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Abstract: Recently, Industrial Control Systems (ICSs) have been changing
from a closed environment to an open environment because of the expan-
sion of digital transformation, smart factories, and Industrial Internet of
Things (IIoT). Since security accidents that occur in ICSs can cause national
confusion and human casualties, research on detecting abnormalities by
using normal operation data learning is being actively conducted. The single
technique proposed by existing studies does not detect abnormalities well or
provide satisfactory results. In this paper, we propose a GRU-based Buzzer
Ensemble for Abnormal Detection (GBE-AD) model for detecting anomalies
in industrial control systems to ensure rapid response and process availability.
The newly proposed ensemble model of the buzzer method resolves False
Negatives (FNs) by complementing the limited range that can be detected in a
single model because of the internal models composing GBE-AD. Because
the internal models remain suppressed for False Positives (FPs), GBE-AD
provides better generalization. In addition, we generated mean prediction
error data in GBE-AD and inferred abnormal processes using soft and
hard clustering. We confirmed that the detection model’s Time-series Aware
Precision (TaP) suppressed FPs at 97.67%. The final performance was 94.04%
in an experiment using an HIL-based Augmented ICS (HAI) Security Dataset
(ver.21.03) among public datasets.

Keywords: Industrial control system; abnormal detection; ensemble learning;
HAI dataset

1 Introduction

In the past, industrial control systems were protected by whitelist-based detection [1,2],
separation-based technologies [3] and fault diagnosis prediction [4] in closed environments. But recent
industrial control systems are being converted to open environments with the expansion of digital
transformation, smart factories, and IIoT. As the industrial control system transforms itself into an
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environment that can operate and control itself, research on Operational Technology (OT) security
using artificial intelligence technology is under way.

Abnormal processes in industrial control systems can occur in various ways, such as from
cyberattacks (e.g., malicious code infection, control logic changes), hardware and software errors,
operator errors, and environmental factors. In particular, if the control logic of the safety system is
changed, that may lead to facility destruction, operation interruption, and even casualties. In case of
attack by bypassing the IT system (e.g., Ukraine power grid hack, Triton Attack), the OT system must
be able to detect it. Therefore, it is necessary to detect abnormal processes by using learning operation
data that occurs between processes.

In the abnormal detection studies [5–13] using various deep learning models and detection
techniques based on operation data, the most important consideration is how to detect new and
unknown attacks. However, if an abnormal process is detected based on the prediction error of a deep
learning model trained on normal operation data, it is directly related to the cost of response, such as
on-site due diligence and process interruption, so the problem of FPs must be addressed. One must
also be able to identify the physical location of a detected anomaly.

In this paper, we propose a GRU-based Buzzer Ensemble for Abnormal Detection (GBE-AD)
model with suppressed FPs and infer the abnormal process by means of soft and hard clustering from
the mean prediction error (MPE) generated from the built model. The first step in detecting anomalies
is to build a Gated Recurrent Units (GRU) [14] prediction model by means of training data consisting
of only normal data. In the second step, the time step (window size) of the time-series data is set
differently, and the training data is shuffled to create a model similar to the first built model. This is
defined by the internal model of GBE-AD. Each internal model has a threshold for suppressing FPs,
and the internal models are complementary to FNs. Finally, the prediction error data collected from
the detection model is generated, and the detailed process of the abnormal data is inferred by means
of fuzzy c-means and k-means clustering.

Suggestions contributed are:

� We propose a GBE-AD model with suppressed FPs using GRU.
� We derived the detailed process points of the abnormal process from the MPE data collected
from the predictive model.
� We confirmed that FPs were suppressed in TaP 97.67% of the detection model, and the final
performance was 94.04%. In addition, by clustering the MPE data, we could infer the detailed
process of the abnormal data.

2 Related Works
2.1 HIL-based Augmented ICS (HAI) Security Dataset

The ICS public dataset is being published for industrial control system security research. Among
them, the HAI dataset used in this paper was constructed to facilitate synchronization between
components and data collection by means of OPC-UA (Open Platform Communications-Unified
Architecture) and Hardware-in-the-loop (HIL) simulation. In addition, it is a very reliable dataset,
because it includes various stealth attacks and labels them by means of information generated using
automated attack tools [15].

As shown in Fig. 1, The HAI 21.03 dataset uses normal data collected for 352 h of 78 data points
in a testbed consisting of a boiler, turbine, water treatment process, and HIL simulator as training
data, and includes 50 attack scenarios for 112 h. Abnormal data is used as test data [16].
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Figure 1: Process control architecture of HAI Testbed

2.2 Approaches to Detecting Abnormalities in ICSs

Detecting abnormalities by means of operation data learning aims to protect the level 0 ∼ 1 area
of the Purdue Model [17] that has actuators, sensors, and controllers. Threat modeling can be defined
as outliers of sensors and actuators, injected network traffic, and damage to control systems [18].

Continuous monitoring is required to ensure the data integrity and deterministic output of the ICS
process. However, as the complexity of industrial control systems increases and attacks become more
precise, creating a knowledge-based model using domain knowledge cannot resolve the problem. For
detecting new abnormalities of industrial control systems, a deep learning-based approach has been
studied, as shown in Tab. 1.

Table 1: Deep learning-based anomaly detection approach in ICSs

Authors Deep learning Detection
techniques

Evaluation metrics

ANN CNN RNN etc. AS CEM TS Performance (dataset)

Goh et al. [5] O Cumulative sum O 9/10 (SWaT [20])
Kravchik et al. [6] O Z-score O O 31/36, F1:0.89 (SWaT)
Li et al. [7] O GAN Residual loss O Acc: 94.8, F1: 0.75

(SWaT)
Kim et al. [8] O S2S Prediction errors O 29/36 (SWaT)
Bian et al. [9] O Residual analysis O F1: 0.81 (HAI [15])
Al-Abassi et al. [10] AE DNN, DT classifiers O Acc: 99.6 (SWaT), 95.8

(GP [21])
Kim et al. [11] AE Cumulative

distribution
O Acc: 96.03 (HAI)

Kim et al. [12] O SOM Lindeberg’s
condition

O F1: 0.87 (SWaT), 0.83
(HAI)

Wang et al. [13] O OpenMax [19] O F1: 0.75 (GP), 0.84 (NBI
[22])

Notes: ∗AE: AutoEncoder, AS: Attack Scenario, CEM: Classification Evaluation Metrics, DNN: Deep Neural Networks, DT: Deci-
sion Tree, GP: Gas Pipeline, NBI: Nf-Bot-Iot-v2, SWaT: Secure Water Treatment, S2S: Sequence-to-Sequence, SOM: Self-Organizing Maps,
TS: Time-Series.
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In most studies using deep learning, abnormalities were detected by means of the threshold-based
results of residual analysis and prediction error techniques [5–6,8,9,11,12]. In addition, abnormal
data that does not belong to the normal data group was detected with each technique, such as
reconstruction error using GAN (Generative Adversarial Networks) discriminator, classification by
decision tree, and unknown class classification using open set recognition [7,10,13]. Each study uses
different evaluation indicators, such as attack scenarios, classification evaluation metrics, and time-
series evaluation metrics to represent the research results.

Considerations for detecting abnormalities of industrial control systems:

� In order for a model to be used in various industrial control systems, it must compare the
difference between the actual value and the predicted value by predicting with a multivariate
regression model based on unsupervised learning.
� Because a single model may not detect anomalies well, it needs to be improved.
� The performance of the detection model should be measured using a time-series-based
evaluation considering the process environment.
� When deciding whether to update the detection model, one must restore the result data
related to detecting abnormalities as data that can be analyzed.
� When detecting anomalies for the entire process, one must reduce the problem of response
costs.

3 Proposed GRU-based Buzzer Ensemble Scheme for Abnormal Detection

In this section, we propose a GBE-AD to detect abnormal processes by learning operation data
of industrial control systems. Since a single model using deep learning learns and analyzes data by
means of a single technique, it does not detect anomalies well. In addition, the most important point in
anomaly detection is to minimize detection errors (FPs, FNs). As shown in Fig. 2, the proposed model
learns the same data from various perspectives, so that comprehensive conclusions can be drawn.

Figure 2: Comparison of detecting abnormalities by means of a single model and the proposed model

The use of a single model may include abnormal data in the prediction range or normal data
outside the prediction range. Even if the trained model distinguishes the data well, there is a high
possibility of overfitting; so normal data is included by extending the prediction range by setting
the threshold high. By calculating a new prediction range in multiple internal models with the same
learning rate, we found the abnormal data to be out of the prediction range.
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The prediction error of the actual value in the model prediction value is
∣∣ŷt |−| yt

∣∣, which is
classified as if Threshold <

∣∣ŷt

∣∣ − |yt| : normal else abnormal.

Extended Threshold (ET) is set to a value slightly higher than max(
∣∣ŷt

∣∣ − (|yt|) of Normal Data.
If ET (Internal Model) expresses the normal range, the normal range and the abnormal range can be
expressed in n internal models as shown below.

abnormal ragne =
n⋃

i=1

ET(Internal Modeli)
� (1)

Thus,

normal =
n⋂

i=1

ET (Internal Modeli), abnormal =
n⋂

i=1

ET(Internal Modeli)
� (2)

This section is divided into four subsections:

� Data Preprocessing includes the process of scaling operation data and then converting it into
time-series data.
� In the model tuning process, we describe how to select the optimal hyperparameter and create
an internal model that composes GBE-AD.
� Describes the buzzer method ensemble technique of the proposed model.
� When abnormal process is detected, the internal model of GBE-AD generates mean
prediction error data and infers the abnormal detailed processes.

3.1 Data Preprocessing

Data Preprocessing required for training is very important. Operation data generated in industrial
processes is the result of the operation of industrial facilities. It has deterministic properties, and its
physical state changes over time. Therefore, it is appropriate to interpret it in the form of time-series
data according to the operating environment.

Since the data must be converted to time-series data, it may interfere with learning if it is not
numeric data. The features required for learning use the points of the process. null, not a number, and
missing values of data are handled because all data generated in a normal operating environment must
be quantified. Because the scale is different for each point of the operational data, one must prevent
the learning model from having bias. Min-Max Normalization is used for data scaling as follows, and
the original data can be restored by means of simple calculations.

Scaling : X = real (x) − min(normal (x))

max (normal (x)) − min (normal (x))
(3)

Restoring : real (x) = X × (max (normal (x)) − min (normal (x))) + min (normal (x)) (4)

The scaled data is converted into time-series data to complete the data preprocessing. The
conversion process is shown in Algorithm 1.

Algorithm 1: Convert to Time-Series Data
1. Initialization: {data: Operation data, x: Input, y: Output (predicted data), i: Number of samples

T: Time step(Window size), S_index: Starting point, E_index: End point}
2. S_index = 0

(Continued)
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Algorithm 1: Continued
3. E_index = len(data) –T
4. for i in range(S_index, E_index):
5. x. append(data[ i : i+T ])
6. y.append(data[ i+T : i +T+1])

3.2 Tuning of the Internal Model

After completing data preprocessing for training, the model trains and predicts using stacked-
GRU. The model generated here is defined as the internal model of GBE-AD, and is tuned for
optimization. The hyperparameters used for tuning determine the time step of time-series data, the
number of cells and layers, epoch, and batch size [23]. We used grid search for the optimization, as
shown in Tab. 2.

Table 2: Hyperparameter values used in internal models

Hyperparameter Description Range Tuned value

Time step Window size in
time-series data

[29∼119] 44–64

Cell Number of GRU cells [100∼300] 200
Layer Number of GRU layers [2∼4] 3
Epoch Number of training in

the total data
[30∼80] 50

Batch size The size of data used
per batch

[125∼2000] 2000

Activation function - - Relu
Loss function - - MAE
Optimizer - - AdamW

In addition, we created the final model by removing unnecessary features from the tuned full
model. Since the internal model was created using all points as features, we removed unnecessary
features by means of Backward Elimination. An internal model with unnecessary features removed is
shown in Fig. 3.

A label value of “0.00” is in the normal range, and “0.20” is in the abnormal range. There are three
types of model optimization results using Backward Elimination:

� Type 1 evaluation lowers the MPE for normal data.
� Type 2 evaluation increases the MPE for abnormal data.
� Type 3 evaluation lowers the MPE range of normal data identified as anomalies.
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Figure 3: Model optimization using feature selection (backward elimination)

3.3 Proposed GBE-AD Model

The structure and operation process of the proposed GBE-AD model are shown in Fig. 4. It
combines multiple internal models. Even if each internal model has different results (abnormal or
normal), it is reliable enough because FPs are suppressed by setting the threshold high. Reliable
internal models solve the FNs problem by complementing each other.

Figure 4: Operational process of the proposed GBE-AD model

The hyperparameters of the internal models differ only in time-step and data shuffle, and the rest
are the same as in Tab. 2. Each internal model shuffled the normal data used for learning, so that the
learning participation rate was the same. Data shuffle outputs different results within a similar range,
because each model interprets the same data from a different point of view. By changing the size of
the time step, we induced the prediction value to vary slightly.
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Input X expressed as time-series data ‘X ’, point (feature) ‘P’, number of points ‘k’, current time
‘t’, and time-step size ‘w’ is as follows:

Input X = {{P1, P2, . . . Pk}t−1, {P1, P2, . . . Pk}t−2, . . . {P1, P2, . . . Pk}t−w

}
(5)

The data preprocessed with the size of time step for each internal model is input to each internal
model, and the mean absolute error of each point is output:

Output Y = 1
k

k∑
i=1

|P̂i − Pi|t (6)

Then, if the output Yn of each Internal Modeln is greater than Extended Thresholdn, an
abnormality is detected:

Buzzer =
{

Normal, Yn − Extended Thresholdn ≤ 0
Abnormal, Yn − Extended Thresholdn > 0 (7)

When abnormal data occurs in the process, it affects for a certain period according to the task
sequence, so a range-based performance evaluation is required [24]. We evaluated the performance
using TaPR (Time-Series Aware Precision and Recall) [25], which added a score for the ambiguous
detection range in which the system does not operate normally during the recovery period of the
control system.

3.4 Inferring Abnormal Processes

In order to infer the abnormal process, the prediction error data of the detecting abnormalities
period is generated in the GBE-AD model. The most important point in this part is to identify the end
time of the attack and extract prediction errors for the same attack. Then, the prediction error data
for each process is averaged. Since the level of attack difficulty is different for each attack scenario,
data preprocessing is calculated as the L2 norm for each process based on the attack scenario.

The order of generating mean prediction error data is shown in Algorithm 2.

� When the test data is input to the GBE-AD model, the prediction error data detected as
anomalies is extracted.
� The classification of attack scenarios is labeled based on the value of adding 120 s (twice the
time step) to the last detection time for each attack.
� Data is generated by calculating the mean prediction error for each point based on each
attack scenario.
� The mean prediction error for each process is extracted from the generated data and pre-
processed using Normalizer() in Scikit-learn.

Algorithm 2: Generate Mean Prediction Error Data
1. Initialization: {Buzzer: Normal (Yn − ETn ≤ 0) , Abnormal ( Yn − ETn > 0),

Y: Output (|P̂i − Pi|t), N = Number of internal models,
A_Label: Attack number, E_time: Attack end time}

(Continued)
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Algorithm 2: Continued
2. Flowchart:

Finally, in order to derive the abnormal process, the target processes are labeled and the optimal
K value is calculated by means of clustering to infer the abnormal process. We used fuzzy c-means and
k-means clustering to compare soft and hard clustering.

4 Experiment

The experiment consists of the order of detecting abnormalities in the industrial control system
and inferring processes.

4.1 Abnormal Detection in ICS

We trained an internal model that constructs GBE-AD based on HAI version 21.03. We used
normal data collected over 352 h for training and 112 h of data containing 50 attacks for testing. As
shown in Tab. 3, we measured the performance of each internal model. The best internal model had a
time step of 59; when the threshold was 0.045, no FPs occurred in the normal interval (TaP: 98.161%).
The TaPR f1-score is 92.944%, detecting 48 out of 50 attacks.

Then, we looked at the change in GBE-AD detection rate with each internal model added. When
we measured the performance by adding the internal model with the time step reduced by 1 from
the best-performing internal model, the final performance was 94.039% as shown in Tab. 4. It was
appropriate to use 10 internal models.
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Table 3: Performance of internal model by time step

Time step of the
internal model

Threshold TaPR

F1 TaP TaR Detected

59 (best model) 0.045 0.92944 0.98161 0.88253 48/50
58 0.046 0.92308 0.98206 0.87078 47/50
57 0.046 0.92891 0.98093 0.88213 48/50
56 0.046 0.92298 0.98391 0.86915 47/50
55 0.045 0.92303 0.98002 0.87230 47/50
54 0.045 0.92808 0.98282 0.87912 48/50
53 0.045 0.91928 0.98280 0.86347 47/50
52 0.047 0.91846 0.98369 0.86135 47/50
51 0.046 0.92644 0.98384 0.87537 48/50
50 0.045 0.92128 0.98440 0.86577 47/50

Table 4: Performance of GBE-AD model when increasing internal model

Model
(number of
internal
models)

Time step
of

additional
internal
model

TaPR: detected: 48 (+1)

F1 TaP TaR

Result Inc/dec Result Inc/dec Result Inc/dec

Single (1) 59 0.92944 - 0.98161 - 0.88253 -
Ensemble
(2)

Single (1) +
58

0.93487 0.00543 0.98192 0.00031 0.89211 0.00958

Ensemble
(3)

Ensemble
(2) + 57

0.93637 0.00150 0.98044 −0.00148 0.89609 0.00398

Ensemble
(4)

Ensemble
(3) + 56

0.93749 0.00112 0.98014 −0.00030 0.89839 0.00230

Ensemble
(5)

Ensemble
(4) + 55

0.93716 −0.00033 0.97677 −0.00337 0.90064 0.00225

Ensemble
(6)

Ensemble
(5) + 54

0.93982 0.00266 0.97841 0.00164 0.90417 0.00353

Ensemble
(7)

Ensemble
(6) + 53

0.94017 0.00035 0.97825 −0.00016 0.90494 0.00077

Ensemble
(8)

Ensemble
(7) + 52

0.94020 0.00003 0.97697 −0.00128 0.90611 0.00117

(Continued)
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Table 4: Continued
Model
(number of
internal
models)

Time step
of

additional
internal
model

TaPR: detected: 48 (+1)

F1 TaP TaR

Result Inc/dec Result Inc/dec Result Inc/dec

Ensemble
(9)

Ensemble
(8) + 51

0.94036 0.00016 0.97686 −0.00011 0.90648 0.00037

Ensemble
(10)

Ensemble
(9) + 50

0.94039 0.00003 0.97678 −0.00008 0.90663 0.00015

Fig. 5 shows the anomaly detection results of the GBE-AD model on the test data. In TaPR’s
performance evaluation, attack scenarios 10 and 25 were undetected, but attack scenario 25 was
partially detected in the internal model. Since the GBE-AD model keeps FPs suppressed, the anomaly
detection results are reliable; so 49 out of 50 attack scenarios were detected.

Figure 5: Detection results of the GBE-AD model

4.2 Inferring Abnormal Processes

Based on the 49 attack scenarios detected by GBE-AD, we generated mean prediction error data
of each internal model. The Target process was labeled as follows:

� Single attack: P1 (Boiler) = 1, P2 (Turbine) = 2, P3 (Water-Treatment) = 3
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� Multi attack: P1 + P2 = 4, P1 + P3 = 5, P2 + P3 = 6

We inferred abnormal processes using the fuzzy c-means clustering algorithm of soft clustering
and the k-means clustering algorithm of hard clustering. For the number of clusters, we tested the
range of 3 to 6 using the number of processes as the minimum value and the number of types of attack
scenarios as the maximum value. fuzzy c-means clustering is a soft clustering method; so we set the
number of clusters (K) to 3, and tested k-means clustering by increasing the number of clusters to 6
to check whether multiple attacks can be distinguished. As shown in Fig. 6 and Tab. 5, we obtained
good results when there were 3 clusters for fuzzy c-means clustering and 3–4 for k-means clustering.

Figure 6: Comparison of clustering methods for abnormal process inference (soft vs. hard)

Table 5: Comparison of optimal clustering for anomalous process inference

Clustering Abnormal process

Attack target Fuzzy
C-means

K-means P1 P2 P3 Total (49)

Process Label K = 3 K = 4

P1 1 ‘✖’ ‘✖’ 19 19 19 22

‘•’ ‘�’ 3 3 3
P2 2 ‘�’ ‘�’ 11 11 11 11
P3 3 ‘•’ ‘•’ 2 2 2 2
P1+P2 4 ‘�’ ‘�’ 4 4 4 8

‘•’ ‘�’ 4 4 4
P1+P3 5 ‘✖’ ‘✖’ 3 3 3 3
P2+P3 6 ‘�’ ‘�’ 3 3 3 3
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The aggregate results of each clustering in Tab. 5 are as follows:

� Fuzzy C-Means: ‘✖’: {P1, P1+P3}, ‘�’: {P2, P1+P2, P2+P3}, ‘•’: {P1, P3, P1+P2}
� K-Means: ‘✖’: {P1, P1+P3}, ‘�’: {P1, P1+P2}, ‘�’: {P2, P1+P2, P2+P3}, ‘•’: {P3}

Fuzzy c-means ‘•’ clusters the cases where the P3 process is attacked. but includes some other
processes (P1, P1+P2). Each clustering method accurately derived the target process of a single attack
scenario. For multiple attack scenarios, two or more target processes could not be grouped separately,
but some of the attacked processes could be inferred.

5 Results

We evaluated the detection of abnormalities by adding internal models that make up the GBE-AD
model one by one. In the process of recovering to normal after attack, TaP decreased by 97.678%, but
TaR (Time-series Aware Recall) increased to 90.663% relatively, and FPs did not occur. The GBE-AD
model composed of 10 internal models is similar to the increase rate of the previous model, so it is
most effective to configure GBE-AD with 10 internal models.

In 50 attack scenarios, attack 10 was not detected by the GBE-AD model; so only 49 attacks were
detected. In the internal models constituting GEB-AD, attack 10 was similar to the normal process,
so no one was able to detect it. If only the points of a specific process are learned or a technique that
can detect subtle differences is added to the internal model, undetected attacks will be detectable.

When compared using soft and hard clustering in an experiment to infer an anomalous process,
the target process of a single attack scenario was mostly derived. Since the P1 and P2 processes are
synchronized with each other, we confirmed that the prediction error is large in the connected process
because of the change in the value of the target point. In addition, since the attack scenario targeting
P3 has fewer attacks than did other attacks, only a part of the compound attack could be inferred.

Only some processes were inferred even if the number of clusters was increased in an experiment
that derived anomalous processes in multiple attack scenarios, for the following reasons:

� Since the number of points used in each process is different, the prediction error of each
process is affected.
� The number of attack scenarios is insufficient, and the attack scenarios are unbalanced for
each target process.
� Various attack scenarios should be created to take into account the difficulty and impact
and severity of the attack on the process.

6 Conclusion

We proposed the GBE-AD model by learning operation data to detect abnormal processes because
security incidents occurring in industrial control systems can affect the real world. Most of the existing
studies have focused on proposing strategies and techniques to detect new attacks. However, FPs
and FNs used for detection evaluation affect each other’s performance. Abnormal detection should
consider FP and FN simultaneously. In this paper, we solved the FNs problem by combining internal
models after suppressing the FPs problem of each internal model constituting GEB-AD. The proposed
ensemble model suppressed FPs. Thus, a complementary approach to FNs is possible even when
combined with other internal models. The buzzer ensemble technique can improve the abnormal
detection limit of a single model or technique. In addition, the model may be able to infer abnormal
processes by generating prediction error data in GBE-AD. In a further study, the limitations on the
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abnormal process inference will be advanced by combining data expansion and domain knowledge of
the industrial control system.
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