materials & Continua, vol. 68, no. 2, pp. 1505–1517, 2021.

[25] J. Ramon and T. Gärtner, “Expressivity versus efficiency of graph kernels,” in Proc. of the First Int.
Workshop on Mining Graphs, Trees and Sequences, Cavtat-Dubrovnik, Croatia, pp. 65–74, 2003.

[26] N. Shervashidze, P. Schweitzer, E. J. Leeuwen, K. Mehlhorn and K. M. Borgwardt, “Weisfeiler-lehman
graph kernels,” Journal of Machine Learning Research, vol. 12, no. 9, pp. 2539–2561, 2011.

[27] Solidity, 2021. [Online]. Available: https://solidity.readthedocs.io/en/v0.6.4/.
[28] M. Angelo and G. Salzer, “A survey of tools for analyzing ethereum smart contracts,” in Proc. of the 2019

IEEE Int. Conf. on Decentralized Applications and Infrastructures (DAPPCON), Berlin, German, pp. 69–
78, 2019.

[29] EOSIO, 2021. [Online]. Available: https://eos.io/build-on-eosio/eosio-cdt/.
[30] WebAssembly, 2021. [Online]. Available: https://webassembly.org/.
[31] Transfer function of EOSIO smart contracts, 2021. [Online]. Available: https://developers.eos.io.
[32] EOSIO ABI macro and apply, 2021. [Online]. Available: https://developers.eos.io/eosiocpp/v1.2.0/docs/abi.
[33] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song et al., “Neural network-based graph embedding for cross-

platform binary code similarity detection,” in Proc. of the 2017 ACM SIGSAC Conf. on Computer and
Communications Security, Dallas, Texas, USA, pp. 363–376, 2017.

https://doi.org/10.1109/TITS.2021.3130403
https://solidity.readthedocs.io/en/v0.6.4/
https://eos.io/build-on-eosio/eosio-cdt/
https://webassembly.org/
https://developers.eos.io
https://developers.eos.io/eosiocpp/v1.2.0/docs/abi

1024 CMC, 2023, vol.74, no.1

[34] Y. Huang, B. Jiang and W. Chan, “EOSFuzzer: Fuzzing EOSIO smart contracts for vulnerability detec-
tion,” in 12th Asia-Pacific Symp. on Internetware (Internetware’20), New York, USA, Association for
Computing Machinery, pp. 99–109, 2020.

[35] M. Sugiyama, M. E. Ghisu, F. Llinares-López and K. Borgwardt, “Graphkernels: R and Python packages
for graph comparison,” Bioinformatics, vol. 34, no. 3, pp. 530–532, 2018.

[36] F. G. Yasar and G. Ulutagay, “Challenges and possible solutions to density-based clustering,” in 2016 IEEE
8th Int. Conf. on Intelligent Systems, Sofia, Bulgaria, pp. 492–498, 2016.

	Deep Learning-Based Program-Wide Binary Code Similarity for Smart Contracts
	1 Introduction
	2 Related Work
	3 Problem Statement
	4 Our Method
	5 Experiments
	6 Conclusion

